mjestecko/articles/hand-opt-simplex-2d/page.mmd
2024-02-16 16:29:54 +05:00

117 lines
4.1 KiB
Plaintext

Title: Hand Optimized Simplex 2D
Brief: Results of messing around with moving and hoisting stuff around.
Date: 1688995095
Tags: Programming, GLSL, OpenGL, Optimization
CSS: /style.css
![](/articles/hand-opt-simplex-2d/noise.png)
Based on [webgl-noise repository](https://github.com/ashima/webgl-noise), which is based on [this paper](https://arxiv.org/pdf/1204.1461.pdf).
Things tried:
* Rearranging operations to reduce register pressure.
* Calculating things as soon as possible.
* Hand inlining.
### Results ###
For testing screen space *1024x1024* texture is generated, resulting in *1048576* fragment invocations,
with 4 octave fractal brownian motion.
Hardware: `Mobile Intel® GM45 Express Chipset`
Driver: `DRI Mesa 21.2.6`
Original:
```
Benchmark Iterations Min(ns) Max(ns) Variance Mean(ns)
----------------------------------------------------------------
full(0) 100 124848395 510494575 1473830605484805 129237053
```
Hand optimized:
```
Benchmark Iterations Min(ns) Max(ns) Variance Mean(ns)
----------------------------------------------------------------
full(0) 100 119354512 731397135 3705581696928414 125714847
```
Mean difference is `3ms 522µs 206ns (-2.7%)`, min difference is `5ms 493µs 883ns (-4.4%)`
This suggests that given driver is suboptimal in its optimizing capabilities,
and I imagine there might be GLSL compilers a lot worse than this.
Some intermediate shader representation comes to mind as a mean for
automatic GLSL source level, profile guided and other optimizations;
as well as polyfilling to different extensions, profiles and APIs. But welp.
### Source ###
```glsl
#version 120
// Author : Ian McEwan, Ashima Arts.
// Maintainer : stegu
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
// https://github.com/stegu/webgl-noise
//
#define MOD289(p_x) ((p_x) - floor((p_x) * (1.0 / 289.0)) * 289.0)
#define PERMUTE(p_result, p_x) { vec3 _temp = (((p_x) * 34.0) + 10.0) * (p_x); p_result = MOD289(_temp); }
float simplex_noise_2d(in vec2 v) {
const vec4 C = vec4(0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439); // 1.0 / 41.0
// First corner
vec2 i = floor(v + dot(v, C.yy));
vec2 x0 = v - i + dot(i, C.xx);
i = MOD289(i); // Avoid truncation effects in permutation
// i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
// i1.y = 1.0 - i1.x;
vec2 i1 = (x0.x > x0.y) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
// Other corners
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
vec4 x12 = x0.xyxy + C.xxzz - vec4(i1.xy, 0.0, 0.0);
// Permutations
vec3 pp;
vec3 p = i.y + vec3(0.0, i1.y, 1.0);
PERMUTE(pp, p);
pp += i.x + vec3(0.0, i1.x, 1.0);
PERMUTE(p, pp);
p = fract(p * C.www);
vec3 m = max(0.5 - vec3(dot(x0, x0), dot(x12.xy, x12.xy), dot(x12.zw, x12.zw)), 0.0);
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
vec3 x = 2.0 * p - 1.0;
vec3 a0 = x - floor(x + 0.5);
vec3 h = abs(x) - 0.5;
m = m * m;
m = m * m;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * (a0 * a0 + h * h);
// Compute final noise value at P
return 130.0 * dot(m, vec3(a0.x * x0.x + h.x * x0.y, a0.yz * x12.xz + h.yz * x12.yw));
}
```
### Possibilities
[NVidia's TEGRA guide](https://docs.nvidia.com/drive/drive_os_5.1.6.1L/nvvib_docs/DRIVE_OS_Linux_SDK_Development_Guide/baggage/tegra_gles2_performance.pdf) states that uniform access is often better than constants.
On our hardware it only degrades performance, but there's possibility of other chipsets having similar to TEGRA's preferences.
`C` constant is legible for this.