# MIT License # # Copyright (c) 2023 Mark McKay # https://github.com/blackears/cyclopsLevelBuilder # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. @tool class_name MathUtil enum Axis { X, Y, Z } static func square(value:float)->float: return value * value static func snap_to_grid(pos:Vector3, cell_size:float)->Vector3: # return floor(pos / cell_size) * cell_size return floor((pos + Vector3(cell_size, cell_size, cell_size) / 2) / cell_size) * cell_size #Returns intersection of line with point. # plane_perp_dir points in direction of plane's normal and does not need to be normalized static func intersect_plane(ray_origin:Vector3, ray_dir:Vector3, plane_origin:Vector3, plane_perp_dir:Vector3)->Vector3: var s:float = (plane_origin - ray_origin).dot(plane_perp_dir) / ray_dir.dot(plane_perp_dir) return ray_origin + ray_dir * s #Returns the closest point on the line to the ray static func closest_point_on_line(ray_origin:Vector3, ray_dir:Vector3, line_origin:Vector3, line_dir:Vector3)->Vector3: var a:Vector3 = ray_dir.cross(line_dir) var w_perp:Vector3 = ray_dir.cross(a) return intersect_plane(line_origin, line_dir, ray_origin, w_perp) static func closest_point_on_segment(ray_origin:Vector3, ray_dir:Vector3, seg_start:Vector3, seg_end:Vector3)->Vector3: var seg_span:Vector3 = seg_end - seg_start var p:Vector3 = closest_point_on_line(ray_origin, ray_dir, seg_start, seg_span) var offset:Vector3 = p - seg_start if offset.dot(seg_span) < 0: return seg_start if offset.length_squared() > seg_span.length_squared(): return seg_end return p #Shortest distance from point to given ray. Returns NAN if point is behind origin of ray. static func distance_to_ray(ray_origin:Vector3, ray_dir:Vector3, point:Vector3): var offset = point - ray_origin var parallel:Vector3 = offset.project(ray_dir) if parallel.dot(ray_dir) < 0: return NAN var perp:Vector3 = offset - parallel return perp.length() static func trianglate_face(points:PackedVector3Array, normal:Vector3)->PackedVector3Array: var result:PackedVector3Array while (points.size() >= 3): var num_points:int = points.size() for i in range(0, num_points): var p0:Vector3 = points[i] var p1:Vector3 = points[wrap(i + 1, 0, num_points)] var p2:Vector3 = points[wrap(i + 2, 0, num_points)] #Godot uses clockwise winding var tri_norm_dir:Vector3 = (p2 - p0).cross(p1 - p0) if tri_norm_dir.dot(normal) > 0: result.append(p0) result.append(p1) result.append(p2) points.remove_at(i + 1) break return result static func trianglate_face_indices(points:PackedVector3Array, indices:Array[int], normal:Vector3)->Array[int]: var result:Array[int] = [] # print("trianglate_face_indices %s" % points) while (points.size() >= 3): var num_points:int = points.size() var added_point:bool = false for i in range(0, num_points): var idx0:int = i var idx1:int = wrap(i + 1, 0, num_points) var idx2:int = wrap(i + 2, 0, num_points) var p0:Vector3 = points[idx0] var p1:Vector3 = points[idx1] var p2:Vector3 = points[idx2] #Godot uses clockwise winding var tri_norm_dir:Vector3 = (p2 - p0).cross(p1 - p0) if tri_norm_dir.dot(normal) > 0: result.append(indices[idx0]) result.append(indices[idx1]) result.append(indices[idx2]) # print("adding indices %s %s %s" % [indices[idx0], indices[idx1], indices[idx2]]) points.remove_at(idx1) indices.remove_at(idx1) added_point = true break assert(added_point, "failed to add point in triangulation") # print("tri_done %s" % str(result)) return result static func trianglate_face_vertex_indices(points:PackedVector3Array, normal:Vector3)->Array[int]: var result:Array[int] = [] var fv_indices:Array = range(0, points.size()) # print("trianglate_face_indices %s" % points) while (points.size() >= 3): var num_points:int = points.size() var added_point:bool = false for i in range(0, num_points): var idx0:int = i var idx1:int = wrap(i + 1, 0, num_points) var idx2:int = wrap(i + 2, 0, num_points) var p0:Vector3 = points[idx0] var p1:Vector3 = points[idx1] var p2:Vector3 = points[idx2] #Godot uses clockwise winding var tri_norm_dir:Vector3 = (p2 - p0).cross(p1 - p0) if tri_norm_dir.dot(normal) > 0: result.append(fv_indices[idx0]) result.append(fv_indices[idx1]) result.append(fv_indices[idx2]) # print("adding indices %s %s %s" % [indices[idx0], indices[idx1], indices[idx2]]) points.remove_at(idx1) fv_indices.remove_at(idx1) added_point = true break assert(added_point, "failed to add point in triangulation") # print("tri_done %s" % str(result)) return result static func flip_plane(plane:Plane)->Plane: return Plane(-plane.normal, plane.get_center()) #Returns a vector pointing along the normal in the clockwise winding direction with a length equal to twice the area of the triangle static func triangle_area_x2(p0:Vector3, p1:Vector3, p2:Vector3)->Vector3: return (p2 - p0).cross(p1 - p0) #Returns a vector pointing along the normal in the clockwise winding direction with a lengh equal to twice the area of the face static func face_area_x2(points:PackedVector3Array)->Vector3: if points.size() <= 1: return Vector3.ZERO var result:Vector3 var p0:Vector3 = points[0] for i in range(1, points.size() - 1): var p1:Vector3 = points[i] var p2:Vector3 = points[i + 1] result += (p2 - p0).cross(p1 - p0) return result static func face_area_x2_2d(points:PackedVector2Array)->float: if points.size() <= 1: return 0 var result:float var p0:Vector2 = points[0] for i in range(1, points.size() - 1): var p1:Vector2 = points[i] var p2:Vector2 = points[i + 1] result += triange_area_2x_2d(p1 - p0, p2 - p0) return result static func fit_plane(points:PackedVector3Array)->Plane: var normal:Vector3 = face_area_x2(points).normalized() return Plane(normal, points[0]) static func snap_to_best_axis_normal(vector:Vector3)->Vector3: if abs(vector.x) > abs(vector.y) and abs(vector.x) > abs(vector.z): return Vector3(1, 0, 0) if vector.x > 0 else Vector3(-1, 0, 0) elif abs(vector.y) > abs(vector.z): return Vector3(0, 1, 0) if vector.y > 0 else Vector3(0, -1, 0) else: return Vector3(0, 0, 1) if vector.z > 0 else Vector3(0, 0, -1) static func get_longest_axis(vector:Vector3)->Axis: if abs(vector.x) > abs(vector.y) and abs(vector.x) > abs(vector.z): return Axis.X elif abs(vector.y) > abs(vector.z): return Axis.Y else: return Axis.Z static func calc_bounds(points:PackedVector3Array)->AABB: if points.is_empty(): return AABB(Vector3.ZERO, Vector3.ZERO) var result:AABB = AABB(points[0], Vector3.ZERO) for i in range(1, points.size()): result = result.expand(points[i]) return result #Returns value equal to twise the area between the two vectors. Clockwise windings have negative area static func triange_area_2x_2d(a:Vector2, b:Vector2)->float: return a.x * b.y - a.y * b.x #Finds the bouding polygons of this set of points with a clockwise winding static func bounding_polygon_2d(base_points:PackedVector2Array)->PackedVector2Array: if base_points.size() <= 2: return base_points #Start with leftmost vertex, topmost if more than one var p_init:Vector2 = base_points[0] for p in base_points: if p.x < p_init.x or (p.x == p_init.x and p.y > p_init.y): p_init = p var p_cur:Vector2 = p_init var last_segment_dir = Vector2(0, 1) var polygon:PackedVector2Array while true: var best_point:Vector2 var best_dir:Vector2 var best_angle:float = 0 for p in base_points: if p.is_equal_approx(p_cur): continue var point_dir:Vector2 = (p - p_cur).normalized() var angle:float = acos(-last_segment_dir.dot(point_dir)) if angle > best_angle or (angle == best_angle and p_cur.distance_squared_to(p) > p_cur.distance_squared_to(best_point)): best_point = p best_dir = point_dir best_angle = angle p_cur = best_point last_segment_dir = best_dir polygon.append(best_point) if best_point.is_equal_approx(p_init): break return polygon #static func bounding_polygon(base_points:PackedVector3Array, plane:Plane)->PackedVector3Array: static func bounding_polygon_3d(base_points:PackedVector3Array, normal:Vector3)->PackedVector3Array: if base_points.size() <= 2: return base_points var quat:Quaternion = Quaternion(normal, Vector3.FORWARD) # var xform:Transform3D = Transform3D(Basis(quat), -base_points[0]) var xform:Transform3D = Transform3D(Basis(quat)) xform = xform.translated_local(-base_points[0]) var xform_inv = xform.inverse() #print("xform %s" % xform) var points_local:PackedVector2Array for p in base_points: var p_local = xform * p points_local.append(Vector2(p_local.x, p_local.y)) var points_bounds:PackedVector2Array = bounding_polygon_2d(points_local) var result:PackedVector3Array for p in points_bounds: var p_result = xform_inv * Vector3(p.x, p.y, 0) result.append(p_result) return result static func points_are_colinear(points:PackedVector3Array)->bool: if points.size() <= 2: return true var p0:Vector3 = points[0] var p1:Vector3 = p0 var index:int = 0 for i in range(1, points.size()): if !points[i].is_equal_approx(p0): p1 = points[i] index = i break if index == 0: return true var v10:Vector3 = p1 - p0 for i in range(index + 1, points.size()): if !triangle_area_x2(p0, p1, points[i]).is_zero_approx(): return false return true static func furthest_point_from_line(line_origin:Vector3, line_dir:Vector3, points:PackedVector3Array)->Vector3: var best_point:Vector3 var best_dist:float = 0 for p in points: var offset:Vector3 = p - line_origin var along:Vector3 = offset.project(line_dir) var perp:Vector3 = offset - along var dist:float = perp.length_squared() if dist > best_dist: best_dist = dist best_point = p return best_point static func furthest_point_from_plane(plane:Plane, points:PackedVector3Array)->Vector3: var best_point:Vector3 var best_distance:float = 0 for p in points: var dist = abs(plane.distance_to(p)) if dist > best_distance: best_point = p best_distance = dist return best_point static func planar_volume_contains_point(planes:Array[Plane], point:Vector3)->bool: # print("candidate %s" % point) for p in planes: var is_over:bool = p.is_point_over(point) var is_on:bool = p.has_point(point) if !is_over && !is_on: # print("reject by %s" % p) return false # print("passed %s" % point) return true static func get_convex_hull_points_from_planes(planes:Array[Plane])->Array[Vector3]: #Check for overlapping planes for i0 in range(0, planes.size()): for i1 in range(i0 + 1, planes.size()): var p0:Plane = planes[i0] var p1:Plane = flip_plane(planes[i1]) if p0.is_equal_approx(p1): return [] var points:Array[Vector3] for i0 in range(0, planes.size()): for i1 in range(i0 + 1, planes.size()): for i2 in range(i1 + 1, planes.size()): var result = planes[i0].intersect_3(planes[i1], planes[i2]) if result == null: continue #print("candidate %s" % result) if !planar_volume_contains_point(planes, result): continue if points.any(func(p):return p.is_equal_approx(result)): continue #print("adding %s" % result) points.append(result) return points static func dist_to_segment_squared_2d(point:Vector2, seg_start:Vector2, seg_end:Vector2)->float: var dist_sq_p0:float = point.distance_squared_to(seg_start) var dist_sq_p1:float = point.distance_squared_to(seg_end) var seg_span:Vector2 = seg_end - seg_start var offset:Vector2 = point - seg_start var offset_proj:Vector2 = offset.project(seg_span) var perp_dist_sq:float = (offset - offset_proj).length_squared() if seg_span.dot(offset) < 0: return dist_sq_p0 elif offset_proj.length_squared() > seg_span.length_squared(): return dist_sq_p1 return perp_dist_sq class Segment2d extends RefCounted: var p0:Vector2 var p1:Vector2 func _init(p0:Vector2, p1:Vector2): self.p0 = p0 self.p1 = p1 func reverse()->Segment2d: return Segment2d.new(p1, p0) func _to_string(): return "[%s %s]" % [p0, p1] static func extract_loop_2d(seg_stack:Array[Segment2d])->PackedVector2Array: var segs_sorted:Array[Segment2d] = [] var prev_seg = seg_stack.pop_back() segs_sorted.append(prev_seg) while !seg_stack.is_empty(): var found_seg:bool = false for s_idx in seg_stack.size(): var cur_seg:Segment2d = seg_stack[s_idx] if cur_seg.p0.is_equal_approx(prev_seg.p1): # print("matching %s with %s" % [prev_seg, cur_seg]) segs_sorted.append(cur_seg) seg_stack.remove_at(s_idx) prev_seg = cur_seg found_seg = true break elif cur_seg.p1.is_equal_approx(prev_seg.p1): # print("matching %s with %s" % [prev_seg, cur_seg]) cur_seg = cur_seg.reverse() segs_sorted.append(cur_seg) seg_stack.remove_at(s_idx) prev_seg = cur_seg found_seg = true break if !found_seg: # push_warning("loop not continuous") break # print("segs_sorted %s" % str(segs_sorted)) var result:PackedVector2Array for s in segs_sorted: result.append(s.p0) if face_area_x2_2d(result) < 0: result.reverse() return result static func get_loops_from_segments_2d(segments:PackedVector2Array)->Array[PackedVector2Array]: #print("segments %s" % segments) var loops:Array[PackedVector2Array] = [] var seg_stack:Array[Segment2d] = [] for i in range(0, segments.size(), 2): seg_stack.append(Segment2d.new(segments[i], segments[i + 1])) # print("segs %s" % str(seg_stack)) while !seg_stack.is_empty(): var loop:PackedVector2Array = extract_loop_2d(seg_stack) loops.append(loop) # print("result %s" % str(result)) return loops static func create_transform(translation:Vector3, rotation_axis:Vector3, rotation_angle:float, scale:Vector3, pivot:Vector3)->Transform3D: var xform:Transform3D = Transform3D.IDENTITY xform = xform.translated_local(pivot + translation) xform = xform.rotated_local(rotation_axis, rotation_angle) xform = xform.scaled_local(scale) xform = xform.translated_local(-pivot) return xform static func create_circle_points(center:Vector3, normal:Vector3, radius:float, num_segments:int)->PackedVector3Array: var result:PackedVector3Array var axis:Axis = get_longest_axis(normal) var perp_normal:Vector3 match axis: Axis.X: perp_normal = normal.cross(Vector3.UP) Axis.Y: perp_normal = normal.cross(Vector3.FORWARD) Axis.Z: perp_normal = normal.cross(Vector3.UP) var angle_incrment = (PI * 2 / num_segments) for i in num_segments: var offset:Vector3 = perp_normal.rotated(normal, i * angle_incrment) result.append(offset * radius + center) return result static func get_axis_aligned_tangent_and_binormal(normal:Vector3)->Array[Vector3]: var axis:MathUtil.Axis = MathUtil.get_longest_axis(normal) #calc tangent and binormal var u_normal:Vector3 var v_normal:Vector3 match axis: MathUtil.Axis.Y: u_normal = normal.cross(Vector3.FORWARD) v_normal = u_normal.cross(normal) return [u_normal, v_normal] MathUtil.Axis.X: u_normal = normal.cross(Vector3.UP) v_normal = u_normal.cross(normal) return [u_normal, v_normal] MathUtil.Axis.Z: u_normal = normal.cross(Vector3.UP) v_normal = u_normal.cross(normal) return [u_normal, v_normal] return []