28661 lines
822 KiB
C++
28661 lines
822 KiB
C++
/*
|
||
minilua.h -- Lua in a single header
|
||
Project URL: https://github.com/edubart/minilua
|
||
|
||
This is Lua 5.4.7 contained in a single header to be bundled in C/C++ applications with ease.
|
||
Lua is a powerful, efficient, lightweight, embeddable scripting language.
|
||
|
||
Do the following in *one* C file to create the implementation:
|
||
#define LUA_IMPL
|
||
|
||
By default it detects the system platform to use, however you could explicitly define one.
|
||
|
||
Note that almost no modification was made in the Lua implementation code,
|
||
thus there are some C variable names that may collide with your code,
|
||
therefore it is best to declare the Lua implementation in dedicated C file.
|
||
|
||
Optionally provide the following defines:
|
||
LUA_MAKE_LUA - implement the Lua command line REPL
|
||
|
||
LICENSE
|
||
MIT License, same as Lua, see end of file.
|
||
*/
|
||
|
||
/* detect system platform */
|
||
#if !defined(LUA_USE_WINDOWS) && !defined(LUA_USE_LINUX) && !defined(LUA_USE_MACOSX) && !defined(LUA_USE_POSIX) && !defined(LUA_USE_C89) && !defined(LUA_USE_IOS)
|
||
#if defined(_WIN32)
|
||
#define LUA_USE_WINDOWS
|
||
#elif defined(__linux__)
|
||
#define LUA_USE_LINUX
|
||
#elif defined(__APPLE__)
|
||
#define LUA_USE_MACOSX
|
||
#else /* probably a POSIX system */
|
||
#define LUA_USE_POSIX
|
||
#define LUA_USE_DLOPEN
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef LUA_IMPL
|
||
#define LUA_CORE
|
||
/*
|
||
** $Id: lprefix.h $
|
||
** Definitions for Lua code that must come before any other header file
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lprefix_h
|
||
#define lprefix_h
|
||
|
||
|
||
/*
|
||
** Allows POSIX/XSI stuff
|
||
*/
|
||
#if !defined(LUA_USE_C89) /* { */
|
||
|
||
#if !defined(_XOPEN_SOURCE)
|
||
#define _XOPEN_SOURCE 600
|
||
#elif _XOPEN_SOURCE == 0
|
||
#undef _XOPEN_SOURCE /* use -D_XOPEN_SOURCE=0 to undefine it */
|
||
#endif
|
||
|
||
/*
|
||
** Allows manipulation of large files in gcc and some other compilers
|
||
*/
|
||
#if !defined(LUA_32BITS) && !defined(_FILE_OFFSET_BITS)
|
||
#define _LARGEFILE_SOURCE 1
|
||
#define _FILE_OFFSET_BITS 64
|
||
#endif
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** Windows stuff
|
||
*/
|
||
#if defined(_WIN32) /* { */
|
||
|
||
#if !defined(_CRT_SECURE_NO_WARNINGS)
|
||
#define _CRT_SECURE_NO_WARNINGS /* avoid warnings about ISO C functions */
|
||
#endif
|
||
|
||
#endif /* } */
|
||
|
||
#endif
|
||
|
||
#endif /* LUA_IMPL */
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
/*
|
||
** $Id: luaconf.h $
|
||
** Configuration file for Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#ifndef luaconf_h
|
||
#define luaconf_h
|
||
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
|
||
|
||
/*
|
||
** ===================================================================
|
||
** General Configuration File for Lua
|
||
**
|
||
** Some definitions here can be changed externally, through the compiler
|
||
** (e.g., with '-D' options): They are commented out or protected
|
||
** by '#if !defined' guards. However, several other definitions
|
||
** should be changed directly here, either because they affect the
|
||
** Lua ABI (by making the changes here, you ensure that all software
|
||
** connected to Lua, such as C libraries, will be compiled with the same
|
||
** configuration); or because they are seldom changed.
|
||
**
|
||
** Search for "@@" to find all configurable definitions.
|
||
** ===================================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** {====================================================================
|
||
** System Configuration: macros to adapt (if needed) Lua to some
|
||
** particular platform, for instance restricting it to C89.
|
||
** =====================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUA_USE_C89 controls the use of non-ISO-C89 features.
|
||
** Define it if you want Lua to avoid the use of a few C99 features
|
||
** or Windows-specific features on Windows.
|
||
*/
|
||
/* #define LUA_USE_C89 */
|
||
|
||
|
||
/*
|
||
** By default, Lua on Windows use (some) specific Windows features
|
||
*/
|
||
#if !defined(LUA_USE_C89) && defined(_WIN32) && !defined(_WIN32_WCE)
|
||
#define LUA_USE_WINDOWS /* enable goodies for regular Windows */
|
||
#endif
|
||
|
||
|
||
#if defined(LUA_USE_WINDOWS)
|
||
#define LUA_DL_DLL /* enable support for DLL */
|
||
#define LUA_USE_C89 /* broadly, Windows is C89 */
|
||
#endif
|
||
|
||
|
||
#if defined(LUA_USE_LINUX)
|
||
#define LUA_USE_POSIX
|
||
#define LUA_USE_DLOPEN /* needs an extra library: -ldl */
|
||
#endif
|
||
|
||
|
||
#if defined(LUA_USE_MACOSX)
|
||
#define LUA_USE_POSIX
|
||
#define LUA_USE_DLOPEN /* MacOS does not need -ldl */
|
||
#endif
|
||
|
||
|
||
#if defined(LUA_USE_IOS)
|
||
#define LUA_USE_POSIX
|
||
#define LUA_USE_DLOPEN
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ LUAI_IS32INT is true iff 'int' has (at least) 32 bits.
|
||
*/
|
||
#define LUAI_IS32INT ((UINT_MAX >> 30) >= 3)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Configuration for Number types. These options should not be
|
||
** set externally, because any other code connected to Lua must
|
||
** use the same configuration.
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUA_INT_TYPE defines the type for Lua integers.
|
||
@@ LUA_FLOAT_TYPE defines the type for Lua floats.
|
||
** Lua should work fine with any mix of these options supported
|
||
** by your C compiler. The usual configurations are 64-bit integers
|
||
** and 'double' (the default), 32-bit integers and 'float' (for
|
||
** restricted platforms), and 'long'/'double' (for C compilers not
|
||
** compliant with C99, which may not have support for 'long long').
|
||
*/
|
||
|
||
/* predefined options for LUA_INT_TYPE */
|
||
#define LUA_INT_INT 1
|
||
#define LUA_INT_LONG 2
|
||
#define LUA_INT_LONGLONG 3
|
||
|
||
/* predefined options for LUA_FLOAT_TYPE */
|
||
#define LUA_FLOAT_FLOAT 1
|
||
#define LUA_FLOAT_DOUBLE 2
|
||
#define LUA_FLOAT_LONGDOUBLE 3
|
||
|
||
|
||
/* Default configuration ('long long' and 'double', for 64-bit Lua) */
|
||
#define LUA_INT_DEFAULT LUA_INT_LONGLONG
|
||
#define LUA_FLOAT_DEFAULT LUA_FLOAT_DOUBLE
|
||
|
||
|
||
/*
|
||
@@ LUA_32BITS enables Lua with 32-bit integers and 32-bit floats.
|
||
*/
|
||
#if !defined(LUA_32BITS)
|
||
#define LUA_32BITS 0
|
||
#endif
|
||
|
||
/*
|
||
@@ LUA_C89_NUMBERS ensures that Lua uses the largest types available for
|
||
** C89 ('long' and 'double'); Windows always has '__int64', so it does
|
||
** not need to use this case.
|
||
*/
|
||
#if defined(LUA_USE_C89) && !defined(LUA_USE_WINDOWS)
|
||
#define LUA_C89_NUMBERS 1
|
||
#else
|
||
#define LUA_C89_NUMBERS 0
|
||
#endif
|
||
|
||
|
||
#if LUA_32BITS /* { */
|
||
/*
|
||
** 32-bit integers and 'float'
|
||
*/
|
||
#if LUAI_IS32INT /* use 'int' if big enough */
|
||
#define LUA_INT_TYPE LUA_INT_INT
|
||
#else /* otherwise use 'long' */
|
||
#define LUA_INT_TYPE LUA_INT_LONG
|
||
#endif
|
||
#define LUA_FLOAT_TYPE LUA_FLOAT_FLOAT
|
||
|
||
#elif LUA_C89_NUMBERS /* }{ */
|
||
/*
|
||
** largest types available for C89 ('long' and 'double')
|
||
*/
|
||
#define LUA_INT_TYPE LUA_INT_LONG
|
||
#define LUA_FLOAT_TYPE LUA_FLOAT_DOUBLE
|
||
|
||
#else /* }{ */
|
||
/* use defaults */
|
||
|
||
#define LUA_INT_TYPE LUA_INT_DEFAULT
|
||
#define LUA_FLOAT_TYPE LUA_FLOAT_DEFAULT
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Configuration for Paths.
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** LUA_PATH_SEP is the character that separates templates in a path.
|
||
** LUA_PATH_MARK is the string that marks the substitution points in a
|
||
** template.
|
||
** LUA_EXEC_DIR in a Windows path is replaced by the executable's
|
||
** directory.
|
||
*/
|
||
#define LUA_PATH_SEP ";"
|
||
#define LUA_PATH_MARK "?"
|
||
#define LUA_EXEC_DIR "!"
|
||
|
||
|
||
/*
|
||
@@ LUA_PATH_DEFAULT is the default path that Lua uses to look for
|
||
** Lua libraries.
|
||
@@ LUA_CPATH_DEFAULT is the default path that Lua uses to look for
|
||
** C libraries.
|
||
** CHANGE them if your machine has a non-conventional directory
|
||
** hierarchy or if you want to install your libraries in
|
||
** non-conventional directories.
|
||
*/
|
||
|
||
#define LUA_VDIR LUA_VERSION_MAJOR "." LUA_VERSION_MINOR
|
||
#if defined(_WIN32) /* { */
|
||
/*
|
||
** In Windows, any exclamation mark ('!') in the path is replaced by the
|
||
** path of the directory of the executable file of the current process.
|
||
*/
|
||
#define LUA_LDIR "!\\lua\\"
|
||
#define LUA_CDIR "!\\"
|
||
#define LUA_SHRDIR "!\\..\\share\\lua\\" LUA_VDIR "\\"
|
||
|
||
#if !defined(LUA_PATH_DEFAULT)
|
||
#define LUA_PATH_DEFAULT \
|
||
LUA_LDIR"?.lua;" LUA_LDIR"?\\init.lua;" \
|
||
LUA_CDIR"?.lua;" LUA_CDIR"?\\init.lua;" \
|
||
LUA_SHRDIR"?.lua;" LUA_SHRDIR"?\\init.lua;" \
|
||
".\\?.lua;" ".\\?\\init.lua"
|
||
#endif
|
||
|
||
#if !defined(LUA_CPATH_DEFAULT)
|
||
#define LUA_CPATH_DEFAULT \
|
||
LUA_CDIR"?.dll;" \
|
||
LUA_CDIR"..\\lib\\lua\\" LUA_VDIR "\\?.dll;" \
|
||
LUA_CDIR"loadall.dll;" ".\\?.dll"
|
||
#endif
|
||
|
||
#else /* }{ */
|
||
|
||
#define LUA_ROOT "/usr/local/"
|
||
#define LUA_LDIR LUA_ROOT "share/lua/" LUA_VDIR "/"
|
||
#define LUA_CDIR LUA_ROOT "lib/lua/" LUA_VDIR "/"
|
||
|
||
#if !defined(LUA_PATH_DEFAULT)
|
||
#define LUA_PATH_DEFAULT \
|
||
LUA_LDIR"?.lua;" LUA_LDIR"?/init.lua;" \
|
||
LUA_CDIR"?.lua;" LUA_CDIR"?/init.lua;" \
|
||
"./?.lua;" "./?/init.lua"
|
||
#endif
|
||
|
||
#if !defined(LUA_CPATH_DEFAULT)
|
||
#define LUA_CPATH_DEFAULT \
|
||
LUA_CDIR"?.so;" LUA_CDIR"loadall.so;" "./?.so"
|
||
#endif
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
@@ LUA_DIRSEP is the directory separator (for submodules).
|
||
** CHANGE it if your machine does not use "/" as the directory separator
|
||
** and is not Windows. (On Windows Lua automatically uses "\".)
|
||
*/
|
||
#if !defined(LUA_DIRSEP)
|
||
|
||
#if defined(_WIN32)
|
||
#define LUA_DIRSEP "\\"
|
||
#else
|
||
#define LUA_DIRSEP "/"
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** LUA_IGMARK is a mark to ignore all after it when building the
|
||
** module name (e.g., used to build the luaopen_ function name).
|
||
** Typically, the suffix after the mark is the module version,
|
||
** as in "mod-v1.2.so".
|
||
*/
|
||
#define LUA_IGMARK "-"
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Marks for exported symbols in the C code
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUA_API is a mark for all core API functions.
|
||
@@ LUALIB_API is a mark for all auxiliary library functions.
|
||
@@ LUAMOD_API is a mark for all standard library opening functions.
|
||
** CHANGE them if you need to define those functions in some special way.
|
||
** For instance, if you want to create one Windows DLL with the core and
|
||
** the libraries, you may want to use the following definition (define
|
||
** LUA_BUILD_AS_DLL to get it).
|
||
*/
|
||
#if defined(LUA_BUILD_AS_DLL) /* { */
|
||
|
||
#if defined(LUA_CORE) || defined(LUA_LIB) /* { */
|
||
#define LUA_API __declspec(dllexport)
|
||
#else /* }{ */
|
||
#define LUA_API __declspec(dllimport)
|
||
#endif /* } */
|
||
|
||
#else /* }{ */
|
||
|
||
/* TWN: Don't export anything, there's no need. */
|
||
#define LUA_API LUAI_FUNC
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** More often than not the libs go together with the core.
|
||
*/
|
||
#define LUALIB_API LUA_API
|
||
#define LUAMOD_API LUA_API
|
||
|
||
|
||
/*
|
||
@@ LUAI_FUNC is a mark for all extern functions that are not to be
|
||
** exported to outside modules.
|
||
@@ LUAI_DDEF and LUAI_DDEC are marks for all extern (const) variables,
|
||
** none of which to be exported to outside modules (LUAI_DDEF for
|
||
** definitions and LUAI_DDEC for declarations).
|
||
** CHANGE them if you need to mark them in some special way. Elf/gcc
|
||
** (versions 3.2 and later) mark them as "hidden" to optimize access
|
||
** when Lua is compiled as a shared library. Not all elf targets support
|
||
** this attribute. Unfortunately, gcc does not offer a way to check
|
||
** whether the target offers that support, and those without support
|
||
** give a warning about it. To avoid these warnings, change to the
|
||
** default definition.
|
||
*/
|
||
#if defined(__GNUC__) && ((__GNUC__*100 + __GNUC_MINOR__) >= 302) && \
|
||
defined(__ELF__) /* { */
|
||
#define LUAI_FUNC __attribute__((visibility("internal"))) extern
|
||
#else /* }{ */
|
||
#define LUAI_FUNC extern
|
||
#endif /* } */
|
||
|
||
#define LUAI_DDEC(dec) LUAI_FUNC dec
|
||
#define LUAI_DDEF /* empty */
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Compatibility with previous versions
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUA_COMPAT_5_3 controls other macros for compatibility with Lua 5.3.
|
||
** You can define it to get all options, or change specific options
|
||
** to fit your specific needs.
|
||
*/
|
||
#if defined(LUA_COMPAT_5_3) /* { */
|
||
|
||
/*
|
||
@@ LUA_COMPAT_MATHLIB controls the presence of several deprecated
|
||
** functions in the mathematical library.
|
||
** (These functions were already officially removed in 5.3;
|
||
** nevertheless they are still available here.)
|
||
*/
|
||
#define LUA_COMPAT_MATHLIB
|
||
|
||
/*
|
||
@@ LUA_COMPAT_APIINTCASTS controls the presence of macros for
|
||
** manipulating other integer types (lua_pushunsigned, lua_tounsigned,
|
||
** luaL_checkint, luaL_checklong, etc.)
|
||
** (These macros were also officially removed in 5.3, but they are still
|
||
** available here.)
|
||
*/
|
||
#define LUA_COMPAT_APIINTCASTS
|
||
|
||
|
||
/*
|
||
@@ LUA_COMPAT_LT_LE controls the emulation of the '__le' metamethod
|
||
** using '__lt'.
|
||
*/
|
||
#define LUA_COMPAT_LT_LE
|
||
|
||
|
||
/*
|
||
@@ The following macros supply trivial compatibility for some
|
||
** changes in the API. The macros themselves document how to
|
||
** change your code to avoid using them.
|
||
** (Once more, these macros were officially removed in 5.3, but they are
|
||
** still available here.)
|
||
*/
|
||
#define lua_strlen(L,i) lua_rawlen(L, (i))
|
||
|
||
#define lua_objlen(L,i) lua_rawlen(L, (i))
|
||
|
||
#define lua_equal(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPEQ)
|
||
#define lua_lessthan(L,idx1,idx2) lua_compare(L,(idx1),(idx2),LUA_OPLT)
|
||
|
||
#endif /* } */
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Configuration for Numbers (low-level part).
|
||
** Change these definitions if no predefined LUA_FLOAT_* / LUA_INT_*
|
||
** satisfy your needs.
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUAI_UACNUMBER is the result of a 'default argument promotion'
|
||
@@ over a floating number.
|
||
@@ l_floatatt(x) corrects float attribute 'x' to the proper float type
|
||
** by prefixing it with one of FLT/DBL/LDBL.
|
||
@@ LUA_NUMBER_FRMLEN is the length modifier for writing floats.
|
||
@@ LUA_NUMBER_FMT is the format for writing floats.
|
||
@@ lua_number2str converts a float to a string.
|
||
@@ l_mathop allows the addition of an 'l' or 'f' to all math operations.
|
||
@@ l_floor takes the floor of a float.
|
||
@@ lua_str2number converts a decimal numeral to a number.
|
||
*/
|
||
|
||
|
||
/* The following definitions are good for most cases here */
|
||
|
||
#define l_floor(x) (l_mathop(floor)(x))
|
||
|
||
#define lua_number2str(s,sz,n) \
|
||
l_sprintf((s), sz, LUA_NUMBER_FMT, (LUAI_UACNUMBER)(n))
|
||
|
||
/*
|
||
@@ lua_numbertointeger converts a float number with an integral value
|
||
** to an integer, or returns 0 if float is not within the range of
|
||
** a lua_Integer. (The range comparisons are tricky because of
|
||
** rounding. The tests here assume a two-complement representation,
|
||
** where MININTEGER always has an exact representation as a float;
|
||
** MAXINTEGER may not have one, and therefore its conversion to float
|
||
** may have an ill-defined value.)
|
||
*/
|
||
#define lua_numbertointeger(n,p) \
|
||
((n) >= (LUA_NUMBER)(LUA_MININTEGER) && \
|
||
(n) < -(LUA_NUMBER)(LUA_MININTEGER) && \
|
||
(*(p) = (LUA_INTEGER)(n), 1))
|
||
|
||
|
||
/* now the variable definitions */
|
||
|
||
#if LUA_FLOAT_TYPE == LUA_FLOAT_FLOAT /* { single float */
|
||
|
||
#define LUA_NUMBER float
|
||
|
||
#define l_floatatt(n) (FLT_##n)
|
||
|
||
#define LUAI_UACNUMBER double
|
||
|
||
#define LUA_NUMBER_FRMLEN ""
|
||
#define LUA_NUMBER_FMT "%.7g"
|
||
|
||
#define l_mathop(op) op##f
|
||
|
||
#define lua_str2number(s,p) strtof((s), (p))
|
||
|
||
|
||
#elif LUA_FLOAT_TYPE == LUA_FLOAT_LONGDOUBLE /* }{ long double */
|
||
|
||
#define LUA_NUMBER long double
|
||
|
||
#define l_floatatt(n) (LDBL_##n)
|
||
|
||
#define LUAI_UACNUMBER long double
|
||
|
||
#define LUA_NUMBER_FRMLEN "L"
|
||
#define LUA_NUMBER_FMT "%.19Lg"
|
||
|
||
#define l_mathop(op) op##l
|
||
|
||
#define lua_str2number(s,p) strtold((s), (p))
|
||
|
||
#elif LUA_FLOAT_TYPE == LUA_FLOAT_DOUBLE /* }{ double */
|
||
|
||
#define LUA_NUMBER double
|
||
|
||
#define l_floatatt(n) (DBL_##n)
|
||
|
||
#define LUAI_UACNUMBER double
|
||
|
||
#define LUA_NUMBER_FRMLEN ""
|
||
#define LUA_NUMBER_FMT "%.14g"
|
||
|
||
#define l_mathop(op) op
|
||
|
||
#define lua_str2number(s,p) strtod((s), (p))
|
||
|
||
#else /* }{ */
|
||
|
||
#error "numeric float type not defined"
|
||
|
||
#endif /* } */
|
||
|
||
|
||
|
||
/*
|
||
@@ LUA_UNSIGNED is the unsigned version of LUA_INTEGER.
|
||
@@ LUAI_UACINT is the result of a 'default argument promotion'
|
||
@@ over a LUA_INTEGER.
|
||
@@ LUA_INTEGER_FRMLEN is the length modifier for reading/writing integers.
|
||
@@ LUA_INTEGER_FMT is the format for writing integers.
|
||
@@ LUA_MAXINTEGER is the maximum value for a LUA_INTEGER.
|
||
@@ LUA_MININTEGER is the minimum value for a LUA_INTEGER.
|
||
@@ LUA_MAXUNSIGNED is the maximum value for a LUA_UNSIGNED.
|
||
@@ lua_integer2str converts an integer to a string.
|
||
*/
|
||
|
||
|
||
/* The following definitions are good for most cases here */
|
||
|
||
#define LUA_INTEGER_FMT "%" LUA_INTEGER_FRMLEN "d"
|
||
|
||
#define LUAI_UACINT LUA_INTEGER
|
||
|
||
#define lua_integer2str(s,sz,n) \
|
||
l_sprintf((s), sz, LUA_INTEGER_FMT, (LUAI_UACINT)(n))
|
||
|
||
/*
|
||
** use LUAI_UACINT here to avoid problems with promotions (which
|
||
** can turn a comparison between unsigneds into a signed comparison)
|
||
*/
|
||
#define LUA_UNSIGNED unsigned LUAI_UACINT
|
||
|
||
|
||
/* now the variable definitions */
|
||
|
||
#if LUA_INT_TYPE == LUA_INT_INT /* { int */
|
||
|
||
#define LUA_INTEGER int
|
||
#define LUA_INTEGER_FRMLEN ""
|
||
|
||
#define LUA_MAXINTEGER INT_MAX
|
||
#define LUA_MININTEGER INT_MIN
|
||
|
||
#define LUA_MAXUNSIGNED UINT_MAX
|
||
|
||
#elif LUA_INT_TYPE == LUA_INT_LONG /* }{ long */
|
||
|
||
#define LUA_INTEGER long
|
||
#define LUA_INTEGER_FRMLEN "l"
|
||
|
||
#define LUA_MAXINTEGER LONG_MAX
|
||
#define LUA_MININTEGER LONG_MIN
|
||
|
||
#define LUA_MAXUNSIGNED ULONG_MAX
|
||
|
||
#elif LUA_INT_TYPE == LUA_INT_LONGLONG /* }{ long long */
|
||
|
||
/* use presence of macro LLONG_MAX as proxy for C99 compliance */
|
||
#if defined(LLONG_MAX) /* { */
|
||
/* use ISO C99 stuff */
|
||
|
||
#define LUA_INTEGER long long
|
||
#define LUA_INTEGER_FRMLEN "ll"
|
||
|
||
#define LUA_MAXINTEGER LLONG_MAX
|
||
#define LUA_MININTEGER LLONG_MIN
|
||
|
||
#define LUA_MAXUNSIGNED ULLONG_MAX
|
||
|
||
#elif defined(LUA_USE_WINDOWS) /* }{ */
|
||
/* in Windows, can use specific Windows types */
|
||
|
||
#define LUA_INTEGER __int64
|
||
#define LUA_INTEGER_FRMLEN "I64"
|
||
|
||
#define LUA_MAXINTEGER _I64_MAX
|
||
#define LUA_MININTEGER _I64_MIN
|
||
|
||
#define LUA_MAXUNSIGNED _UI64_MAX
|
||
|
||
#else /* }{ */
|
||
|
||
#error "Compiler does not support 'long long'. Use option '-DLUA_32BITS' \
|
||
or '-DLUA_C89_NUMBERS' (see file 'luaconf.h' for details)"
|
||
|
||
#endif /* } */
|
||
|
||
#else /* }{ */
|
||
|
||
#error "numeric integer type not defined"
|
||
|
||
#endif /* } */
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Dependencies with C99 and other C details
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ l_sprintf is equivalent to 'snprintf' or 'sprintf' in C89.
|
||
** (All uses in Lua have only one format item.)
|
||
*/
|
||
#if !defined(LUA_USE_C89)
|
||
#define l_sprintf(s,sz,f,i) snprintf(s,sz,f,i)
|
||
#else
|
||
#define l_sprintf(s,sz,f,i) ((void)(sz), sprintf(s,f,i))
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ lua_strx2number converts a hexadecimal numeral to a number.
|
||
** In C99, 'strtod' does that conversion. Otherwise, you can
|
||
** leave 'lua_strx2number' undefined and Lua will provide its own
|
||
** implementation.
|
||
*/
|
||
#if !defined(LUA_USE_C89)
|
||
#define lua_strx2number(s,p) lua_str2number(s,p)
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ lua_pointer2str converts a pointer to a readable string in a
|
||
** non-specified way.
|
||
*/
|
||
#define lua_pointer2str(buff,sz,p) l_sprintf(buff,sz,"%p",p)
|
||
|
||
|
||
/*
|
||
@@ lua_number2strx converts a float to a hexadecimal numeral.
|
||
** In C99, 'sprintf' (with format specifiers '%a'/'%A') does that.
|
||
** Otherwise, you can leave 'lua_number2strx' undefined and Lua will
|
||
** provide its own implementation.
|
||
*/
|
||
#if !defined(LUA_USE_C89)
|
||
#define lua_number2strx(L,b,sz,f,n) \
|
||
((void)L, l_sprintf(b,sz,f,(LUAI_UACNUMBER)(n)))
|
||
#endif
|
||
|
||
|
||
/*
|
||
** 'strtof' and 'opf' variants for math functions are not valid in
|
||
** C89. Otherwise, the macro 'HUGE_VALF' is a good proxy for testing the
|
||
** availability of these variants. ('math.h' is already included in
|
||
** all files that use these macros.)
|
||
*/
|
||
#if defined(LUA_USE_C89) || (defined(HUGE_VAL) && !defined(HUGE_VALF))
|
||
#undef l_mathop /* variants not available */
|
||
#undef lua_str2number
|
||
#define l_mathop(op) (lua_Number)op /* no variant */
|
||
#define lua_str2number(s,p) ((lua_Number)strtod((s), (p)))
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ LUA_KCONTEXT is the type of the context ('ctx') for continuation
|
||
** functions. It must be a numerical type; Lua will use 'intptr_t' if
|
||
** available, otherwise it will use 'ptrdiff_t' (the nearest thing to
|
||
** 'intptr_t' in C89)
|
||
*/
|
||
#define LUA_KCONTEXT ptrdiff_t
|
||
|
||
#if !defined(LUA_USE_C89) && defined(__STDC_VERSION__) && \
|
||
__STDC_VERSION__ >= 199901L
|
||
#include <stdint.h>
|
||
#if defined(INTPTR_MAX) /* even in C99 this type is optional */
|
||
#undef LUA_KCONTEXT
|
||
#define LUA_KCONTEXT intptr_t
|
||
#endif
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ lua_getlocaledecpoint gets the locale "radix character" (decimal point).
|
||
** Change that if you do not want to use C locales. (Code using this
|
||
** macro must include the header 'locale.h'.)
|
||
*/
|
||
#if !defined(lua_getlocaledecpoint)
|
||
#define lua_getlocaledecpoint() (localeconv()->decimal_point[0])
|
||
#endif
|
||
|
||
|
||
/*
|
||
** macros to improve jump prediction, used mostly for error handling
|
||
** and debug facilities. (Some macros in the Lua API use these macros.
|
||
** Define LUA_NOBUILTIN if you do not want '__builtin_expect' in your
|
||
** code.)
|
||
*/
|
||
#if !defined(luai_likely)
|
||
|
||
#if defined(__GNUC__) && !defined(LUA_NOBUILTIN)
|
||
#define luai_likely(x) (__builtin_expect(((x) != 0), 1))
|
||
#define luai_unlikely(x) (__builtin_expect(((x) != 0), 0))
|
||
#else
|
||
#define luai_likely(x) (x)
|
||
#define luai_unlikely(x) (x)
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
#if defined(LUA_CORE) || defined(LUA_LIB)
|
||
/* shorter names for Lua's own use */
|
||
#define l_likely(x) luai_likely(x)
|
||
#define l_unlikely(x) luai_unlikely(x)
|
||
#endif
|
||
|
||
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Language Variations
|
||
** =====================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUA_NOCVTN2S/LUA_NOCVTS2N control how Lua performs some
|
||
** coercions. Define LUA_NOCVTN2S to turn off automatic coercion from
|
||
** numbers to strings. Define LUA_NOCVTS2N to turn off automatic
|
||
** coercion from strings to numbers.
|
||
*/
|
||
/* #define LUA_NOCVTN2S */
|
||
/* #define LUA_NOCVTS2N */
|
||
|
||
|
||
/*
|
||
@@ LUA_USE_APICHECK turns on several consistency checks on the C API.
|
||
** Define it as a help when debugging C code.
|
||
*/
|
||
#if defined(LUA_USE_APICHECK)
|
||
#include <assert.h>
|
||
#define luai_apicheck(l,e) assert(e)
|
||
#endif
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Macros that affect the API and must be stable (that is, must be the
|
||
** same when you compile Lua and when you compile code that links to
|
||
** Lua).
|
||
** =====================================================================
|
||
*/
|
||
|
||
/*
|
||
@@ LUAI_MAXSTACK limits the size of the Lua stack.
|
||
** CHANGE it if you need a different limit. This limit is arbitrary;
|
||
** its only purpose is to stop Lua from consuming unlimited stack
|
||
** space (and to reserve some numbers for pseudo-indices).
|
||
** (It must fit into max(size_t)/32 and max(int)/2.)
|
||
*/
|
||
#if LUAI_IS32INT
|
||
#define LUAI_MAXSTACK 1000000
|
||
#else
|
||
#define LUAI_MAXSTACK 15000
|
||
#endif
|
||
|
||
|
||
/*
|
||
@@ LUA_EXTRASPACE defines the size of a raw memory area associated with
|
||
** a Lua state with very fast access.
|
||
** CHANGE it if you need a different size.
|
||
*/
|
||
#define LUA_EXTRASPACE (sizeof(void *))
|
||
|
||
|
||
/*
|
||
@@ LUA_IDSIZE gives the maximum size for the description of the source
|
||
** of a function in debug information.
|
||
** CHANGE it if you want a different size.
|
||
*/
|
||
#define LUA_IDSIZE 60
|
||
|
||
|
||
/*
|
||
@@ LUAL_BUFFERSIZE is the initial buffer size used by the lauxlib
|
||
** buffer system.
|
||
*/
|
||
#define LUAL_BUFFERSIZE ((int)(16 * sizeof(void*) * sizeof(lua_Number)))
|
||
|
||
|
||
/*
|
||
@@ LUAI_MAXALIGN defines fields that, when used in a union, ensure
|
||
** maximum alignment for the other items in that union.
|
||
*/
|
||
#define LUAI_MAXALIGN lua_Number n; double u; void *s; lua_Integer i; long l
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
|
||
|
||
/* =================================================================== */
|
||
|
||
/*
|
||
** Local configuration. You can use this space to add your redefinitions
|
||
** without modifying the main part of the file.
|
||
*/
|
||
|
||
|
||
|
||
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: lua.h $
|
||
** Lua - A Scripting Language
|
||
** Lua.org, PUC-Rio, Brazil (http://www.lua.org)
|
||
** See Copyright Notice at the end of this file
|
||
*/
|
||
|
||
|
||
#ifndef lua_h
|
||
#define lua_h
|
||
|
||
#include <stdarg.h>
|
||
#include <stddef.h>
|
||
|
||
|
||
/*#include "luaconf.h"*/
|
||
|
||
|
||
#define LUA_VERSION_MAJOR "5"
|
||
#define LUA_VERSION_MINOR "4"
|
||
#define LUA_VERSION_RELEASE "7"
|
||
|
||
#define LUA_VERSION_NUM 504
|
||
#define LUA_VERSION_RELEASE_NUM (LUA_VERSION_NUM * 100 + 7)
|
||
|
||
#define LUA_VERSION "Lua " LUA_VERSION_MAJOR "." LUA_VERSION_MINOR
|
||
#define LUA_RELEASE LUA_VERSION "." LUA_VERSION_RELEASE
|
||
#define LUA_COPYRIGHT LUA_RELEASE " Copyright (C) 1994-2024 Lua.org, PUC-Rio"
|
||
#define LUA_AUTHORS "R. Ierusalimschy, L. H. de Figueiredo, W. Celes"
|
||
|
||
|
||
/* mark for precompiled code ('<esc>Lua') */
|
||
#define LUA_SIGNATURE "\x1bLua"
|
||
|
||
/* option for multiple returns in 'lua_pcall' and 'lua_call' */
|
||
#define LUA_MULTRET (-1)
|
||
|
||
|
||
/*
|
||
** Pseudo-indices
|
||
** (-LUAI_MAXSTACK is the minimum valid index; we keep some free empty
|
||
** space after that to help overflow detection)
|
||
*/
|
||
#define LUA_REGISTRYINDEX (-LUAI_MAXSTACK - 1000)
|
||
#define lua_upvalueindex(i) (LUA_REGISTRYINDEX - (i))
|
||
|
||
|
||
/* thread status */
|
||
#define LUA_OK 0
|
||
#define LUA_YIELD 1
|
||
#define LUA_ERRRUN 2
|
||
#define LUA_ERRSYNTAX 3
|
||
#define LUA_ERRMEM 4
|
||
#define LUA_ERRERR 5
|
||
|
||
|
||
typedef struct lua_State lua_State;
|
||
|
||
|
||
/*
|
||
** basic types
|
||
*/
|
||
#define LUA_TNONE (-1)
|
||
|
||
#define LUA_TNIL 0
|
||
#define LUA_TBOOLEAN 1
|
||
#define LUA_TLIGHTUSERDATA 2
|
||
#define LUA_TNUMBER 3
|
||
#define LUA_TSTRING 4
|
||
#define LUA_TTABLE 5
|
||
#define LUA_TFUNCTION 6
|
||
#define LUA_TUSERDATA 7
|
||
#define LUA_TTHREAD 8
|
||
|
||
#define LUA_NUMTYPES 9
|
||
|
||
|
||
|
||
/* minimum Lua stack available to a C function */
|
||
#define LUA_MINSTACK 20
|
||
|
||
|
||
/* predefined values in the registry */
|
||
#define LUA_RIDX_MAINTHREAD 1
|
||
#define LUA_RIDX_GLOBALS 2
|
||
#define LUA_RIDX_LAST LUA_RIDX_GLOBALS
|
||
|
||
|
||
/* type of numbers in Lua */
|
||
typedef LUA_NUMBER lua_Number;
|
||
|
||
|
||
/* type for integer functions */
|
||
typedef LUA_INTEGER lua_Integer;
|
||
|
||
/* unsigned integer type */
|
||
typedef LUA_UNSIGNED lua_Unsigned;
|
||
|
||
/* type for continuation-function contexts */
|
||
typedef LUA_KCONTEXT lua_KContext;
|
||
|
||
|
||
/*
|
||
** Type for C functions registered with Lua
|
||
*/
|
||
typedef int (*lua_CFunction) (lua_State *L);
|
||
|
||
/*
|
||
** Type for continuation functions
|
||
*/
|
||
typedef int (*lua_KFunction) (lua_State *L, int status, lua_KContext ctx);
|
||
|
||
|
||
/*
|
||
** Type for functions that read/write blocks when loading/dumping Lua chunks
|
||
*/
|
||
typedef const char * (*lua_Reader) (lua_State *L, void *ud, size_t *sz);
|
||
|
||
typedef int (*lua_Writer) (lua_State *L, const void *p, size_t sz, void *ud);
|
||
|
||
|
||
/*
|
||
** Type for memory-allocation functions
|
||
*/
|
||
typedef void * (*lua_Alloc) (void *ud, void *ptr, size_t osize, size_t nsize);
|
||
|
||
|
||
/*
|
||
** Type for warning functions
|
||
*/
|
||
typedef void (*lua_WarnFunction) (void *ud, const char *msg, int tocont);
|
||
|
||
|
||
/*
|
||
** Type used by the debug API to collect debug information
|
||
*/
|
||
typedef struct lua_Debug lua_Debug;
|
||
|
||
|
||
/*
|
||
** Functions to be called by the debugger in specific events
|
||
*/
|
||
typedef void (*lua_Hook) (lua_State *L, lua_Debug *ar);
|
||
|
||
|
||
/*
|
||
** generic extra include file
|
||
*/
|
||
#if defined(LUA_USER_H)
|
||
#include LUA_USER_H
|
||
#endif
|
||
|
||
|
||
/*
|
||
** RCS ident string
|
||
*/
|
||
extern const char lua_ident[];
|
||
|
||
|
||
/*
|
||
** state manipulation
|
||
*/
|
||
LUA_API lua_State *(lua_newstate) (lua_Alloc f, void *ud);
|
||
LUA_API void (lua_close) (lua_State *L);
|
||
LUA_API lua_State *(lua_newthread) (lua_State *L);
|
||
LUA_API int (lua_closethread) (lua_State *L, lua_State *from);
|
||
LUA_API int (lua_resetthread) (lua_State *L); /* Deprecated! */
|
||
|
||
LUA_API lua_CFunction (lua_atpanic) (lua_State *L, lua_CFunction panicf);
|
||
|
||
|
||
LUA_API lua_Number (lua_version) (lua_State *L);
|
||
|
||
|
||
/*
|
||
** basic stack manipulation
|
||
*/
|
||
LUA_API int (lua_absindex) (lua_State *L, int idx);
|
||
LUA_API int (lua_gettop) (lua_State *L);
|
||
LUA_API void (lua_settop) (lua_State *L, int idx);
|
||
LUA_API void (lua_pushvalue) (lua_State *L, int idx);
|
||
LUA_API void (lua_rotate) (lua_State *L, int idx, int n);
|
||
LUA_API void (lua_copy) (lua_State *L, int fromidx, int toidx);
|
||
LUA_API int (lua_checkstack) (lua_State *L, int n);
|
||
|
||
LUA_API void (lua_xmove) (lua_State *from, lua_State *to, int n);
|
||
|
||
|
||
/*
|
||
** access functions (stack -> C)
|
||
*/
|
||
|
||
LUA_API int (lua_isnumber) (lua_State *L, int idx);
|
||
LUA_API int (lua_isstring) (lua_State *L, int idx);
|
||
LUA_API int (lua_iscfunction) (lua_State *L, int idx);
|
||
LUA_API int (lua_isinteger) (lua_State *L, int idx);
|
||
LUA_API int (lua_isuserdata) (lua_State *L, int idx);
|
||
LUA_API int (lua_type) (lua_State *L, int idx);
|
||
LUA_API const char *(lua_typename) (lua_State *L, int tp);
|
||
|
||
LUA_API lua_Number (lua_tonumberx) (lua_State *L, int idx, int *isnum);
|
||
LUA_API lua_Integer (lua_tointegerx) (lua_State *L, int idx, int *isnum);
|
||
LUA_API int (lua_toboolean) (lua_State *L, int idx);
|
||
LUA_API const char *(lua_tolstring) (lua_State *L, int idx, size_t *len);
|
||
LUA_API lua_Unsigned (lua_rawlen) (lua_State *L, int idx);
|
||
LUA_API lua_CFunction (lua_tocfunction) (lua_State *L, int idx);
|
||
LUA_API void *(lua_touserdata) (lua_State *L, int idx);
|
||
LUA_API lua_State *(lua_tothread) (lua_State *L, int idx);
|
||
LUA_API const void *(lua_topointer) (lua_State *L, int idx);
|
||
|
||
|
||
/*
|
||
** Comparison and arithmetic functions
|
||
*/
|
||
|
||
#define LUA_OPADD 0 /* ORDER TM, ORDER OP */
|
||
#define LUA_OPSUB 1
|
||
#define LUA_OPMUL 2
|
||
#define LUA_OPMOD 3
|
||
#define LUA_OPPOW 4
|
||
#define LUA_OPDIV 5
|
||
#define LUA_OPIDIV 6
|
||
#define LUA_OPBAND 7
|
||
#define LUA_OPBOR 8
|
||
#define LUA_OPBXOR 9
|
||
#define LUA_OPSHL 10
|
||
#define LUA_OPSHR 11
|
||
#define LUA_OPUNM 12
|
||
#define LUA_OPBNOT 13
|
||
|
||
LUA_API void (lua_arith) (lua_State *L, int op);
|
||
|
||
#define LUA_OPEQ 0
|
||
#define LUA_OPLT 1
|
||
#define LUA_OPLE 2
|
||
|
||
LUA_API int (lua_rawequal) (lua_State *L, int idx1, int idx2);
|
||
LUA_API int (lua_compare) (lua_State *L, int idx1, int idx2, int op);
|
||
|
||
|
||
/*
|
||
** push functions (C -> stack)
|
||
*/
|
||
LUA_API void (lua_pushnil) (lua_State *L);
|
||
LUA_API void (lua_pushnumber) (lua_State *L, lua_Number n);
|
||
LUA_API void (lua_pushinteger) (lua_State *L, lua_Integer n);
|
||
LUA_API const char *(lua_pushlstring) (lua_State *L, const char *s, size_t len);
|
||
LUA_API const char *(lua_pushstring) (lua_State *L, const char *s);
|
||
LUA_API const char *(lua_pushvfstring) (lua_State *L, const char *fmt,
|
||
va_list argp);
|
||
LUA_API const char *(lua_pushfstring) (lua_State *L, const char *fmt, ...);
|
||
LUA_API void (lua_pushcclosure) (lua_State *L, lua_CFunction fn, int n);
|
||
LUA_API void (lua_pushboolean) (lua_State *L, int b);
|
||
LUA_API void (lua_pushlightuserdata) (lua_State *L, void *p);
|
||
LUA_API int (lua_pushthread) (lua_State *L);
|
||
|
||
|
||
/*
|
||
** get functions (Lua -> stack)
|
||
*/
|
||
LUA_API int (lua_getglobal) (lua_State *L, const char *name);
|
||
LUA_API int (lua_gettable) (lua_State *L, int idx);
|
||
LUA_API int (lua_getfield) (lua_State *L, int idx, const char *k);
|
||
LUA_API int (lua_geti) (lua_State *L, int idx, lua_Integer n);
|
||
LUA_API int (lua_rawget) (lua_State *L, int idx);
|
||
LUA_API int (lua_rawgeti) (lua_State *L, int idx, lua_Integer n);
|
||
LUA_API int (lua_rawgetp) (lua_State *L, int idx, const void *p);
|
||
|
||
LUA_API void (lua_createtable) (lua_State *L, int narr, int nrec);
|
||
LUA_API void *(lua_newuserdatauv) (lua_State *L, size_t sz, int nuvalue);
|
||
LUA_API int (lua_getmetatable) (lua_State *L, int objindex);
|
||
LUA_API int (lua_getiuservalue) (lua_State *L, int idx, int n);
|
||
|
||
|
||
/*
|
||
** set functions (stack -> Lua)
|
||
*/
|
||
LUA_API void (lua_setglobal) (lua_State *L, const char *name);
|
||
LUA_API void (lua_settable) (lua_State *L, int idx);
|
||
LUA_API void (lua_setfield) (lua_State *L, int idx, const char *k);
|
||
LUA_API void (lua_seti) (lua_State *L, int idx, lua_Integer n);
|
||
LUA_API void (lua_rawset) (lua_State *L, int idx);
|
||
LUA_API void (lua_rawseti) (lua_State *L, int idx, lua_Integer n);
|
||
LUA_API void (lua_rawsetp) (lua_State *L, int idx, const void *p);
|
||
LUA_API int (lua_setmetatable) (lua_State *L, int objindex);
|
||
LUA_API int (lua_setiuservalue) (lua_State *L, int idx, int n);
|
||
|
||
|
||
/*
|
||
** 'load' and 'call' functions (load and run Lua code)
|
||
*/
|
||
LUA_API void (lua_callk) (lua_State *L, int nargs, int nresults,
|
||
lua_KContext ctx, lua_KFunction k);
|
||
#define lua_call(L,n,r) lua_callk(L, (n), (r), 0, NULL)
|
||
|
||
LUA_API int (lua_pcallk) (lua_State *L, int nargs, int nresults, int errfunc,
|
||
lua_KContext ctx, lua_KFunction k);
|
||
#define lua_pcall(L,n,r,f) lua_pcallk(L, (n), (r), (f), 0, NULL)
|
||
|
||
LUA_API int (lua_load) (lua_State *L, lua_Reader reader, void *dt,
|
||
const char *chunkname, const char *mode);
|
||
|
||
LUA_API int (lua_dump) (lua_State *L, lua_Writer writer, void *data, int strip);
|
||
|
||
|
||
/*
|
||
** coroutine functions
|
||
*/
|
||
LUA_API int (lua_yieldk) (lua_State *L, int nresults, lua_KContext ctx,
|
||
lua_KFunction k);
|
||
LUA_API int (lua_resume) (lua_State *L, lua_State *from, int narg,
|
||
int *nres);
|
||
LUA_API int (lua_status) (lua_State *L);
|
||
LUA_API int (lua_isyieldable) (lua_State *L);
|
||
|
||
#define lua_yield(L,n) lua_yieldk(L, (n), 0, NULL)
|
||
|
||
|
||
/*
|
||
** Warning-related functions
|
||
*/
|
||
LUA_API void (lua_setwarnf) (lua_State *L, lua_WarnFunction f, void *ud);
|
||
LUA_API void (lua_warning) (lua_State *L, const char *msg, int tocont);
|
||
|
||
|
||
/*
|
||
** garbage-collection function and options
|
||
*/
|
||
|
||
#define LUA_GCSTOP 0
|
||
#define LUA_GCRESTART 1
|
||
#define LUA_GCCOLLECT 2
|
||
#define LUA_GCCOUNT 3
|
||
#define LUA_GCCOUNTB 4
|
||
#define LUA_GCSTEP 5
|
||
#define LUA_GCSETPAUSE 6
|
||
#define LUA_GCSETSTEPMUL 7
|
||
#define LUA_GCISRUNNING 9
|
||
#define LUA_GCGEN 10
|
||
#define LUA_GCINC 11
|
||
|
||
LUA_API int (lua_gc) (lua_State *L, int what, ...);
|
||
|
||
|
||
/*
|
||
** miscellaneous functions
|
||
*/
|
||
|
||
LUA_API int (lua_error) (lua_State *L);
|
||
|
||
LUA_API int (lua_next) (lua_State *L, int idx);
|
||
|
||
LUA_API void (lua_concat) (lua_State *L, int n);
|
||
LUA_API void (lua_len) (lua_State *L, int idx);
|
||
|
||
LUA_API size_t (lua_stringtonumber) (lua_State *L, const char *s);
|
||
|
||
LUA_API lua_Alloc (lua_getallocf) (lua_State *L, void **ud);
|
||
LUA_API void (lua_setallocf) (lua_State *L, lua_Alloc f, void *ud);
|
||
|
||
LUA_API void (lua_toclose) (lua_State *L, int idx);
|
||
LUA_API void (lua_closeslot) (lua_State *L, int idx);
|
||
|
||
|
||
/*
|
||
** {==============================================================
|
||
** some useful macros
|
||
** ===============================================================
|
||
*/
|
||
|
||
#define lua_getextraspace(L) ((void *)((char *)(L) - LUA_EXTRASPACE))
|
||
|
||
#define lua_tonumber(L,i) lua_tonumberx(L,(i),NULL)
|
||
#define lua_tointeger(L,i) lua_tointegerx(L,(i),NULL)
|
||
|
||
#define lua_pop(L,n) lua_settop(L, -(n)-1)
|
||
|
||
#define lua_newtable(L) lua_createtable(L, 0, 0)
|
||
|
||
#define lua_register(L,n,f) (lua_pushcfunction(L, (f)), lua_setglobal(L, (n)))
|
||
|
||
#define lua_pushcfunction(L,f) lua_pushcclosure(L, (f), 0)
|
||
|
||
#define lua_isfunction(L,n) (lua_type(L, (n)) == LUA_TFUNCTION)
|
||
#define lua_istable(L,n) (lua_type(L, (n)) == LUA_TTABLE)
|
||
#define lua_islightuserdata(L,n) (lua_type(L, (n)) == LUA_TLIGHTUSERDATA)
|
||
#define lua_isnil(L,n) (lua_type(L, (n)) == LUA_TNIL)
|
||
#define lua_isboolean(L,n) (lua_type(L, (n)) == LUA_TBOOLEAN)
|
||
#define lua_isthread(L,n) (lua_type(L, (n)) == LUA_TTHREAD)
|
||
#define lua_isnone(L,n) (lua_type(L, (n)) == LUA_TNONE)
|
||
#define lua_isnoneornil(L, n) (lua_type(L, (n)) <= 0)
|
||
|
||
#define lua_pushliteral(L, s) lua_pushstring(L, "" s)
|
||
|
||
#define lua_pushglobaltable(L) \
|
||
((void)lua_rawgeti(L, LUA_REGISTRYINDEX, LUA_RIDX_GLOBALS))
|
||
|
||
#define lua_tostring(L,i) lua_tolstring(L, (i), NULL)
|
||
|
||
|
||
#define lua_insert(L,idx) lua_rotate(L, (idx), 1)
|
||
|
||
#define lua_remove(L,idx) (lua_rotate(L, (idx), -1), lua_pop(L, 1))
|
||
|
||
#define lua_replace(L,idx) (lua_copy(L, -1, (idx)), lua_pop(L, 1))
|
||
|
||
/* }============================================================== */
|
||
|
||
|
||
/*
|
||
** {==============================================================
|
||
** compatibility macros
|
||
** ===============================================================
|
||
*/
|
||
#if defined(LUA_COMPAT_APIINTCASTS)
|
||
|
||
#define lua_pushunsigned(L,n) lua_pushinteger(L, (lua_Integer)(n))
|
||
#define lua_tounsignedx(L,i,is) ((lua_Unsigned)lua_tointegerx(L,i,is))
|
||
#define lua_tounsigned(L,i) lua_tounsignedx(L,(i),NULL)
|
||
|
||
#endif
|
||
|
||
#define lua_newuserdata(L,s) lua_newuserdatauv(L,s,1)
|
||
#define lua_getuservalue(L,idx) lua_getiuservalue(L,idx,1)
|
||
#define lua_setuservalue(L,idx) lua_setiuservalue(L,idx,1)
|
||
|
||
#define LUA_NUMTAGS LUA_NUMTYPES
|
||
|
||
/* }============================================================== */
|
||
|
||
/*
|
||
** {======================================================================
|
||
** Debug API
|
||
** =======================================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Event codes
|
||
*/
|
||
#define LUA_HOOKCALL 0
|
||
#define LUA_HOOKRET 1
|
||
#define LUA_HOOKLINE 2
|
||
#define LUA_HOOKCOUNT 3
|
||
#define LUA_HOOKTAILCALL 4
|
||
|
||
|
||
/*
|
||
** Event masks
|
||
*/
|
||
#define LUA_MASKCALL (1 << LUA_HOOKCALL)
|
||
#define LUA_MASKRET (1 << LUA_HOOKRET)
|
||
#define LUA_MASKLINE (1 << LUA_HOOKLINE)
|
||
#define LUA_MASKCOUNT (1 << LUA_HOOKCOUNT)
|
||
|
||
|
||
LUA_API int (lua_getstack) (lua_State *L, int level, lua_Debug *ar);
|
||
LUA_API int (lua_getinfo) (lua_State *L, const char *what, lua_Debug *ar);
|
||
LUA_API const char *(lua_getlocal) (lua_State *L, const lua_Debug *ar, int n);
|
||
LUA_API const char *(lua_setlocal) (lua_State *L, const lua_Debug *ar, int n);
|
||
LUA_API const char *(lua_getupvalue) (lua_State *L, int funcindex, int n);
|
||
LUA_API const char *(lua_setupvalue) (lua_State *L, int funcindex, int n);
|
||
|
||
LUA_API void *(lua_upvalueid) (lua_State *L, int fidx, int n);
|
||
LUA_API void (lua_upvaluejoin) (lua_State *L, int fidx1, int n1,
|
||
int fidx2, int n2);
|
||
|
||
LUA_API void (lua_sethook) (lua_State *L, lua_Hook func, int mask, int count);
|
||
LUA_API lua_Hook (lua_gethook) (lua_State *L);
|
||
LUA_API int (lua_gethookmask) (lua_State *L);
|
||
LUA_API int (lua_gethookcount) (lua_State *L);
|
||
|
||
LUA_API int (lua_setcstacklimit) (lua_State *L, unsigned int limit);
|
||
|
||
struct lua_Debug {
|
||
int event;
|
||
const char *name; /* (n) */
|
||
const char *namewhat; /* (n) 'global', 'local', 'field', 'method' */
|
||
const char *what; /* (S) 'Lua', 'C', 'main', 'tail' */
|
||
const char *source; /* (S) */
|
||
size_t srclen; /* (S) */
|
||
int currentline; /* (l) */
|
||
int linedefined; /* (S) */
|
||
int lastlinedefined; /* (S) */
|
||
unsigned char nups; /* (u) number of upvalues */
|
||
unsigned char nparams;/* (u) number of parameters */
|
||
char isvararg; /* (u) */
|
||
char istailcall; /* (t) */
|
||
unsigned short ftransfer; /* (r) index of first value transferred */
|
||
unsigned short ntransfer; /* (r) number of transferred values */
|
||
char short_src[LUA_IDSIZE]; /* (S) */
|
||
/* private part */
|
||
struct CallInfo *i_ci; /* active function */
|
||
};
|
||
|
||
/* }====================================================================== */
|
||
|
||
|
||
/******************************************************************************
|
||
* Copyright (C) 1994-2024 Lua.org, PUC-Rio.
|
||
*
|
||
* Permission is hereby granted, free of charge, to any person obtaining
|
||
* a copy of this software and associated documentation files (the
|
||
* "Software"), to deal in the Software without restriction, including
|
||
* without limitation the rights to use, copy, modify, merge, publish,
|
||
* distribute, sublicense, and/or sell copies of the Software, and to
|
||
* permit persons to whom the Software is furnished to do so, subject to
|
||
* the following conditions:
|
||
*
|
||
* The above copyright notice and this permission notice shall be
|
||
* included in all copies or substantial portions of the Software.
|
||
*
|
||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
|
||
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
||
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
|
||
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
******************************************************************************/
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lauxlib.h $
|
||
** Auxiliary functions for building Lua libraries
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#ifndef lauxlib_h
|
||
#define lauxlib_h
|
||
|
||
|
||
#include <stddef.h>
|
||
#include <stdio.h>
|
||
|
||
/*#include "luaconf.h"*/
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/* global table */
|
||
#define LUA_GNAME "_G"
|
||
|
||
|
||
typedef struct luaL_Buffer luaL_Buffer;
|
||
|
||
|
||
/* extra error code for 'luaL_loadfilex' */
|
||
#define LUA_ERRFILE (LUA_ERRERR+1)
|
||
|
||
|
||
/* key, in the registry, for table of loaded modules */
|
||
#define LUA_LOADED_TABLE "_LOADED"
|
||
|
||
|
||
/* key, in the registry, for table of preloaded loaders */
|
||
#define LUA_PRELOAD_TABLE "_PRELOAD"
|
||
|
||
|
||
typedef struct luaL_Reg {
|
||
const char *name;
|
||
lua_CFunction func;
|
||
} luaL_Reg;
|
||
|
||
|
||
#define LUAL_NUMSIZES (sizeof(lua_Integer)*16 + sizeof(lua_Number))
|
||
|
||
LUALIB_API void (luaL_checkversion_) (lua_State *L, lua_Number ver, size_t sz);
|
||
#define luaL_checkversion(L) \
|
||
luaL_checkversion_(L, LUA_VERSION_NUM, LUAL_NUMSIZES)
|
||
|
||
LUALIB_API int (luaL_getmetafield) (lua_State *L, int obj, const char *e);
|
||
LUALIB_API int (luaL_callmeta) (lua_State *L, int obj, const char *e);
|
||
LUALIB_API const char *(luaL_tolstring) (lua_State *L, int idx, size_t *len);
|
||
LUALIB_API int (luaL_argerror) (lua_State *L, int arg, const char *extramsg);
|
||
LUALIB_API int (luaL_typeerror) (lua_State *L, int arg, const char *tname);
|
||
LUALIB_API const char *(luaL_checklstring) (lua_State *L, int arg,
|
||
size_t *l);
|
||
LUALIB_API const char *(luaL_optlstring) (lua_State *L, int arg,
|
||
const char *def, size_t *l);
|
||
LUALIB_API lua_Number (luaL_checknumber) (lua_State *L, int arg);
|
||
LUALIB_API lua_Number (luaL_optnumber) (lua_State *L, int arg, lua_Number def);
|
||
|
||
LUALIB_API lua_Integer (luaL_checkinteger) (lua_State *L, int arg);
|
||
LUALIB_API lua_Integer (luaL_optinteger) (lua_State *L, int arg,
|
||
lua_Integer def);
|
||
|
||
LUALIB_API void (luaL_checkstack) (lua_State *L, int sz, const char *msg);
|
||
LUALIB_API void (luaL_checktype) (lua_State *L, int arg, int t);
|
||
LUALIB_API void (luaL_checkany) (lua_State *L, int arg);
|
||
|
||
LUALIB_API int (luaL_newmetatable) (lua_State *L, const char *tname);
|
||
LUALIB_API void (luaL_setmetatable) (lua_State *L, const char *tname);
|
||
LUALIB_API void *(luaL_testudata) (lua_State *L, int ud, const char *tname);
|
||
LUALIB_API void *(luaL_checkudata) (lua_State *L, int ud, const char *tname);
|
||
|
||
LUALIB_API void (luaL_where) (lua_State *L, int lvl);
|
||
LUALIB_API int (luaL_error) (lua_State *L, const char *fmt, ...);
|
||
|
||
LUALIB_API int (luaL_checkoption) (lua_State *L, int arg, const char *def,
|
||
const char *const lst[]);
|
||
|
||
LUALIB_API int (luaL_fileresult) (lua_State *L, int stat, const char *fname);
|
||
LUALIB_API int (luaL_execresult) (lua_State *L, int stat);
|
||
|
||
|
||
/* predefined references */
|
||
#define LUA_NOREF (-2)
|
||
#define LUA_REFNIL (-1)
|
||
|
||
LUALIB_API int (luaL_ref) (lua_State *L, int t);
|
||
LUALIB_API void (luaL_unref) (lua_State *L, int t, int ref);
|
||
|
||
LUALIB_API int (luaL_loadfilex) (lua_State *L, const char *filename,
|
||
const char *mode);
|
||
|
||
#define luaL_loadfile(L,f) luaL_loadfilex(L,f,NULL)
|
||
|
||
LUALIB_API int (luaL_loadbufferx) (lua_State *L, const char *buff, size_t sz,
|
||
const char *name, const char *mode);
|
||
LUALIB_API int (luaL_loadstring) (lua_State *L, const char *s);
|
||
|
||
LUALIB_API lua_State *(luaL_newstate) (void);
|
||
|
||
LUALIB_API lua_Integer (luaL_len) (lua_State *L, int idx);
|
||
|
||
LUALIB_API void (luaL_addgsub) (luaL_Buffer *b, const char *s,
|
||
const char *p, const char *r);
|
||
LUALIB_API const char *(luaL_gsub) (lua_State *L, const char *s,
|
||
const char *p, const char *r);
|
||
|
||
LUALIB_API void (luaL_setfuncs) (lua_State *L, const luaL_Reg *l, int nup);
|
||
|
||
LUALIB_API int (luaL_getsubtable) (lua_State *L, int idx, const char *fname);
|
||
|
||
LUALIB_API void (luaL_traceback) (lua_State *L, lua_State *L1,
|
||
const char *msg, int level);
|
||
|
||
LUALIB_API void (luaL_requiref) (lua_State *L, const char *modname,
|
||
lua_CFunction openf, int glb);
|
||
|
||
/*
|
||
** ===============================================================
|
||
** some useful macros
|
||
** ===============================================================
|
||
*/
|
||
|
||
|
||
#define luaL_newlibtable(L,l) \
|
||
lua_createtable(L, 0, sizeof(l)/sizeof((l)[0]) - 1)
|
||
|
||
#define luaL_newlib(L,l) \
|
||
(luaL_checkversion(L), luaL_newlibtable(L,l), luaL_setfuncs(L,l,0))
|
||
|
||
#define luaL_argcheck(L, cond,arg,extramsg) \
|
||
((void)(luai_likely(cond) || luaL_argerror(L, (arg), (extramsg))))
|
||
|
||
#define luaL_argexpected(L,cond,arg,tname) \
|
||
((void)(luai_likely(cond) || luaL_typeerror(L, (arg), (tname))))
|
||
|
||
#define luaL_checkstring(L,n) (luaL_checklstring(L, (n), NULL))
|
||
#define luaL_optstring(L,n,d) (luaL_optlstring(L, (n), (d), NULL))
|
||
|
||
#define luaL_typename(L,i) lua_typename(L, lua_type(L,(i)))
|
||
|
||
#define luaL_dofile(L, fn) \
|
||
(luaL_loadfile(L, fn) || lua_pcall(L, 0, LUA_MULTRET, 0))
|
||
|
||
#define luaL_dostring(L, s) \
|
||
(luaL_loadstring(L, s) || lua_pcall(L, 0, LUA_MULTRET, 0))
|
||
|
||
#define luaL_getmetatable(L,n) (lua_getfield(L, LUA_REGISTRYINDEX, (n)))
|
||
|
||
#define luaL_opt(L,f,n,d) (lua_isnoneornil(L,(n)) ? (d) : f(L,(n)))
|
||
|
||
#define luaL_loadbuffer(L,s,sz,n) luaL_loadbufferx(L,s,sz,n,NULL)
|
||
|
||
|
||
/*
|
||
** Perform arithmetic operations on lua_Integer values with wrap-around
|
||
** semantics, as the Lua core does.
|
||
*/
|
||
#define luaL_intop(op,v1,v2) \
|
||
((lua_Integer)((lua_Unsigned)(v1) op (lua_Unsigned)(v2)))
|
||
|
||
|
||
/* push the value used to represent failure/error */
|
||
#define luaL_pushfail(L) lua_pushnil(L)
|
||
|
||
|
||
/*
|
||
** Internal assertions for in-house debugging
|
||
*/
|
||
#if !defined(lua_assert)
|
||
|
||
#if defined LUAI_ASSERT
|
||
#include <assert.h>
|
||
#define lua_assert(c) assert(c)
|
||
#else
|
||
#define lua_assert(c) ((void)0)
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Generic Buffer manipulation
|
||
** =======================================================
|
||
*/
|
||
|
||
struct luaL_Buffer {
|
||
char *b; /* buffer address */
|
||
size_t size; /* buffer size */
|
||
size_t n; /* number of characters in buffer */
|
||
lua_State *L;
|
||
union {
|
||
LUAI_MAXALIGN; /* ensure maximum alignment for buffer */
|
||
char b[LUAL_BUFFERSIZE]; /* initial buffer */
|
||
} init;
|
||
};
|
||
|
||
|
||
#define luaL_bufflen(bf) ((bf)->n)
|
||
#define luaL_buffaddr(bf) ((bf)->b)
|
||
|
||
|
||
#define luaL_addchar(B,c) \
|
||
((void)((B)->n < (B)->size || luaL_prepbuffsize((B), 1)), \
|
||
((B)->b[(B)->n++] = (c)))
|
||
|
||
#define luaL_addsize(B,s) ((B)->n += (s))
|
||
|
||
#define luaL_buffsub(B,s) ((B)->n -= (s))
|
||
|
||
LUALIB_API void (luaL_buffinit) (lua_State *L, luaL_Buffer *B);
|
||
LUALIB_API char *(luaL_prepbuffsize) (luaL_Buffer *B, size_t sz);
|
||
LUALIB_API void (luaL_addlstring) (luaL_Buffer *B, const char *s, size_t l);
|
||
LUALIB_API void (luaL_addstring) (luaL_Buffer *B, const char *s);
|
||
LUALIB_API void (luaL_addvalue) (luaL_Buffer *B);
|
||
LUALIB_API void (luaL_pushresult) (luaL_Buffer *B);
|
||
LUALIB_API void (luaL_pushresultsize) (luaL_Buffer *B, size_t sz);
|
||
LUALIB_API char *(luaL_buffinitsize) (lua_State *L, luaL_Buffer *B, size_t sz);
|
||
|
||
#define luaL_prepbuffer(B) luaL_prepbuffsize(B, LUAL_BUFFERSIZE)
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** File handles for IO library
|
||
** =======================================================
|
||
*/
|
||
|
||
/*
|
||
** A file handle is a userdata with metatable 'LUA_FILEHANDLE' and
|
||
** initial structure 'luaL_Stream' (it may contain other fields
|
||
** after that initial structure).
|
||
*/
|
||
|
||
#define LUA_FILEHANDLE "FILE*"
|
||
|
||
|
||
typedef struct luaL_Stream {
|
||
FILE *f; /* stream (NULL for incompletely created streams) */
|
||
lua_CFunction closef; /* to close stream (NULL for closed streams) */
|
||
} luaL_Stream;
|
||
|
||
/* }====================================================== */
|
||
|
||
/*
|
||
** {==================================================================
|
||
** "Abstraction Layer" for basic report of messages and errors
|
||
** ===================================================================
|
||
*/
|
||
|
||
/* print a string */
|
||
#if !defined(lua_writestring)
|
||
#define lua_writestring(s,l) fwrite((s), sizeof(char), (l), stdout)
|
||
#endif
|
||
|
||
/* print a newline and flush the output */
|
||
#if !defined(lua_writeline)
|
||
#define lua_writeline() (lua_writestring("\n", 1), fflush(stdout))
|
||
#endif
|
||
|
||
/* print an error message */
|
||
#if !defined(lua_writestringerror)
|
||
#define lua_writestringerror(s,p) \
|
||
(fprintf(stderr, (s), (p)), fflush(stderr))
|
||
#endif
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {============================================================
|
||
** Compatibility with deprecated conversions
|
||
** =============================================================
|
||
*/
|
||
#if defined(LUA_COMPAT_APIINTCASTS)
|
||
|
||
#define luaL_checkunsigned(L,a) ((lua_Unsigned)luaL_checkinteger(L,a))
|
||
#define luaL_optunsigned(L,a,d) \
|
||
((lua_Unsigned)luaL_optinteger(L,a,(lua_Integer)(d)))
|
||
|
||
#define luaL_checkint(L,n) ((int)luaL_checkinteger(L, (n)))
|
||
#define luaL_optint(L,n,d) ((int)luaL_optinteger(L, (n), (d)))
|
||
|
||
#define luaL_checklong(L,n) ((long)luaL_checkinteger(L, (n)))
|
||
#define luaL_optlong(L,n,d) ((long)luaL_optinteger(L, (n), (d)))
|
||
|
||
#endif
|
||
/* }============================================================ */
|
||
|
||
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** $Id: lualib.h $
|
||
** Lua standard libraries
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#ifndef lualib_h
|
||
#define lualib_h
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/* version suffix for environment variable names */
|
||
#define LUA_VERSUFFIX "_" LUA_VERSION_MAJOR "_" LUA_VERSION_MINOR
|
||
|
||
|
||
LUAMOD_API int (luaopen_base) (lua_State *L);
|
||
|
||
#define LUA_COLIBNAME "coroutine"
|
||
LUAMOD_API int (luaopen_coroutine) (lua_State *L);
|
||
|
||
#define LUA_TABLIBNAME "table"
|
||
LUAMOD_API int (luaopen_table) (lua_State *L);
|
||
|
||
#define LUA_IOLIBNAME "io"
|
||
LUAMOD_API int (luaopen_io) (lua_State *L);
|
||
|
||
#define LUA_OSLIBNAME "os"
|
||
LUAMOD_API int (luaopen_os) (lua_State *L);
|
||
|
||
#define LUA_STRLIBNAME "string"
|
||
LUAMOD_API int (luaopen_string) (lua_State *L);
|
||
|
||
#define LUA_UTF8LIBNAME "utf8"
|
||
LUAMOD_API int (luaopen_utf8) (lua_State *L);
|
||
|
||
#define LUA_MATHLIBNAME "math"
|
||
LUAMOD_API int (luaopen_math) (lua_State *L);
|
||
|
||
#define LUA_DBLIBNAME "debug"
|
||
LUAMOD_API int (luaopen_debug) (lua_State *L);
|
||
|
||
#define LUA_LOADLIBNAME "package"
|
||
LUAMOD_API int (luaopen_package) (lua_State *L);
|
||
|
||
|
||
/* open all previous libraries */
|
||
LUALIB_API void (luaL_openlibs) (lua_State *L);
|
||
|
||
|
||
#endif
|
||
#ifdef LUA_IMPL
|
||
typedef struct CallInfo CallInfo;
|
||
/*
|
||
** $Id: llimits.h $
|
||
** Limits, basic types, and some other 'installation-dependent' definitions
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef llimits_h
|
||
#define llimits_h
|
||
|
||
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/*
|
||
** 'lu_mem' and 'l_mem' are unsigned/signed integers big enough to count
|
||
** the total memory used by Lua (in bytes). Usually, 'size_t' and
|
||
** 'ptrdiff_t' should work, but we use 'long' for 16-bit machines.
|
||
*/
|
||
#if defined(LUAI_MEM) /* { external definitions? */
|
||
typedef LUAI_UMEM lu_mem;
|
||
typedef LUAI_MEM l_mem;
|
||
#elif LUAI_IS32INT /* }{ */
|
||
typedef size_t lu_mem;
|
||
typedef ptrdiff_t l_mem;
|
||
#else /* 16-bit ints */ /* }{ */
|
||
typedef unsigned long lu_mem;
|
||
typedef long l_mem;
|
||
#endif /* } */
|
||
|
||
|
||
/* chars used as small naturals (so that 'char' is reserved for characters) */
|
||
typedef unsigned char lu_byte;
|
||
typedef signed char ls_byte;
|
||
|
||
|
||
/* maximum value for size_t */
|
||
#define MAX_SIZET ((size_t)(~(size_t)0))
|
||
|
||
/* maximum size visible for Lua (must be representable in a lua_Integer) */
|
||
#define MAX_SIZE (sizeof(size_t) < sizeof(lua_Integer) ? MAX_SIZET \
|
||
: (size_t)(LUA_MAXINTEGER))
|
||
|
||
|
||
#define MAX_LUMEM ((lu_mem)(~(lu_mem)0))
|
||
|
||
#define MAX_LMEM ((l_mem)(MAX_LUMEM >> 1))
|
||
|
||
|
||
#define MAX_INT INT_MAX /* maximum value of an int */
|
||
|
||
|
||
/*
|
||
** floor of the log2 of the maximum signed value for integral type 't'.
|
||
** (That is, maximum 'n' such that '2^n' fits in the given signed type.)
|
||
*/
|
||
#define log2maxs(t) (sizeof(t) * 8 - 2)
|
||
|
||
|
||
/*
|
||
** test whether an unsigned value is a power of 2 (or zero)
|
||
*/
|
||
#define ispow2(x) (((x) & ((x) - 1)) == 0)
|
||
|
||
|
||
/* number of chars of a literal string without the ending \0 */
|
||
#define LL(x) (sizeof(x)/sizeof(char) - 1)
|
||
|
||
|
||
/*
|
||
** conversion of pointer to unsigned integer: this is for hashing only;
|
||
** there is no problem if the integer cannot hold the whole pointer
|
||
** value. (In strict ISO C this may cause undefined behavior, but no
|
||
** actual machine seems to bother.)
|
||
*/
|
||
#if !defined(LUA_USE_C89) && defined(__STDC_VERSION__) && \
|
||
__STDC_VERSION__ >= 199901L
|
||
#include <stdint.h>
|
||
#if defined(UINTPTR_MAX) /* even in C99 this type is optional */
|
||
#define L_P2I uintptr_t
|
||
#else /* no 'intptr'? */
|
||
#define L_P2I uintmax_t /* use the largest available integer */
|
||
#endif
|
||
#else /* C89 option */
|
||
#define L_P2I size_t
|
||
#endif
|
||
|
||
#define point2uint(p) ((unsigned int)((L_P2I)(p) & UINT_MAX))
|
||
|
||
|
||
|
||
/* types of 'usual argument conversions' for lua_Number and lua_Integer */
|
||
typedef LUAI_UACNUMBER l_uacNumber;
|
||
typedef LUAI_UACINT l_uacInt;
|
||
|
||
|
||
/*
|
||
** Internal assertions for in-house debugging
|
||
*/
|
||
#if defined LUAI_ASSERT
|
||
#undef NDEBUG
|
||
#include <assert.h>
|
||
#define lua_assert(c) assert(c)
|
||
#endif
|
||
|
||
#if defined(lua_assert)
|
||
#define check_exp(c,e) (lua_assert(c), (e))
|
||
/* to avoid problems with conditions too long */
|
||
#define lua_longassert(c) ((c) ? (void)0 : lua_assert(0))
|
||
#else
|
||
#define lua_assert(c) ((void)0)
|
||
#define check_exp(c,e) (e)
|
||
#define lua_longassert(c) ((void)0)
|
||
#endif
|
||
|
||
/*
|
||
** assertion for checking API calls
|
||
*/
|
||
#if !defined(luai_apicheck)
|
||
#define luai_apicheck(l,e) ((void)l, lua_assert(e))
|
||
#endif
|
||
|
||
#define api_check(l,e,msg) luai_apicheck(l,(e) && msg)
|
||
|
||
|
||
/* macro to avoid warnings about unused variables */
|
||
#if !defined(UNUSED)
|
||
#define UNUSED(x) ((void)(x))
|
||
#endif
|
||
|
||
|
||
/* type casts (a macro highlights casts in the code) */
|
||
#define cast(t, exp) ((t)(exp))
|
||
|
||
#define cast_void(i) cast(void, (i))
|
||
#define cast_voidp(i) cast(void *, (i))
|
||
#define cast_num(i) cast(lua_Number, (i))
|
||
#define cast_int(i) cast(int, (i))
|
||
#define cast_uint(i) cast(unsigned int, (i))
|
||
#define cast_byte(i) cast(lu_byte, (i))
|
||
#define cast_uchar(i) cast(unsigned char, (i))
|
||
#define cast_char(i) cast(char, (i))
|
||
#define cast_charp(i) cast(char *, (i))
|
||
#define cast_sizet(i) cast(size_t, (i))
|
||
|
||
|
||
/* cast a signed lua_Integer to lua_Unsigned */
|
||
#if !defined(l_castS2U)
|
||
#define l_castS2U(i) ((lua_Unsigned)(i))
|
||
#endif
|
||
|
||
/*
|
||
** cast a lua_Unsigned to a signed lua_Integer; this cast is
|
||
** not strict ISO C, but two-complement architectures should
|
||
** work fine.
|
||
*/
|
||
#if !defined(l_castU2S)
|
||
#define l_castU2S(i) ((lua_Integer)(i))
|
||
#endif
|
||
|
||
|
||
/*
|
||
** non-return type
|
||
*/
|
||
#if !defined(l_noret)
|
||
|
||
#if defined(__GNUC__)
|
||
#define l_noret void __attribute__((noreturn))
|
||
#elif defined(_MSC_VER) && _MSC_VER >= 1200
|
||
#define l_noret void __declspec(noreturn)
|
||
#else
|
||
#define l_noret void
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Inline functions
|
||
*/
|
||
#if !defined(LUA_USE_C89)
|
||
#define l_inline inline
|
||
#elif defined(__GNUC__)
|
||
#define l_inline __inline__
|
||
#else
|
||
#define l_inline /* empty */
|
||
#endif
|
||
|
||
#define l_sinline static l_inline
|
||
|
||
|
||
/*
|
||
** type for virtual-machine instructions;
|
||
** must be an unsigned with (at least) 4 bytes (see details in lopcodes.h)
|
||
*/
|
||
#if LUAI_IS32INT
|
||
typedef unsigned int l_uint32;
|
||
#else
|
||
typedef unsigned long l_uint32;
|
||
#endif
|
||
|
||
typedef l_uint32 Instruction;
|
||
|
||
|
||
|
||
/*
|
||
** Maximum length for short strings, that is, strings that are
|
||
** internalized. (Cannot be smaller than reserved words or tags for
|
||
** metamethods, as these strings must be internalized;
|
||
** #("function") = 8, #("__newindex") = 10.)
|
||
*/
|
||
#if !defined(LUAI_MAXSHORTLEN)
|
||
#define LUAI_MAXSHORTLEN 40
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Initial size for the string table (must be power of 2).
|
||
** The Lua core alone registers ~50 strings (reserved words +
|
||
** metaevent keys + a few others). Libraries would typically add
|
||
** a few dozens more.
|
||
*/
|
||
#if !defined(MINSTRTABSIZE)
|
||
#define MINSTRTABSIZE 128
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Size of cache for strings in the API. 'N' is the number of
|
||
** sets (better be a prime) and "M" is the size of each set (M == 1
|
||
** makes a direct cache.)
|
||
*/
|
||
#if !defined(STRCACHE_N)
|
||
#define STRCACHE_N 53
|
||
#define STRCACHE_M 2
|
||
#endif
|
||
|
||
|
||
/* minimum size for string buffer */
|
||
#if !defined(LUA_MINBUFFER)
|
||
#define LUA_MINBUFFER 32
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Maximum depth for nested C calls, syntactical nested non-terminals,
|
||
** and other features implemented through recursion in C. (Value must
|
||
** fit in a 16-bit unsigned integer. It must also be compatible with
|
||
** the size of the C stack.)
|
||
*/
|
||
#if !defined(LUAI_MAXCCALLS)
|
||
#define LUAI_MAXCCALLS 200
|
||
#endif
|
||
|
||
|
||
/*
|
||
** macros that are executed whenever program enters the Lua core
|
||
** ('lua_lock') and leaves the core ('lua_unlock')
|
||
*/
|
||
#if !defined(lua_lock)
|
||
#define lua_lock(L) ((void) 0)
|
||
#define lua_unlock(L) ((void) 0)
|
||
#endif
|
||
|
||
/*
|
||
** macro executed during Lua functions at points where the
|
||
** function can yield.
|
||
*/
|
||
#if !defined(luai_threadyield)
|
||
#define luai_threadyield(L) {lua_unlock(L); lua_lock(L);}
|
||
#endif
|
||
|
||
|
||
/*
|
||
** these macros allow user-specific actions when a thread is
|
||
** created/deleted/resumed/yielded.
|
||
*/
|
||
#if !defined(luai_userstateopen)
|
||
#define luai_userstateopen(L) ((void)L)
|
||
#endif
|
||
|
||
#if !defined(luai_userstateclose)
|
||
#define luai_userstateclose(L) ((void)L)
|
||
#endif
|
||
|
||
#if !defined(luai_userstatethread)
|
||
#define luai_userstatethread(L,L1) ((void)L)
|
||
#endif
|
||
|
||
#if !defined(luai_userstatefree)
|
||
#define luai_userstatefree(L,L1) ((void)L)
|
||
#endif
|
||
|
||
#if !defined(luai_userstateresume)
|
||
#define luai_userstateresume(L,n) ((void)L)
|
||
#endif
|
||
|
||
#if !defined(luai_userstateyield)
|
||
#define luai_userstateyield(L,n) ((void)L)
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
** The luai_num* macros define the primitive operations over numbers.
|
||
*/
|
||
|
||
/* floor division (defined as 'floor(a/b)') */
|
||
#if !defined(luai_numidiv)
|
||
#define luai_numidiv(L,a,b) ((void)L, l_floor(luai_numdiv(L,a,b)))
|
||
#endif
|
||
|
||
/* float division */
|
||
#if !defined(luai_numdiv)
|
||
#define luai_numdiv(L,a,b) ((a)/(b))
|
||
#endif
|
||
|
||
/*
|
||
** modulo: defined as 'a - floor(a/b)*b'; the direct computation
|
||
** using this definition has several problems with rounding errors,
|
||
** so it is better to use 'fmod'. 'fmod' gives the result of
|
||
** 'a - trunc(a/b)*b', and therefore must be corrected when
|
||
** 'trunc(a/b) ~= floor(a/b)'. That happens when the division has a
|
||
** non-integer negative result: non-integer result is equivalent to
|
||
** a non-zero remainder 'm'; negative result is equivalent to 'a' and
|
||
** 'b' with different signs, or 'm' and 'b' with different signs
|
||
** (as the result 'm' of 'fmod' has the same sign of 'a').
|
||
*/
|
||
#if !defined(luai_nummod)
|
||
#define luai_nummod(L,a,b,m) \
|
||
{ (void)L; (m) = l_mathop(fmod)(a,b); \
|
||
if (((m) > 0) ? (b) < 0 : ((m) < 0 && (b) > 0)) (m) += (b); }
|
||
#endif
|
||
|
||
/* exponentiation */
|
||
#if !defined(luai_numpow)
|
||
#define luai_numpow(L,a,b) \
|
||
((void)L, (b == 2) ? (a)*(a) : l_mathop(pow)(a,b))
|
||
#endif
|
||
|
||
/* the others are quite standard operations */
|
||
#if !defined(luai_numadd)
|
||
#define luai_numadd(L,a,b) ((a)+(b))
|
||
#define luai_numsub(L,a,b) ((a)-(b))
|
||
#define luai_nummul(L,a,b) ((a)*(b))
|
||
#define luai_numunm(L,a) (-(a))
|
||
#define luai_numeq(a,b) ((a)==(b))
|
||
#define luai_numlt(a,b) ((a)<(b))
|
||
#define luai_numle(a,b) ((a)<=(b))
|
||
#define luai_numgt(a,b) ((a)>(b))
|
||
#define luai_numge(a,b) ((a)>=(b))
|
||
#define luai_numisnan(a) (!luai_numeq((a), (a)))
|
||
#endif
|
||
|
||
|
||
|
||
|
||
|
||
/*
|
||
** macro to control inclusion of some hard tests on stack reallocation
|
||
*/
|
||
#if !defined(HARDSTACKTESTS)
|
||
#define condmovestack(L,pre,pos) ((void)0)
|
||
#else
|
||
/* realloc stack keeping its size */
|
||
#define condmovestack(L,pre,pos) \
|
||
{ int sz_ = stacksize(L); pre; luaD_reallocstack((L), sz_, 0); pos; }
|
||
#endif
|
||
|
||
#if !defined(HARDMEMTESTS)
|
||
#define condchangemem(L,pre,pos) ((void)0)
|
||
#else
|
||
#define condchangemem(L,pre,pos) \
|
||
{ if (gcrunning(G(L))) { pre; luaC_fullgc(L, 0); pos; } }
|
||
#endif
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lobject.h $
|
||
** Type definitions for Lua objects
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#ifndef lobject_h
|
||
#define lobject_h
|
||
|
||
|
||
#include <stdarg.h>
|
||
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/*
|
||
** Extra types for collectable non-values
|
||
*/
|
||
#define LUA_TUPVAL LUA_NUMTYPES /* upvalues */
|
||
#define LUA_TPROTO (LUA_NUMTYPES+1) /* function prototypes */
|
||
#define LUA_TDEADKEY (LUA_NUMTYPES+2) /* removed keys in tables */
|
||
|
||
|
||
|
||
/*
|
||
** number of all possible types (including LUA_TNONE but excluding DEADKEY)
|
||
*/
|
||
#define LUA_TOTALTYPES (LUA_TPROTO + 2)
|
||
|
||
|
||
/*
|
||
** tags for Tagged Values have the following use of bits:
|
||
** bits 0-3: actual tag (a LUA_T* constant)
|
||
** bits 4-5: variant bits
|
||
** bit 6: whether value is collectable
|
||
*/
|
||
|
||
/* add variant bits to a type */
|
||
#define makevariant(t,v) ((t) | ((v) << 4))
|
||
|
||
|
||
|
||
/*
|
||
** Union of all Lua values
|
||
*/
|
||
typedef union Value {
|
||
struct GCObject *gc; /* collectable objects */
|
||
void *p; /* light userdata */
|
||
lua_CFunction f; /* light C functions */
|
||
lua_Integer i; /* integer numbers */
|
||
lua_Number n; /* float numbers */
|
||
/* not used, but may avoid warnings for uninitialized value */
|
||
lu_byte ub;
|
||
} Value;
|
||
|
||
|
||
/*
|
||
** Tagged Values. This is the basic representation of values in Lua:
|
||
** an actual value plus a tag with its type.
|
||
*/
|
||
|
||
#define TValuefields Value value_; lu_byte tt_
|
||
|
||
typedef struct TValue {
|
||
TValuefields;
|
||
} TValue;
|
||
|
||
|
||
#define val_(o) ((o)->value_)
|
||
#define valraw(o) (val_(o))
|
||
|
||
|
||
/* raw type tag of a TValue */
|
||
#define rawtt(o) ((o)->tt_)
|
||
|
||
/* tag with no variants (bits 0-3) */
|
||
#define novariant(t) ((t) & 0x0F)
|
||
|
||
/* type tag of a TValue (bits 0-3 for tags + variant bits 4-5) */
|
||
#define withvariant(t) ((t) & 0x3F)
|
||
#define ttypetag(o) withvariant(rawtt(o))
|
||
|
||
/* type of a TValue */
|
||
#define ttype(o) (novariant(rawtt(o)))
|
||
|
||
|
||
/* Macros to test type */
|
||
#define checktag(o,t) (rawtt(o) == (t))
|
||
#define checktype(o,t) (ttype(o) == (t))
|
||
|
||
|
||
/* Macros for internal tests */
|
||
|
||
/* collectable object has the same tag as the original value */
|
||
#define righttt(obj) (ttypetag(obj) == gcvalue(obj)->tt)
|
||
|
||
/*
|
||
** Any value being manipulated by the program either is non
|
||
** collectable, or the collectable object has the right tag
|
||
** and it is not dead. The option 'L == NULL' allows other
|
||
** macros using this one to be used where L is not available.
|
||
*/
|
||
#define checkliveness(L,obj) \
|
||
((void)L, lua_longassert(!iscollectable(obj) || \
|
||
(righttt(obj) && (L == NULL || !isdead(G(L),gcvalue(obj))))))
|
||
|
||
|
||
/* Macros to set values */
|
||
|
||
/* set a value's tag */
|
||
#define settt_(o,t) ((o)->tt_=(t))
|
||
|
||
|
||
/* main macro to copy values (from 'obj2' to 'obj1') */
|
||
#define setobj(L,obj1,obj2) \
|
||
{ TValue *io1=(obj1); const TValue *io2=(obj2); \
|
||
io1->value_ = io2->value_; settt_(io1, io2->tt_); \
|
||
checkliveness(L,io1); lua_assert(!isnonstrictnil(io1)); }
|
||
|
||
/*
|
||
** Different types of assignments, according to source and destination.
|
||
** (They are mostly equal now, but may be different in the future.)
|
||
*/
|
||
|
||
/* from stack to stack */
|
||
#define setobjs2s(L,o1,o2) setobj(L,s2v(o1),s2v(o2))
|
||
/* to stack (not from same stack) */
|
||
#define setobj2s(L,o1,o2) setobj(L,s2v(o1),o2)
|
||
/* from table to same table */
|
||
#define setobjt2t setobj
|
||
/* to new object */
|
||
#define setobj2n setobj
|
||
/* to table */
|
||
#define setobj2t setobj
|
||
|
||
|
||
/*
|
||
** Entries in a Lua stack. Field 'tbclist' forms a list of all
|
||
** to-be-closed variables active in this stack. Dummy entries are
|
||
** used when the distance between two tbc variables does not fit
|
||
** in an unsigned short. They are represented by delta==0, and
|
||
** their real delta is always the maximum value that fits in
|
||
** that field.
|
||
*/
|
||
typedef union StackValue {
|
||
TValue val;
|
||
struct {
|
||
TValuefields;
|
||
unsigned short delta;
|
||
} tbclist;
|
||
} StackValue;
|
||
|
||
|
||
/* index to stack elements */
|
||
typedef StackValue *StkId;
|
||
|
||
|
||
/*
|
||
** When reallocating the stack, change all pointers to the stack into
|
||
** proper offsets.
|
||
*/
|
||
typedef union {
|
||
StkId p; /* actual pointer */
|
||
ptrdiff_t offset; /* used while the stack is being reallocated */
|
||
} StkIdRel;
|
||
|
||
|
||
/* convert a 'StackValue' to a 'TValue' */
|
||
#define s2v(o) (&(o)->val)
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Nil
|
||
** ===================================================================
|
||
*/
|
||
|
||
/* Standard nil */
|
||
#define LUA_VNIL makevariant(LUA_TNIL, 0)
|
||
|
||
/* Empty slot (which might be different from a slot containing nil) */
|
||
#define LUA_VEMPTY makevariant(LUA_TNIL, 1)
|
||
|
||
/* Value returned for a key not found in a table (absent key) */
|
||
#define LUA_VABSTKEY makevariant(LUA_TNIL, 2)
|
||
|
||
|
||
/* macro to test for (any kind of) nil */
|
||
#define ttisnil(v) checktype((v), LUA_TNIL)
|
||
|
||
|
||
/* macro to test for a standard nil */
|
||
#define ttisstrictnil(o) checktag((o), LUA_VNIL)
|
||
|
||
|
||
#define setnilvalue(obj) settt_(obj, LUA_VNIL)
|
||
|
||
|
||
#define isabstkey(v) checktag((v), LUA_VABSTKEY)
|
||
|
||
|
||
/*
|
||
** macro to detect non-standard nils (used only in assertions)
|
||
*/
|
||
#define isnonstrictnil(v) (ttisnil(v) && !ttisstrictnil(v))
|
||
|
||
|
||
/*
|
||
** By default, entries with any kind of nil are considered empty.
|
||
** (In any definition, values associated with absent keys must also
|
||
** be accepted as empty.)
|
||
*/
|
||
#define isempty(v) ttisnil(v)
|
||
|
||
|
||
/* macro defining a value corresponding to an absent key */
|
||
#define ABSTKEYCONSTANT {NULL}, LUA_VABSTKEY
|
||
|
||
|
||
/* mark an entry as empty */
|
||
#define setempty(v) settt_(v, LUA_VEMPTY)
|
||
|
||
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Booleans
|
||
** ===================================================================
|
||
*/
|
||
|
||
|
||
#define LUA_VFALSE makevariant(LUA_TBOOLEAN, 0)
|
||
#define LUA_VTRUE makevariant(LUA_TBOOLEAN, 1)
|
||
|
||
#define ttisboolean(o) checktype((o), LUA_TBOOLEAN)
|
||
#define ttisfalse(o) checktag((o), LUA_VFALSE)
|
||
#define ttistrue(o) checktag((o), LUA_VTRUE)
|
||
|
||
|
||
#define l_isfalse(o) (ttisfalse(o) || ttisnil(o))
|
||
|
||
|
||
#define setbfvalue(obj) settt_(obj, LUA_VFALSE)
|
||
#define setbtvalue(obj) settt_(obj, LUA_VTRUE)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Threads
|
||
** ===================================================================
|
||
*/
|
||
|
||
#define LUA_VTHREAD makevariant(LUA_TTHREAD, 0)
|
||
|
||
#define ttisthread(o) checktag((o), ctb(LUA_VTHREAD))
|
||
|
||
#define thvalue(o) check_exp(ttisthread(o), gco2th(val_(o).gc))
|
||
|
||
#define setthvalue(L,obj,x) \
|
||
{ TValue *io = (obj); lua_State *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VTHREAD)); \
|
||
checkliveness(L,io); }
|
||
|
||
#define setthvalue2s(L,o,t) setthvalue(L,s2v(o),t)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Collectable Objects
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** Common Header for all collectable objects (in macro form, to be
|
||
** included in other objects)
|
||
*/
|
||
#define CommonHeader struct GCObject *next; lu_byte tt; lu_byte marked
|
||
|
||
|
||
/* Common type for all collectable objects */
|
||
typedef struct GCObject {
|
||
CommonHeader;
|
||
} GCObject;
|
||
|
||
|
||
/* Bit mark for collectable types */
|
||
#define BIT_ISCOLLECTABLE (1 << 6)
|
||
|
||
#define iscollectable(o) (rawtt(o) & BIT_ISCOLLECTABLE)
|
||
|
||
/* mark a tag as collectable */
|
||
#define ctb(t) ((t) | BIT_ISCOLLECTABLE)
|
||
|
||
#define gcvalue(o) check_exp(iscollectable(o), val_(o).gc)
|
||
|
||
#define gcvalueraw(v) ((v).gc)
|
||
|
||
#define setgcovalue(L,obj,x) \
|
||
{ TValue *io = (obj); GCObject *i_g=(x); \
|
||
val_(io).gc = i_g; settt_(io, ctb(i_g->tt)); }
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Numbers
|
||
** ===================================================================
|
||
*/
|
||
|
||
/* Variant tags for numbers */
|
||
#define LUA_VNUMINT makevariant(LUA_TNUMBER, 0) /* integer numbers */
|
||
#define LUA_VNUMFLT makevariant(LUA_TNUMBER, 1) /* float numbers */
|
||
|
||
#define ttisnumber(o) checktype((o), LUA_TNUMBER)
|
||
#define ttisfloat(o) checktag((o), LUA_VNUMFLT)
|
||
#define ttisinteger(o) checktag((o), LUA_VNUMINT)
|
||
|
||
#define nvalue(o) check_exp(ttisnumber(o), \
|
||
(ttisinteger(o) ? cast_num(ivalue(o)) : fltvalue(o)))
|
||
#define fltvalue(o) check_exp(ttisfloat(o), val_(o).n)
|
||
#define ivalue(o) check_exp(ttisinteger(o), val_(o).i)
|
||
|
||
#define fltvalueraw(v) ((v).n)
|
||
#define ivalueraw(v) ((v).i)
|
||
|
||
#define setfltvalue(obj,x) \
|
||
{ TValue *io=(obj); val_(io).n=(x); settt_(io, LUA_VNUMFLT); }
|
||
|
||
#define chgfltvalue(obj,x) \
|
||
{ TValue *io=(obj); lua_assert(ttisfloat(io)); val_(io).n=(x); }
|
||
|
||
#define setivalue(obj,x) \
|
||
{ TValue *io=(obj); val_(io).i=(x); settt_(io, LUA_VNUMINT); }
|
||
|
||
#define chgivalue(obj,x) \
|
||
{ TValue *io=(obj); lua_assert(ttisinteger(io)); val_(io).i=(x); }
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Strings
|
||
** ===================================================================
|
||
*/
|
||
|
||
/* Variant tags for strings */
|
||
#define LUA_VSHRSTR makevariant(LUA_TSTRING, 0) /* short strings */
|
||
#define LUA_VLNGSTR makevariant(LUA_TSTRING, 1) /* long strings */
|
||
|
||
#define ttisstring(o) checktype((o), LUA_TSTRING)
|
||
#define ttisshrstring(o) checktag((o), ctb(LUA_VSHRSTR))
|
||
#define ttislngstring(o) checktag((o), ctb(LUA_VLNGSTR))
|
||
|
||
#define tsvalueraw(v) (gco2ts((v).gc))
|
||
|
||
#define tsvalue(o) check_exp(ttisstring(o), gco2ts(val_(o).gc))
|
||
|
||
#define setsvalue(L,obj,x) \
|
||
{ TValue *io = (obj); TString *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(x_->tt)); \
|
||
checkliveness(L,io); }
|
||
|
||
/* set a string to the stack */
|
||
#define setsvalue2s(L,o,s) setsvalue(L,s2v(o),s)
|
||
|
||
/* set a string to a new object */
|
||
#define setsvalue2n setsvalue
|
||
|
||
|
||
/*
|
||
** Header for a string value.
|
||
*/
|
||
typedef struct TString {
|
||
CommonHeader;
|
||
lu_byte extra; /* reserved words for short strings; "has hash" for longs */
|
||
lu_byte shrlen; /* length for short strings, 0xFF for long strings */
|
||
unsigned int hash;
|
||
union {
|
||
size_t lnglen; /* length for long strings */
|
||
struct TString *hnext; /* linked list for hash table */
|
||
} u;
|
||
char contents[1];
|
||
} TString;
|
||
|
||
|
||
|
||
/*
|
||
** Get the actual string (array of bytes) from a 'TString'. (Generic
|
||
** version and specialized versions for long and short strings.)
|
||
*/
|
||
#define getstr(ts) ((ts)->contents)
|
||
#define getlngstr(ts) check_exp((ts)->shrlen == 0xFF, (ts)->contents)
|
||
#define getshrstr(ts) check_exp((ts)->shrlen != 0xFF, (ts)->contents)
|
||
|
||
|
||
/* get string length from 'TString *s' */
|
||
#define tsslen(s) \
|
||
((s)->shrlen != 0xFF ? (s)->shrlen : (s)->u.lnglen)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Userdata
|
||
** ===================================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Light userdata should be a variant of userdata, but for compatibility
|
||
** reasons they are also different types.
|
||
*/
|
||
#define LUA_VLIGHTUSERDATA makevariant(LUA_TLIGHTUSERDATA, 0)
|
||
|
||
#define LUA_VUSERDATA makevariant(LUA_TUSERDATA, 0)
|
||
|
||
#define ttislightuserdata(o) checktag((o), LUA_VLIGHTUSERDATA)
|
||
#define ttisfulluserdata(o) checktag((o), ctb(LUA_VUSERDATA))
|
||
|
||
#define pvalue(o) check_exp(ttislightuserdata(o), val_(o).p)
|
||
#define uvalue(o) check_exp(ttisfulluserdata(o), gco2u(val_(o).gc))
|
||
|
||
#define pvalueraw(v) ((v).p)
|
||
|
||
#define setpvalue(obj,x) \
|
||
{ TValue *io=(obj); val_(io).p=(x); settt_(io, LUA_VLIGHTUSERDATA); }
|
||
|
||
#define setuvalue(L,obj,x) \
|
||
{ TValue *io = (obj); Udata *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VUSERDATA)); \
|
||
checkliveness(L,io); }
|
||
|
||
|
||
/* Ensures that addresses after this type are always fully aligned. */
|
||
typedef union UValue {
|
||
TValue uv;
|
||
LUAI_MAXALIGN; /* ensures maximum alignment for udata bytes */
|
||
} UValue;
|
||
|
||
|
||
/*
|
||
** Header for userdata with user values;
|
||
** memory area follows the end of this structure.
|
||
*/
|
||
typedef struct Udata {
|
||
CommonHeader;
|
||
unsigned short nuvalue; /* number of user values */
|
||
size_t len; /* number of bytes */
|
||
struct Table *metatable;
|
||
GCObject *gclist;
|
||
UValue uv[1]; /* user values */
|
||
} Udata;
|
||
|
||
|
||
/*
|
||
** Header for userdata with no user values. These userdata do not need
|
||
** to be gray during GC, and therefore do not need a 'gclist' field.
|
||
** To simplify, the code always use 'Udata' for both kinds of userdata,
|
||
** making sure it never accesses 'gclist' on userdata with no user values.
|
||
** This structure here is used only to compute the correct size for
|
||
** this representation. (The 'bindata' field in its end ensures correct
|
||
** alignment for binary data following this header.)
|
||
*/
|
||
typedef struct Udata0 {
|
||
CommonHeader;
|
||
unsigned short nuvalue; /* number of user values */
|
||
size_t len; /* number of bytes */
|
||
struct Table *metatable;
|
||
union {LUAI_MAXALIGN;} bindata;
|
||
} Udata0;
|
||
|
||
|
||
/* compute the offset of the memory area of a userdata */
|
||
#define udatamemoffset(nuv) \
|
||
((nuv) == 0 ? offsetof(Udata0, bindata) \
|
||
: offsetof(Udata, uv) + (sizeof(UValue) * (nuv)))
|
||
|
||
/* get the address of the memory block inside 'Udata' */
|
||
#define getudatamem(u) (cast_charp(u) + udatamemoffset((u)->nuvalue))
|
||
|
||
/* compute the size of a userdata */
|
||
#define sizeudata(nuv,nb) (udatamemoffset(nuv) + (nb))
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Prototypes
|
||
** ===================================================================
|
||
*/
|
||
|
||
#define LUA_VPROTO makevariant(LUA_TPROTO, 0)
|
||
|
||
|
||
/*
|
||
** Description of an upvalue for function prototypes
|
||
*/
|
||
typedef struct Upvaldesc {
|
||
TString *name; /* upvalue name (for debug information) */
|
||
lu_byte instack; /* whether it is in stack (register) */
|
||
lu_byte idx; /* index of upvalue (in stack or in outer function's list) */
|
||
lu_byte kind; /* kind of corresponding variable */
|
||
} Upvaldesc;
|
||
|
||
|
||
/*
|
||
** Description of a local variable for function prototypes
|
||
** (used for debug information)
|
||
*/
|
||
typedef struct LocVar {
|
||
TString *varname;
|
||
int startpc; /* first point where variable is active */
|
||
int endpc; /* first point where variable is dead */
|
||
} LocVar;
|
||
|
||
|
||
/*
|
||
** Associates the absolute line source for a given instruction ('pc').
|
||
** The array 'lineinfo' gives, for each instruction, the difference in
|
||
** lines from the previous instruction. When that difference does not
|
||
** fit into a byte, Lua saves the absolute line for that instruction.
|
||
** (Lua also saves the absolute line periodically, to speed up the
|
||
** computation of a line number: we can use binary search in the
|
||
** absolute-line array, but we must traverse the 'lineinfo' array
|
||
** linearly to compute a line.)
|
||
*/
|
||
typedef struct AbsLineInfo {
|
||
int pc;
|
||
int line;
|
||
} AbsLineInfo;
|
||
|
||
/*
|
||
** Function Prototypes
|
||
*/
|
||
typedef struct Proto {
|
||
CommonHeader;
|
||
lu_byte numparams; /* number of fixed (named) parameters */
|
||
lu_byte is_vararg;
|
||
lu_byte maxstacksize; /* number of registers needed by this function */
|
||
int sizeupvalues; /* size of 'upvalues' */
|
||
int sizek; /* size of 'k' */
|
||
int sizecode;
|
||
int sizelineinfo;
|
||
int sizep; /* size of 'p' */
|
||
int sizelocvars;
|
||
int sizeabslineinfo; /* size of 'abslineinfo' */
|
||
int linedefined; /* debug information */
|
||
int lastlinedefined; /* debug information */
|
||
TValue *k; /* constants used by the function */
|
||
Instruction *code; /* opcodes */
|
||
struct Proto **p; /* functions defined inside the function */
|
||
Upvaldesc *upvalues; /* upvalue information */
|
||
ls_byte *lineinfo; /* information about source lines (debug information) */
|
||
AbsLineInfo *abslineinfo; /* idem */
|
||
LocVar *locvars; /* information about local variables (debug information) */
|
||
TString *source; /* used for debug information */
|
||
GCObject *gclist;
|
||
} Proto;
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Functions
|
||
** ===================================================================
|
||
*/
|
||
|
||
#define LUA_VUPVAL makevariant(LUA_TUPVAL, 0)
|
||
|
||
|
||
/* Variant tags for functions */
|
||
#define LUA_VLCL makevariant(LUA_TFUNCTION, 0) /* Lua closure */
|
||
#define LUA_VLCF makevariant(LUA_TFUNCTION, 1) /* light C function */
|
||
#define LUA_VCCL makevariant(LUA_TFUNCTION, 2) /* C closure */
|
||
|
||
#define ttisfunction(o) checktype(o, LUA_TFUNCTION)
|
||
#define ttisLclosure(o) checktag((o), ctb(LUA_VLCL))
|
||
#define ttislcf(o) checktag((o), LUA_VLCF)
|
||
#define ttisCclosure(o) checktag((o), ctb(LUA_VCCL))
|
||
#define ttisclosure(o) (ttisLclosure(o) || ttisCclosure(o))
|
||
|
||
|
||
#define isLfunction(o) ttisLclosure(o)
|
||
|
||
#define clvalue(o) check_exp(ttisclosure(o), gco2cl(val_(o).gc))
|
||
#define clLvalue(o) check_exp(ttisLclosure(o), gco2lcl(val_(o).gc))
|
||
#define fvalue(o) check_exp(ttislcf(o), val_(o).f)
|
||
#define clCvalue(o) check_exp(ttisCclosure(o), gco2ccl(val_(o).gc))
|
||
|
||
#define fvalueraw(v) ((v).f)
|
||
|
||
#define setclLvalue(L,obj,x) \
|
||
{ TValue *io = (obj); LClosure *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VLCL)); \
|
||
checkliveness(L,io); }
|
||
|
||
#define setclLvalue2s(L,o,cl) setclLvalue(L,s2v(o),cl)
|
||
|
||
#define setfvalue(obj,x) \
|
||
{ TValue *io=(obj); val_(io).f=(x); settt_(io, LUA_VLCF); }
|
||
|
||
#define setclCvalue(L,obj,x) \
|
||
{ TValue *io = (obj); CClosure *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VCCL)); \
|
||
checkliveness(L,io); }
|
||
|
||
|
||
/*
|
||
** Upvalues for Lua closures
|
||
*/
|
||
typedef struct UpVal {
|
||
CommonHeader;
|
||
union {
|
||
TValue *p; /* points to stack or to its own value */
|
||
ptrdiff_t offset; /* used while the stack is being reallocated */
|
||
} v;
|
||
union {
|
||
struct { /* (when open) */
|
||
struct UpVal *next; /* linked list */
|
||
struct UpVal **previous;
|
||
} open;
|
||
TValue value; /* the value (when closed) */
|
||
} u;
|
||
} UpVal;
|
||
|
||
|
||
|
||
#define ClosureHeader \
|
||
CommonHeader; lu_byte nupvalues; GCObject *gclist
|
||
|
||
typedef struct CClosure {
|
||
ClosureHeader;
|
||
lua_CFunction f;
|
||
TValue upvalue[1]; /* list of upvalues */
|
||
} CClosure;
|
||
|
||
|
||
typedef struct LClosure {
|
||
ClosureHeader;
|
||
struct Proto *p;
|
||
UpVal *upvals[1]; /* list of upvalues */
|
||
} LClosure;
|
||
|
||
|
||
typedef union Closure {
|
||
CClosure c;
|
||
LClosure l;
|
||
} Closure;
|
||
|
||
|
||
#define getproto(o) (clLvalue(o)->p)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Tables
|
||
** ===================================================================
|
||
*/
|
||
|
||
#define LUA_VTABLE makevariant(LUA_TTABLE, 0)
|
||
|
||
#define ttistable(o) checktag((o), ctb(LUA_VTABLE))
|
||
|
||
#define hvalue(o) check_exp(ttistable(o), gco2t(val_(o).gc))
|
||
|
||
#define sethvalue(L,obj,x) \
|
||
{ TValue *io = (obj); Table *x_ = (x); \
|
||
val_(io).gc = obj2gco(x_); settt_(io, ctb(LUA_VTABLE)); \
|
||
checkliveness(L,io); }
|
||
|
||
#define sethvalue2s(L,o,h) sethvalue(L,s2v(o),h)
|
||
|
||
|
||
/*
|
||
** Nodes for Hash tables: A pack of two TValue's (key-value pairs)
|
||
** plus a 'next' field to link colliding entries. The distribution
|
||
** of the key's fields ('key_tt' and 'key_val') not forming a proper
|
||
** 'TValue' allows for a smaller size for 'Node' both in 4-byte
|
||
** and 8-byte alignments.
|
||
*/
|
||
typedef union Node {
|
||
struct NodeKey {
|
||
TValuefields; /* fields for value */
|
||
lu_byte key_tt; /* key type */
|
||
int next; /* for chaining */
|
||
Value key_val; /* key value */
|
||
} u;
|
||
TValue i_val; /* direct access to node's value as a proper 'TValue' */
|
||
} Node;
|
||
|
||
|
||
/* copy a value into a key */
|
||
#define setnodekey(L,node,obj) \
|
||
{ Node *n_=(node); const TValue *io_=(obj); \
|
||
n_->u.key_val = io_->value_; n_->u.key_tt = io_->tt_; \
|
||
checkliveness(L,io_); }
|
||
|
||
|
||
/* copy a value from a key */
|
||
#define getnodekey(L,obj,node) \
|
||
{ TValue *io_=(obj); const Node *n_=(node); \
|
||
io_->value_ = n_->u.key_val; io_->tt_ = n_->u.key_tt; \
|
||
checkliveness(L,io_); }
|
||
|
||
|
||
/*
|
||
** About 'alimit': if 'isrealasize(t)' is true, then 'alimit' is the
|
||
** real size of 'array'. Otherwise, the real size of 'array' is the
|
||
** smallest power of two not smaller than 'alimit' (or zero iff 'alimit'
|
||
** is zero); 'alimit' is then used as a hint for #t.
|
||
*/
|
||
|
||
#define BITRAS (1 << 7)
|
||
#define isrealasize(t) (!((t)->flags & BITRAS))
|
||
#define setrealasize(t) ((t)->flags &= cast_byte(~BITRAS))
|
||
#define setnorealasize(t) ((t)->flags |= BITRAS)
|
||
|
||
|
||
typedef struct Table {
|
||
CommonHeader;
|
||
lu_byte flags; /* 1<<p means tagmethod(p) is not present */
|
||
lu_byte lsizenode; /* log2 of size of 'node' array */
|
||
unsigned int alimit; /* "limit" of 'array' array */
|
||
TValue *array; /* array part */
|
||
Node *node;
|
||
Node *lastfree; /* any free position is before this position */
|
||
struct Table *metatable;
|
||
GCObject *gclist;
|
||
} Table;
|
||
|
||
|
||
/*
|
||
** Macros to manipulate keys inserted in nodes
|
||
*/
|
||
#define keytt(node) ((node)->u.key_tt)
|
||
#define keyval(node) ((node)->u.key_val)
|
||
|
||
#define keyisnil(node) (keytt(node) == LUA_TNIL)
|
||
#define keyisinteger(node) (keytt(node) == LUA_VNUMINT)
|
||
#define keyival(node) (keyval(node).i)
|
||
#define keyisshrstr(node) (keytt(node) == ctb(LUA_VSHRSTR))
|
||
#define keystrval(node) (gco2ts(keyval(node).gc))
|
||
|
||
#define setnilkey(node) (keytt(node) = LUA_TNIL)
|
||
|
||
#define keyiscollectable(n) (keytt(n) & BIT_ISCOLLECTABLE)
|
||
|
||
#define gckey(n) (keyval(n).gc)
|
||
#define gckeyN(n) (keyiscollectable(n) ? gckey(n) : NULL)
|
||
|
||
|
||
/*
|
||
** Dead keys in tables have the tag DEADKEY but keep their original
|
||
** gcvalue. This distinguishes them from regular keys but allows them to
|
||
** be found when searched in a special way. ('next' needs that to find
|
||
** keys removed from a table during a traversal.)
|
||
*/
|
||
#define setdeadkey(node) (keytt(node) = LUA_TDEADKEY)
|
||
#define keyisdead(node) (keytt(node) == LUA_TDEADKEY)
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** 'module' operation for hashing (size is always a power of 2)
|
||
*/
|
||
#define lmod(s,size) \
|
||
(check_exp((size&(size-1))==0, (cast_int((s) & ((size)-1)))))
|
||
|
||
|
||
#define twoto(x) (1<<(x))
|
||
#define sizenode(t) (twoto((t)->lsizenode))
|
||
|
||
|
||
/* size of buffer for 'luaO_utf8esc' function */
|
||
#define UTF8BUFFSZ 8
|
||
|
||
LUAI_FUNC int luaO_utf8esc (char *buff, unsigned long x);
|
||
LUAI_FUNC int luaO_ceillog2 (unsigned int x);
|
||
LUAI_FUNC int luaO_rawarith (lua_State *L, int op, const TValue *p1,
|
||
const TValue *p2, TValue *res);
|
||
LUAI_FUNC void luaO_arith (lua_State *L, int op, const TValue *p1,
|
||
const TValue *p2, StkId res);
|
||
LUAI_FUNC size_t luaO_str2num (const char *s, TValue *o);
|
||
LUAI_FUNC int luaO_hexavalue (int c);
|
||
LUAI_FUNC void luaO_tostring (lua_State *L, TValue *obj);
|
||
LUAI_FUNC const char *luaO_pushvfstring (lua_State *L, const char *fmt,
|
||
va_list argp);
|
||
LUAI_FUNC const char *luaO_pushfstring (lua_State *L, const char *fmt, ...);
|
||
LUAI_FUNC void luaO_chunkid (char *out, const char *source, size_t srclen);
|
||
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: lmem.h $
|
||
** Interface to Memory Manager
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lmem_h
|
||
#define lmem_h
|
||
|
||
|
||
#include <stddef.h>
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
#define luaM_error(L) luaD_throw(L, LUA_ERRMEM)
|
||
|
||
|
||
/*
|
||
** This macro tests whether it is safe to multiply 'n' by the size of
|
||
** type 't' without overflows. Because 'e' is always constant, it avoids
|
||
** the runtime division MAX_SIZET/(e).
|
||
** (The macro is somewhat complex to avoid warnings: The 'sizeof'
|
||
** comparison avoids a runtime comparison when overflow cannot occur.
|
||
** The compiler should be able to optimize the real test by itself, but
|
||
** when it does it, it may give a warning about "comparison is always
|
||
** false due to limited range of data type"; the +1 tricks the compiler,
|
||
** avoiding this warning but also this optimization.)
|
||
*/
|
||
#define luaM_testsize(n,e) \
|
||
(sizeof(n) >= sizeof(size_t) && cast_sizet((n)) + 1 > MAX_SIZET/(e))
|
||
|
||
#define luaM_checksize(L,n,e) \
|
||
(luaM_testsize(n,e) ? luaM_toobig(L) : cast_void(0))
|
||
|
||
|
||
/*
|
||
** Computes the minimum between 'n' and 'MAX_SIZET/sizeof(t)', so that
|
||
** the result is not larger than 'n' and cannot overflow a 'size_t'
|
||
** when multiplied by the size of type 't'. (Assumes that 'n' is an
|
||
** 'int' or 'unsigned int' and that 'int' is not larger than 'size_t'.)
|
||
*/
|
||
#define luaM_limitN(n,t) \
|
||
((cast_sizet(n) <= MAX_SIZET/sizeof(t)) ? (n) : \
|
||
cast_uint((MAX_SIZET/sizeof(t))))
|
||
|
||
|
||
/*
|
||
** Arrays of chars do not need any test
|
||
*/
|
||
#define luaM_reallocvchar(L,b,on,n) \
|
||
cast_charp(luaM_saferealloc_(L, (b), (on)*sizeof(char), (n)*sizeof(char)))
|
||
|
||
#define luaM_freemem(L, b, s) luaM_free_(L, (b), (s))
|
||
#define luaM_free(L, b) luaM_free_(L, (b), sizeof(*(b)))
|
||
#define luaM_freearray(L, b, n) luaM_free_(L, (b), (n)*sizeof(*(b)))
|
||
|
||
#define luaM_new(L,t) cast(t*, luaM_malloc_(L, sizeof(t), 0))
|
||
#define luaM_newvector(L,n,t) cast(t*, luaM_malloc_(L, (n)*sizeof(t), 0))
|
||
#define luaM_newvectorchecked(L,n,t) \
|
||
(luaM_checksize(L,n,sizeof(t)), luaM_newvector(L,n,t))
|
||
|
||
#define luaM_newobject(L,tag,s) luaM_malloc_(L, (s), tag)
|
||
|
||
#define luaM_growvector(L,v,nelems,size,t,limit,e) \
|
||
((v)=cast(t *, luaM_growaux_(L,v,nelems,&(size),sizeof(t), \
|
||
luaM_limitN(limit,t),e)))
|
||
|
||
#define luaM_reallocvector(L, v,oldn,n,t) \
|
||
(cast(t *, luaM_realloc_(L, v, cast_sizet(oldn) * sizeof(t), \
|
||
cast_sizet(n) * sizeof(t))))
|
||
|
||
#define luaM_shrinkvector(L,v,size,fs,t) \
|
||
((v)=cast(t *, luaM_shrinkvector_(L, v, &(size), fs, sizeof(t))))
|
||
|
||
LUAI_FUNC l_noret luaM_toobig (lua_State *L);
|
||
|
||
/* not to be called directly */
|
||
LUAI_FUNC void *luaM_realloc_ (lua_State *L, void *block, size_t oldsize,
|
||
size_t size);
|
||
LUAI_FUNC void *luaM_saferealloc_ (lua_State *L, void *block, size_t oldsize,
|
||
size_t size);
|
||
LUAI_FUNC void luaM_free_ (lua_State *L, void *block, size_t osize);
|
||
LUAI_FUNC void *luaM_growaux_ (lua_State *L, void *block, int nelems,
|
||
int *size, int size_elem, int limit,
|
||
const char *what);
|
||
LUAI_FUNC void *luaM_shrinkvector_ (lua_State *L, void *block, int *nelem,
|
||
int final_n, int size_elem);
|
||
LUAI_FUNC void *luaM_malloc_ (lua_State *L, size_t size, int tag);
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: ltm.h $
|
||
** Tag methods
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef ltm_h
|
||
#define ltm_h
|
||
|
||
|
||
/*#include "lobject.h"*/
|
||
|
||
|
||
/*
|
||
* WARNING: if you change the order of this enumeration,
|
||
* grep "ORDER TM" and "ORDER OP"
|
||
*/
|
||
typedef enum {
|
||
TM_INDEX,
|
||
TM_NEWINDEX,
|
||
TM_GC,
|
||
TM_MODE,
|
||
TM_LEN,
|
||
TM_EQ, /* last tag method with fast access */
|
||
TM_ADD,
|
||
TM_SUB,
|
||
TM_MUL,
|
||
TM_MOD,
|
||
TM_POW,
|
||
TM_DIV,
|
||
TM_IDIV,
|
||
TM_BAND,
|
||
TM_BOR,
|
||
TM_BXOR,
|
||
TM_SHL,
|
||
TM_SHR,
|
||
TM_UNM,
|
||
TM_BNOT,
|
||
TM_LT,
|
||
TM_LE,
|
||
TM_CONCAT,
|
||
TM_CALL,
|
||
TM_CLOSE,
|
||
TM_N /* number of elements in the enum */
|
||
} TMS;
|
||
|
||
|
||
/*
|
||
** Mask with 1 in all fast-access methods. A 1 in any of these bits
|
||
** in the flag of a (meta)table means the metatable does not have the
|
||
** corresponding metamethod field. (Bit 7 of the flag is used for
|
||
** 'isrealasize'.)
|
||
*/
|
||
#define maskflags (~(~0u << (TM_EQ + 1)))
|
||
|
||
|
||
/*
|
||
** Test whether there is no tagmethod.
|
||
** (Because tagmethods use raw accesses, the result may be an "empty" nil.)
|
||
*/
|
||
#define notm(tm) ttisnil(tm)
|
||
|
||
|
||
#define gfasttm(g,et,e) ((et) == NULL ? NULL : \
|
||
((et)->flags & (1u<<(e))) ? NULL : luaT_gettm(et, e, (g)->tmname[e]))
|
||
|
||
#define fasttm(l,et,e) gfasttm(G(l), et, e)
|
||
|
||
#define ttypename(x) luaT_typenames_[(x) + 1]
|
||
|
||
LUAI_DDEC(const char *const luaT_typenames_[LUA_TOTALTYPES];)
|
||
|
||
|
||
LUAI_FUNC const char *luaT_objtypename (lua_State *L, const TValue *o);
|
||
|
||
LUAI_FUNC const TValue *luaT_gettm (Table *events, TMS event, TString *ename);
|
||
LUAI_FUNC const TValue *luaT_gettmbyobj (lua_State *L, const TValue *o,
|
||
TMS event);
|
||
LUAI_FUNC void luaT_init (lua_State *L);
|
||
|
||
LUAI_FUNC void luaT_callTM (lua_State *L, const TValue *f, const TValue *p1,
|
||
const TValue *p2, const TValue *p3);
|
||
LUAI_FUNC void luaT_callTMres (lua_State *L, const TValue *f,
|
||
const TValue *p1, const TValue *p2, StkId p3);
|
||
LUAI_FUNC void luaT_trybinTM (lua_State *L, const TValue *p1, const TValue *p2,
|
||
StkId res, TMS event);
|
||
LUAI_FUNC void luaT_tryconcatTM (lua_State *L);
|
||
LUAI_FUNC void luaT_trybinassocTM (lua_State *L, const TValue *p1,
|
||
const TValue *p2, int inv, StkId res, TMS event);
|
||
LUAI_FUNC void luaT_trybiniTM (lua_State *L, const TValue *p1, lua_Integer i2,
|
||
int inv, StkId res, TMS event);
|
||
LUAI_FUNC int luaT_callorderTM (lua_State *L, const TValue *p1,
|
||
const TValue *p2, TMS event);
|
||
LUAI_FUNC int luaT_callorderiTM (lua_State *L, const TValue *p1, int v2,
|
||
int inv, int isfloat, TMS event);
|
||
|
||
LUAI_FUNC void luaT_adjustvarargs (lua_State *L, int nfixparams,
|
||
struct CallInfo *ci, const Proto *p);
|
||
LUAI_FUNC void luaT_getvarargs (lua_State *L, struct CallInfo *ci,
|
||
StkId where, int wanted);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lstate.h $
|
||
** Global State
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lstate_h
|
||
#define lstate_h
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/* Some header files included here need this definition */
|
||
typedef struct CallInfo CallInfo;
|
||
|
||
|
||
/*#include "lobject.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
/*
|
||
** Some notes about garbage-collected objects: All objects in Lua must
|
||
** be kept somehow accessible until being freed, so all objects always
|
||
** belong to one (and only one) of these lists, using field 'next' of
|
||
** the 'CommonHeader' for the link:
|
||
**
|
||
** 'allgc': all objects not marked for finalization;
|
||
** 'finobj': all objects marked for finalization;
|
||
** 'tobefnz': all objects ready to be finalized;
|
||
** 'fixedgc': all objects that are not to be collected (currently
|
||
** only small strings, such as reserved words).
|
||
**
|
||
** For the generational collector, some of these lists have marks for
|
||
** generations. Each mark points to the first element in the list for
|
||
** that particular generation; that generation goes until the next mark.
|
||
**
|
||
** 'allgc' -> 'survival': new objects;
|
||
** 'survival' -> 'old': objects that survived one collection;
|
||
** 'old1' -> 'reallyold': objects that became old in last collection;
|
||
** 'reallyold' -> NULL: objects old for more than one cycle.
|
||
**
|
||
** 'finobj' -> 'finobjsur': new objects marked for finalization;
|
||
** 'finobjsur' -> 'finobjold1': survived """";
|
||
** 'finobjold1' -> 'finobjrold': just old """";
|
||
** 'finobjrold' -> NULL: really old """".
|
||
**
|
||
** All lists can contain elements older than their main ages, due
|
||
** to 'luaC_checkfinalizer' and 'udata2finalize', which move
|
||
** objects between the normal lists and the "marked for finalization"
|
||
** lists. Moreover, barriers can age young objects in young lists as
|
||
** OLD0, which then become OLD1. However, a list never contains
|
||
** elements younger than their main ages.
|
||
**
|
||
** The generational collector also uses a pointer 'firstold1', which
|
||
** points to the first OLD1 object in the list. It is used to optimize
|
||
** 'markold'. (Potentially OLD1 objects can be anywhere between 'allgc'
|
||
** and 'reallyold', but often the list has no OLD1 objects or they are
|
||
** after 'old1'.) Note the difference between it and 'old1':
|
||
** 'firstold1': no OLD1 objects before this point; there can be all
|
||
** ages after it.
|
||
** 'old1': no objects younger than OLD1 after this point.
|
||
*/
|
||
|
||
/*
|
||
** Moreover, there is another set of lists that control gray objects.
|
||
** These lists are linked by fields 'gclist'. (All objects that
|
||
** can become gray have such a field. The field is not the same
|
||
** in all objects, but it always has this name.) Any gray object
|
||
** must belong to one of these lists, and all objects in these lists
|
||
** must be gray (with two exceptions explained below):
|
||
**
|
||
** 'gray': regular gray objects, still waiting to be visited.
|
||
** 'grayagain': objects that must be revisited at the atomic phase.
|
||
** That includes
|
||
** - black objects got in a write barrier;
|
||
** - all kinds of weak tables during propagation phase;
|
||
** - all threads.
|
||
** 'weak': tables with weak values to be cleared;
|
||
** 'ephemeron': ephemeron tables with white->white entries;
|
||
** 'allweak': tables with weak keys and/or weak values to be cleared.
|
||
**
|
||
** The exceptions to that "gray rule" are:
|
||
** - TOUCHED2 objects in generational mode stay in a gray list (because
|
||
** they must be visited again at the end of the cycle), but they are
|
||
** marked black because assignments to them must activate barriers (to
|
||
** move them back to TOUCHED1).
|
||
** - Open upvales are kept gray to avoid barriers, but they stay out
|
||
** of gray lists. (They don't even have a 'gclist' field.)
|
||
*/
|
||
|
||
|
||
|
||
/*
|
||
** About 'nCcalls': This count has two parts: the lower 16 bits counts
|
||
** the number of recursive invocations in the C stack; the higher
|
||
** 16 bits counts the number of non-yieldable calls in the stack.
|
||
** (They are together so that we can change and save both with one
|
||
** instruction.)
|
||
*/
|
||
|
||
|
||
/* true if this thread does not have non-yieldable calls in the stack */
|
||
#define yieldable(L) (((L)->nCcalls & 0xffff0000) == 0)
|
||
|
||
/* real number of C calls */
|
||
#define getCcalls(L) ((L)->nCcalls & 0xffff)
|
||
|
||
|
||
/* Increment the number of non-yieldable calls */
|
||
#define incnny(L) ((L)->nCcalls += 0x10000)
|
||
|
||
/* Decrement the number of non-yieldable calls */
|
||
#define decnny(L) ((L)->nCcalls -= 0x10000)
|
||
|
||
/* Non-yieldable call increment */
|
||
#define nyci (0x10000 | 1)
|
||
|
||
|
||
|
||
|
||
struct lua_longjmp; /* defined in ldo.c */
|
||
|
||
|
||
/*
|
||
** Atomic type (relative to signals) to better ensure that 'lua_sethook'
|
||
** is thread safe
|
||
*/
|
||
#if !defined(l_signalT)
|
||
#include <signal.h>
|
||
#define l_signalT sig_atomic_t
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Extra stack space to handle TM calls and some other extras. This
|
||
** space is not included in 'stack_last'. It is used only to avoid stack
|
||
** checks, either because the element will be promptly popped or because
|
||
** there will be a stack check soon after the push. Function frames
|
||
** never use this extra space, so it does not need to be kept clean.
|
||
*/
|
||
#define EXTRA_STACK 5
|
||
|
||
|
||
#define BASIC_STACK_SIZE (2*LUA_MINSTACK)
|
||
|
||
#define stacksize(th) cast_int((th)->stack_last.p - (th)->stack.p)
|
||
|
||
|
||
/* kinds of Garbage Collection */
|
||
#define KGC_INC 0 /* incremental gc */
|
||
#define KGC_GEN 1 /* generational gc */
|
||
|
||
|
||
typedef struct stringtable {
|
||
TString **hash;
|
||
int nuse; /* number of elements */
|
||
int size;
|
||
} stringtable;
|
||
|
||
|
||
/*
|
||
** Information about a call.
|
||
** About union 'u':
|
||
** - field 'l' is used only for Lua functions;
|
||
** - field 'c' is used only for C functions.
|
||
** About union 'u2':
|
||
** - field 'funcidx' is used only by C functions while doing a
|
||
** protected call;
|
||
** - field 'nyield' is used only while a function is "doing" an
|
||
** yield (from the yield until the next resume);
|
||
** - field 'nres' is used only while closing tbc variables when
|
||
** returning from a function;
|
||
** - field 'transferinfo' is used only during call/returnhooks,
|
||
** before the function starts or after it ends.
|
||
*/
|
||
struct CallInfo {
|
||
StkIdRel func; /* function index in the stack */
|
||
StkIdRel top; /* top for this function */
|
||
struct CallInfo *previous, *next; /* dynamic call link */
|
||
union {
|
||
struct { /* only for Lua functions */
|
||
const Instruction *savedpc;
|
||
volatile l_signalT trap; /* function is tracing lines/counts */
|
||
int nextraargs; /* # of extra arguments in vararg functions */
|
||
} l;
|
||
struct { /* only for C functions */
|
||
lua_KFunction k; /* continuation in case of yields */
|
||
ptrdiff_t old_errfunc;
|
||
lua_KContext ctx; /* context info. in case of yields */
|
||
} c;
|
||
} u;
|
||
union {
|
||
int funcidx; /* called-function index */
|
||
int nyield; /* number of values yielded */
|
||
int nres; /* number of values returned */
|
||
struct { /* info about transferred values (for call/return hooks) */
|
||
unsigned short ftransfer; /* offset of first value transferred */
|
||
unsigned short ntransfer; /* number of values transferred */
|
||
} transferinfo;
|
||
} u2;
|
||
short nresults; /* expected number of results from this function */
|
||
unsigned short callstatus;
|
||
};
|
||
|
||
|
||
/*
|
||
** Bits in CallInfo status
|
||
*/
|
||
#define CIST_OAH (1<<0) /* original value of 'allowhook' */
|
||
#define CIST_C (1<<1) /* call is running a C function */
|
||
#define CIST_FRESH (1<<2) /* call is on a fresh "luaV_execute" frame */
|
||
#define CIST_HOOKED (1<<3) /* call is running a debug hook */
|
||
#define CIST_YPCALL (1<<4) /* doing a yieldable protected call */
|
||
#define CIST_TAIL (1<<5) /* call was tail called */
|
||
#define CIST_HOOKYIELD (1<<6) /* last hook called yielded */
|
||
#define CIST_FIN (1<<7) /* function "called" a finalizer */
|
||
#define CIST_TRAN (1<<8) /* 'ci' has transfer information */
|
||
#define CIST_CLSRET (1<<9) /* function is closing tbc variables */
|
||
/* Bits 10-12 are used for CIST_RECST (see below) */
|
||
#define CIST_RECST 10
|
||
#if defined(LUA_COMPAT_LT_LE)
|
||
#define CIST_LEQ (1<<13) /* using __lt for __le */
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Field CIST_RECST stores the "recover status", used to keep the error
|
||
** status while closing to-be-closed variables in coroutines, so that
|
||
** Lua can correctly resume after an yield from a __close method called
|
||
** because of an error. (Three bits are enough for error status.)
|
||
*/
|
||
#define getcistrecst(ci) (((ci)->callstatus >> CIST_RECST) & 7)
|
||
#define setcistrecst(ci,st) \
|
||
check_exp(((st) & 7) == (st), /* status must fit in three bits */ \
|
||
((ci)->callstatus = ((ci)->callstatus & ~(7 << CIST_RECST)) \
|
||
| ((st) << CIST_RECST)))
|
||
|
||
|
||
/* active function is a Lua function */
|
||
#define isLua(ci) (!((ci)->callstatus & CIST_C))
|
||
|
||
/* call is running Lua code (not a hook) */
|
||
#define isLuacode(ci) (!((ci)->callstatus & (CIST_C | CIST_HOOKED)))
|
||
|
||
/* assume that CIST_OAH has offset 0 and that 'v' is strictly 0/1 */
|
||
#define setoah(st,v) ((st) = ((st) & ~CIST_OAH) | (v))
|
||
#define getoah(st) ((st) & CIST_OAH)
|
||
|
||
|
||
/*
|
||
** 'global state', shared by all threads of this state
|
||
*/
|
||
typedef struct global_State {
|
||
lua_Alloc frealloc; /* function to reallocate memory */
|
||
void *ud; /* auxiliary data to 'frealloc' */
|
||
l_mem totalbytes; /* number of bytes currently allocated - GCdebt */
|
||
l_mem GCdebt; /* bytes allocated not yet compensated by the collector */
|
||
lu_mem GCestimate; /* an estimate of the non-garbage memory in use */
|
||
lu_mem lastatomic; /* see function 'genstep' in file 'lgc.c' */
|
||
stringtable strt; /* hash table for strings */
|
||
TValue l_registry;
|
||
TValue nilvalue; /* a nil value */
|
||
unsigned int seed; /* randomized seed for hashes */
|
||
lu_byte currentwhite;
|
||
lu_byte gcstate; /* state of garbage collector */
|
||
lu_byte gckind; /* kind of GC running */
|
||
lu_byte gcstopem; /* stops emergency collections */
|
||
lu_byte genminormul; /* control for minor generational collections */
|
||
lu_byte genmajormul; /* control for major generational collections */
|
||
lu_byte gcstp; /* control whether GC is running */
|
||
lu_byte gcemergency; /* true if this is an emergency collection */
|
||
lu_byte gcpause; /* size of pause between successive GCs */
|
||
lu_byte gcstepmul; /* GC "speed" */
|
||
lu_byte gcstepsize; /* (log2 of) GC granularity */
|
||
GCObject *allgc; /* list of all collectable objects */
|
||
GCObject **sweepgc; /* current position of sweep in list */
|
||
GCObject *finobj; /* list of collectable objects with finalizers */
|
||
GCObject *gray; /* list of gray objects */
|
||
GCObject *grayagain; /* list of objects to be traversed atomically */
|
||
GCObject *weak; /* list of tables with weak values */
|
||
GCObject *ephemeron; /* list of ephemeron tables (weak keys) */
|
||
GCObject *allweak; /* list of all-weak tables */
|
||
GCObject *tobefnz; /* list of userdata to be GC */
|
||
GCObject *fixedgc; /* list of objects not to be collected */
|
||
/* fields for generational collector */
|
||
GCObject *survival; /* start of objects that survived one GC cycle */
|
||
GCObject *old1; /* start of old1 objects */
|
||
GCObject *reallyold; /* objects more than one cycle old ("really old") */
|
||
GCObject *firstold1; /* first OLD1 object in the list (if any) */
|
||
GCObject *finobjsur; /* list of survival objects with finalizers */
|
||
GCObject *finobjold1; /* list of old1 objects with finalizers */
|
||
GCObject *finobjrold; /* list of really old objects with finalizers */
|
||
struct lua_State *twups; /* list of threads with open upvalues */
|
||
lua_CFunction panic; /* to be called in unprotected errors */
|
||
struct lua_State *mainthread;
|
||
TString *memerrmsg; /* message for memory-allocation errors */
|
||
TString *tmname[TM_N]; /* array with tag-method names */
|
||
struct Table *mt[LUA_NUMTYPES]; /* metatables for basic types */
|
||
TString *strcache[STRCACHE_N][STRCACHE_M]; /* cache for strings in API */
|
||
lua_WarnFunction warnf; /* warning function */
|
||
void *ud_warn; /* auxiliary data to 'warnf' */
|
||
} global_State;
|
||
|
||
|
||
/*
|
||
** 'per thread' state
|
||
*/
|
||
struct lua_State {
|
||
CommonHeader;
|
||
lu_byte status;
|
||
lu_byte allowhook;
|
||
unsigned short nci; /* number of items in 'ci' list */
|
||
StkIdRel top; /* first free slot in the stack */
|
||
global_State *l_G;
|
||
CallInfo *ci; /* call info for current function */
|
||
StkIdRel stack_last; /* end of stack (last element + 1) */
|
||
StkIdRel stack; /* stack base */
|
||
UpVal *openupval; /* list of open upvalues in this stack */
|
||
StkIdRel tbclist; /* list of to-be-closed variables */
|
||
GCObject *gclist;
|
||
struct lua_State *twups; /* list of threads with open upvalues */
|
||
struct lua_longjmp *errorJmp; /* current error recover point */
|
||
CallInfo base_ci; /* CallInfo for first level (C calling Lua) */
|
||
volatile lua_Hook hook;
|
||
ptrdiff_t errfunc; /* current error handling function (stack index) */
|
||
l_uint32 nCcalls; /* number of nested (non-yieldable | C) calls */
|
||
int oldpc; /* last pc traced */
|
||
int basehookcount;
|
||
int hookcount;
|
||
volatile l_signalT hookmask;
|
||
};
|
||
|
||
|
||
#define G(L) (L->l_G)
|
||
|
||
/*
|
||
** 'g->nilvalue' being a nil value flags that the state was completely
|
||
** build.
|
||
*/
|
||
#define completestate(g) ttisnil(&g->nilvalue)
|
||
|
||
|
||
/*
|
||
** Union of all collectable objects (only for conversions)
|
||
** ISO C99, 6.5.2.3 p.5:
|
||
** "if a union contains several structures that share a common initial
|
||
** sequence [...], and if the union object currently contains one
|
||
** of these structures, it is permitted to inspect the common initial
|
||
** part of any of them anywhere that a declaration of the complete type
|
||
** of the union is visible."
|
||
*/
|
||
union GCUnion {
|
||
GCObject gc; /* common header */
|
||
struct TString ts;
|
||
struct Udata u;
|
||
union Closure cl;
|
||
struct Table h;
|
||
struct Proto p;
|
||
struct lua_State th; /* thread */
|
||
struct UpVal upv;
|
||
};
|
||
|
||
|
||
/*
|
||
** ISO C99, 6.7.2.1 p.14:
|
||
** "A pointer to a union object, suitably converted, points to each of
|
||
** its members [...], and vice versa."
|
||
*/
|
||
#define cast_u(o) cast(union GCUnion *, (o))
|
||
|
||
/* macros to convert a GCObject into a specific value */
|
||
#define gco2ts(o) \
|
||
check_exp(novariant((o)->tt) == LUA_TSTRING, &((cast_u(o))->ts))
|
||
#define gco2u(o) check_exp((o)->tt == LUA_VUSERDATA, &((cast_u(o))->u))
|
||
#define gco2lcl(o) check_exp((o)->tt == LUA_VLCL, &((cast_u(o))->cl.l))
|
||
#define gco2ccl(o) check_exp((o)->tt == LUA_VCCL, &((cast_u(o))->cl.c))
|
||
#define gco2cl(o) \
|
||
check_exp(novariant((o)->tt) == LUA_TFUNCTION, &((cast_u(o))->cl))
|
||
#define gco2t(o) check_exp((o)->tt == LUA_VTABLE, &((cast_u(o))->h))
|
||
#define gco2p(o) check_exp((o)->tt == LUA_VPROTO, &((cast_u(o))->p))
|
||
#define gco2th(o) check_exp((o)->tt == LUA_VTHREAD, &((cast_u(o))->th))
|
||
#define gco2upv(o) check_exp((o)->tt == LUA_VUPVAL, &((cast_u(o))->upv))
|
||
|
||
|
||
/*
|
||
** macro to convert a Lua object into a GCObject
|
||
** (The access to 'tt' tries to ensure that 'v' is actually a Lua object.)
|
||
*/
|
||
#define obj2gco(v) check_exp((v)->tt >= LUA_TSTRING, &(cast_u(v)->gc))
|
||
|
||
|
||
/* actual number of total bytes allocated */
|
||
#define gettotalbytes(g) cast(lu_mem, (g)->totalbytes + (g)->GCdebt)
|
||
|
||
LUAI_FUNC void luaE_setdebt (global_State *g, l_mem debt);
|
||
LUAI_FUNC void luaE_freethread (lua_State *L, lua_State *L1);
|
||
LUAI_FUNC CallInfo *luaE_extendCI (lua_State *L);
|
||
LUAI_FUNC void luaE_shrinkCI (lua_State *L);
|
||
LUAI_FUNC void luaE_checkcstack (lua_State *L);
|
||
LUAI_FUNC void luaE_incCstack (lua_State *L);
|
||
LUAI_FUNC void luaE_warning (lua_State *L, const char *msg, int tocont);
|
||
LUAI_FUNC void luaE_warnerror (lua_State *L, const char *where);
|
||
LUAI_FUNC int luaE_resetthread (lua_State *L, int status);
|
||
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: lzio.h $
|
||
** Buffered streams
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#ifndef lzio_h
|
||
#define lzio_h
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lmem.h"*/
|
||
|
||
|
||
#define EOZ (-1) /* end of stream */
|
||
|
||
typedef struct Zio ZIO;
|
||
|
||
#define zgetc(z) (((z)->n--)>0 ? cast_uchar(*(z)->p++) : luaZ_fill(z))
|
||
|
||
|
||
typedef struct Mbuffer {
|
||
char *buffer;
|
||
size_t n;
|
||
size_t buffsize;
|
||
} Mbuffer;
|
||
|
||
#define luaZ_initbuffer(L, buff) ((buff)->buffer = NULL, (buff)->buffsize = 0)
|
||
|
||
#define luaZ_buffer(buff) ((buff)->buffer)
|
||
#define luaZ_sizebuffer(buff) ((buff)->buffsize)
|
||
#define luaZ_bufflen(buff) ((buff)->n)
|
||
|
||
#define luaZ_buffremove(buff,i) ((buff)->n -= (i))
|
||
#define luaZ_resetbuffer(buff) ((buff)->n = 0)
|
||
|
||
|
||
#define luaZ_resizebuffer(L, buff, size) \
|
||
((buff)->buffer = luaM_reallocvchar(L, (buff)->buffer, \
|
||
(buff)->buffsize, size), \
|
||
(buff)->buffsize = size)
|
||
|
||
#define luaZ_freebuffer(L, buff) luaZ_resizebuffer(L, buff, 0)
|
||
|
||
|
||
LUAI_FUNC void luaZ_init (lua_State *L, ZIO *z, lua_Reader reader,
|
||
void *data);
|
||
LUAI_FUNC size_t luaZ_read (ZIO* z, void *b, size_t n); /* read next n bytes */
|
||
|
||
|
||
|
||
/* --------- Private Part ------------------ */
|
||
|
||
struct Zio {
|
||
size_t n; /* bytes still unread */
|
||
const char *p; /* current position in buffer */
|
||
lua_Reader reader; /* reader function */
|
||
void *data; /* additional data */
|
||
lua_State *L; /* Lua state (for reader) */
|
||
};
|
||
|
||
|
||
LUAI_FUNC int luaZ_fill (ZIO *z);
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lopcodes.h $
|
||
** Opcodes for Lua virtual machine
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lopcodes_h
|
||
#define lopcodes_h
|
||
|
||
/*#include "llimits.h"*/
|
||
|
||
|
||
/*===========================================================================
|
||
We assume that instructions are unsigned 32-bit integers.
|
||
All instructions have an opcode in the first 7 bits.
|
||
Instructions can have the following formats:
|
||
|
||
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
|
||
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
|
||
iABC C(8) | B(8) |k| A(8) | Op(7) |
|
||
iABx Bx(17) | A(8) | Op(7) |
|
||
iAsBx sBx (signed)(17) | A(8) | Op(7) |
|
||
iAx Ax(25) | Op(7) |
|
||
isJ sJ (signed)(25) | Op(7) |
|
||
|
||
A signed argument is represented in excess K: the represented value is
|
||
the written unsigned value minus K, where K is half the maximum for the
|
||
corresponding unsigned argument.
|
||
===========================================================================*/
|
||
|
||
|
||
enum OpMode {iABC, iABx, iAsBx, iAx, isJ}; /* basic instruction formats */
|
||
|
||
|
||
/*
|
||
** size and position of opcode arguments.
|
||
*/
|
||
#define SIZE_C 8
|
||
#define SIZE_B 8
|
||
#define SIZE_Bx (SIZE_C + SIZE_B + 1)
|
||
#define SIZE_A 8
|
||
#define SIZE_Ax (SIZE_Bx + SIZE_A)
|
||
#define SIZE_sJ (SIZE_Bx + SIZE_A)
|
||
|
||
#define SIZE_OP 7
|
||
|
||
#define POS_OP 0
|
||
|
||
#define POS_A (POS_OP + SIZE_OP)
|
||
#define POS_k (POS_A + SIZE_A)
|
||
#define POS_B (POS_k + 1)
|
||
#define POS_C (POS_B + SIZE_B)
|
||
|
||
#define POS_Bx POS_k
|
||
|
||
#define POS_Ax POS_A
|
||
|
||
#define POS_sJ POS_A
|
||
|
||
|
||
/*
|
||
** limits for opcode arguments.
|
||
** we use (signed) 'int' to manipulate most arguments,
|
||
** so they must fit in ints.
|
||
*/
|
||
|
||
/* Check whether type 'int' has at least 'b' bits ('b' < 32) */
|
||
#define L_INTHASBITS(b) ((UINT_MAX >> ((b) - 1)) >= 1)
|
||
|
||
|
||
#if L_INTHASBITS(SIZE_Bx)
|
||
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
|
||
#else
|
||
#define MAXARG_Bx MAX_INT
|
||
#endif
|
||
|
||
#define OFFSET_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
|
||
|
||
|
||
#if L_INTHASBITS(SIZE_Ax)
|
||
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
|
||
#else
|
||
#define MAXARG_Ax MAX_INT
|
||
#endif
|
||
|
||
#if L_INTHASBITS(SIZE_sJ)
|
||
#define MAXARG_sJ ((1 << SIZE_sJ) - 1)
|
||
#else
|
||
#define MAXARG_sJ MAX_INT
|
||
#endif
|
||
|
||
#define OFFSET_sJ (MAXARG_sJ >> 1)
|
||
|
||
|
||
#define MAXARG_A ((1<<SIZE_A)-1)
|
||
#define MAXARG_B ((1<<SIZE_B)-1)
|
||
#define MAXARG_C ((1<<SIZE_C)-1)
|
||
#define OFFSET_sC (MAXARG_C >> 1)
|
||
|
||
#define int2sC(i) ((i) + OFFSET_sC)
|
||
#define sC2int(i) ((i) - OFFSET_sC)
|
||
|
||
|
||
/* creates a mask with 'n' 1 bits at position 'p' */
|
||
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
|
||
|
||
/* creates a mask with 'n' 0 bits at position 'p' */
|
||
#define MASK0(n,p) (~MASK1(n,p))
|
||
|
||
/*
|
||
** the following macros help to manipulate instructions
|
||
*/
|
||
|
||
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
|
||
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
|
||
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
|
||
|
||
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
|
||
|
||
|
||
#define getarg(i,pos,size) (cast_int(((i)>>(pos)) & MASK1(size,0)))
|
||
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
|
||
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
|
||
|
||
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
|
||
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
|
||
|
||
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
|
||
#define GETARG_sB(i) sC2int(GETARG_B(i))
|
||
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
|
||
|
||
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
|
||
#define GETARG_sC(i) sC2int(GETARG_C(i))
|
||
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
|
||
|
||
#define TESTARG_k(i) check_exp(checkopm(i, iABC), (cast_int(((i) & (1u << POS_k)))))
|
||
#define GETARG_k(i) check_exp(checkopm(i, iABC), getarg(i, POS_k, 1))
|
||
#define SETARG_k(i,v) setarg(i, v, POS_k, 1)
|
||
|
||
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
|
||
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
|
||
|
||
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
|
||
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
|
||
|
||
#define GETARG_sBx(i) \
|
||
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - OFFSET_sBx)
|
||
#define SETARG_sBx(i,b) SETARG_Bx((i),cast_uint((b)+OFFSET_sBx))
|
||
|
||
#define GETARG_sJ(i) \
|
||
check_exp(checkopm(i, isJ), getarg(i, POS_sJ, SIZE_sJ) - OFFSET_sJ)
|
||
#define SETARG_sJ(i,j) \
|
||
setarg(i, cast_uint((j)+OFFSET_sJ), POS_sJ, SIZE_sJ)
|
||
|
||
|
||
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
|
||
| (cast(Instruction, a)<<POS_A) \
|
||
| (cast(Instruction, b)<<POS_B) \
|
||
| (cast(Instruction, c)<<POS_C) \
|
||
| (cast(Instruction, k)<<POS_k))
|
||
|
||
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
|
||
| (cast(Instruction, a)<<POS_A) \
|
||
| (cast(Instruction, bc)<<POS_Bx))
|
||
|
||
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
|
||
| (cast(Instruction, a)<<POS_Ax))
|
||
|
||
#define CREATE_sJ(o,j,k) ((cast(Instruction, o) << POS_OP) \
|
||
| (cast(Instruction, j) << POS_sJ) \
|
||
| (cast(Instruction, k) << POS_k))
|
||
|
||
|
||
#if !defined(MAXINDEXRK) /* (for debugging only) */
|
||
#define MAXINDEXRK MAXARG_B
|
||
#endif
|
||
|
||
|
||
/*
|
||
** invalid register that fits in 8 bits
|
||
*/
|
||
#define NO_REG MAXARG_A
|
||
|
||
|
||
/*
|
||
** R[x] - register
|
||
** K[x] - constant (in constant table)
|
||
** RK(x) == if k(i) then K[x] else R[x]
|
||
*/
|
||
|
||
|
||
/*
|
||
** Grep "ORDER OP" if you change these enums. Opcodes marked with a (*)
|
||
** has extra descriptions in the notes after the enumeration.
|
||
*/
|
||
|
||
typedef enum {
|
||
/*----------------------------------------------------------------------
|
||
name args description
|
||
------------------------------------------------------------------------*/
|
||
OP_MOVE,/* A B R[A] := R[B] */
|
||
OP_LOADI,/* A sBx R[A] := sBx */
|
||
OP_LOADF,/* A sBx R[A] := (lua_Number)sBx */
|
||
OP_LOADK,/* A Bx R[A] := K[Bx] */
|
||
OP_LOADKX,/* A R[A] := K[extra arg] */
|
||
OP_LOADFALSE,/* A R[A] := false */
|
||
OP_LFALSESKIP,/*A R[A] := false; pc++ (*) */
|
||
OP_LOADTRUE,/* A R[A] := true */
|
||
OP_LOADNIL,/* A B R[A], R[A+1], ..., R[A+B] := nil */
|
||
OP_GETUPVAL,/* A B R[A] := UpValue[B] */
|
||
OP_SETUPVAL,/* A B UpValue[B] := R[A] */
|
||
|
||
OP_GETTABUP,/* A B C R[A] := UpValue[B][K[C]:shortstring] */
|
||
OP_GETTABLE,/* A B C R[A] := R[B][R[C]] */
|
||
OP_GETI,/* A B C R[A] := R[B][C] */
|
||
OP_GETFIELD,/* A B C R[A] := R[B][K[C]:shortstring] */
|
||
|
||
OP_SETTABUP,/* A B C UpValue[A][K[B]:shortstring] := RK(C) */
|
||
OP_SETTABLE,/* A B C R[A][R[B]] := RK(C) */
|
||
OP_SETI,/* A B C R[A][B] := RK(C) */
|
||
OP_SETFIELD,/* A B C R[A][K[B]:shortstring] := RK(C) */
|
||
|
||
OP_NEWTABLE,/* A B C k R[A] := {} */
|
||
|
||
OP_SELF,/* A B C R[A+1] := R[B]; R[A] := R[B][RK(C):string] */
|
||
|
||
OP_ADDI,/* A B sC R[A] := R[B] + sC */
|
||
|
||
OP_ADDK,/* A B C R[A] := R[B] + K[C]:number */
|
||
OP_SUBK,/* A B C R[A] := R[B] - K[C]:number */
|
||
OP_MULK,/* A B C R[A] := R[B] * K[C]:number */
|
||
OP_MODK,/* A B C R[A] := R[B] % K[C]:number */
|
||
OP_POWK,/* A B C R[A] := R[B] ^ K[C]:number */
|
||
OP_DIVK,/* A B C R[A] := R[B] / K[C]:number */
|
||
OP_IDIVK,/* A B C R[A] := R[B] // K[C]:number */
|
||
|
||
OP_BANDK,/* A B C R[A] := R[B] & K[C]:integer */
|
||
OP_BORK,/* A B C R[A] := R[B] | K[C]:integer */
|
||
OP_BXORK,/* A B C R[A] := R[B] ~ K[C]:integer */
|
||
|
||
OP_SHRI,/* A B sC R[A] := R[B] >> sC */
|
||
OP_SHLI,/* A B sC R[A] := sC << R[B] */
|
||
|
||
OP_ADD,/* A B C R[A] := R[B] + R[C] */
|
||
OP_SUB,/* A B C R[A] := R[B] - R[C] */
|
||
OP_MUL,/* A B C R[A] := R[B] * R[C] */
|
||
OP_MOD,/* A B C R[A] := R[B] % R[C] */
|
||
OP_POW,/* A B C R[A] := R[B] ^ R[C] */
|
||
OP_DIV,/* A B C R[A] := R[B] / R[C] */
|
||
OP_IDIV,/* A B C R[A] := R[B] // R[C] */
|
||
|
||
OP_BAND,/* A B C R[A] := R[B] & R[C] */
|
||
OP_BOR,/* A B C R[A] := R[B] | R[C] */
|
||
OP_BXOR,/* A B C R[A] := R[B] ~ R[C] */
|
||
OP_SHL,/* A B C R[A] := R[B] << R[C] */
|
||
OP_SHR,/* A B C R[A] := R[B] >> R[C] */
|
||
|
||
OP_MMBIN,/* A B C call C metamethod over R[A] and R[B] (*) */
|
||
OP_MMBINI,/* A sB C k call C metamethod over R[A] and sB */
|
||
OP_MMBINK,/* A B C k call C metamethod over R[A] and K[B] */
|
||
|
||
OP_UNM,/* A B R[A] := -R[B] */
|
||
OP_BNOT,/* A B R[A] := ~R[B] */
|
||
OP_NOT,/* A B R[A] := not R[B] */
|
||
OP_LEN,/* A B R[A] := #R[B] (length operator) */
|
||
|
||
OP_CONCAT,/* A B R[A] := R[A].. ... ..R[A + B - 1] */
|
||
|
||
OP_CLOSE,/* A close all upvalues >= R[A] */
|
||
OP_TBC,/* A mark variable A "to be closed" */
|
||
OP_JMP,/* sJ pc += sJ */
|
||
OP_EQ,/* A B k if ((R[A] == R[B]) ~= k) then pc++ */
|
||
OP_LT,/* A B k if ((R[A] < R[B]) ~= k) then pc++ */
|
||
OP_LE,/* A B k if ((R[A] <= R[B]) ~= k) then pc++ */
|
||
|
||
OP_EQK,/* A B k if ((R[A] == K[B]) ~= k) then pc++ */
|
||
OP_EQI,/* A sB k if ((R[A] == sB) ~= k) then pc++ */
|
||
OP_LTI,/* A sB k if ((R[A] < sB) ~= k) then pc++ */
|
||
OP_LEI,/* A sB k if ((R[A] <= sB) ~= k) then pc++ */
|
||
OP_GTI,/* A sB k if ((R[A] > sB) ~= k) then pc++ */
|
||
OP_GEI,/* A sB k if ((R[A] >= sB) ~= k) then pc++ */
|
||
|
||
OP_TEST,/* A k if (not R[A] == k) then pc++ */
|
||
OP_TESTSET,/* A B k if (not R[B] == k) then pc++ else R[A] := R[B] (*) */
|
||
|
||
OP_CALL,/* A B C R[A], ... ,R[A+C-2] := R[A](R[A+1], ... ,R[A+B-1]) */
|
||
OP_TAILCALL,/* A B C k return R[A](R[A+1], ... ,R[A+B-1]) */
|
||
|
||
OP_RETURN,/* A B C k return R[A], ... ,R[A+B-2] (see note) */
|
||
OP_RETURN0,/* return */
|
||
OP_RETURN1,/* A return R[A] */
|
||
|
||
OP_FORLOOP,/* A Bx update counters; if loop continues then pc-=Bx; */
|
||
OP_FORPREP,/* A Bx <check values and prepare counters>;
|
||
if not to run then pc+=Bx+1; */
|
||
|
||
OP_TFORPREP,/* A Bx create upvalue for R[A + 3]; pc+=Bx */
|
||
OP_TFORCALL,/* A C R[A+4], ... ,R[A+3+C] := R[A](R[A+1], R[A+2]); */
|
||
OP_TFORLOOP,/* A Bx if R[A+2] ~= nil then { R[A]=R[A+2]; pc -= Bx } */
|
||
|
||
OP_SETLIST,/* A B C k R[A][C+i] := R[A+i], 1 <= i <= B */
|
||
|
||
OP_CLOSURE,/* A Bx R[A] := closure(KPROTO[Bx]) */
|
||
|
||
OP_VARARG,/* A C R[A], R[A+1], ..., R[A+C-2] = vararg */
|
||
|
||
OP_VARARGPREP,/*A (adjust vararg parameters) */
|
||
|
||
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
|
||
} OpCode;
|
||
|
||
|
||
#define NUM_OPCODES ((int)(OP_EXTRAARG) + 1)
|
||
|
||
|
||
|
||
/*===========================================================================
|
||
Notes:
|
||
|
||
(*) Opcode OP_LFALSESKIP is used to convert a condition to a boolean
|
||
value, in a code equivalent to (not cond ? false : true). (It
|
||
produces false and skips the next instruction producing true.)
|
||
|
||
(*) Opcodes OP_MMBIN and variants follow each arithmetic and
|
||
bitwise opcode. If the operation succeeds, it skips this next
|
||
opcode. Otherwise, this opcode calls the corresponding metamethod.
|
||
|
||
(*) Opcode OP_TESTSET is used in short-circuit expressions that need
|
||
both to jump and to produce a value, such as (a = b or c).
|
||
|
||
(*) In OP_CALL, if (B == 0) then B = top - A. If (C == 0), then
|
||
'top' is set to last_result+1, so next open instruction (OP_CALL,
|
||
OP_RETURN*, OP_SETLIST) may use 'top'.
|
||
|
||
(*) In OP_VARARG, if (C == 0) then use actual number of varargs and
|
||
set top (like in OP_CALL with C == 0).
|
||
|
||
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
|
||
|
||
(*) In OP_LOADKX and OP_NEWTABLE, the next instruction is always
|
||
OP_EXTRAARG.
|
||
|
||
(*) In OP_SETLIST, if (B == 0) then real B = 'top'; if k, then
|
||
real C = EXTRAARG _ C (the bits of EXTRAARG concatenated with the
|
||
bits of C).
|
||
|
||
(*) In OP_NEWTABLE, B is log2 of the hash size (which is always a
|
||
power of 2) plus 1, or zero for size zero. If not k, the array size
|
||
is C. Otherwise, the array size is EXTRAARG _ C.
|
||
|
||
(*) For comparisons, k specifies what condition the test should accept
|
||
(true or false).
|
||
|
||
(*) In OP_MMBINI/OP_MMBINK, k means the arguments were flipped
|
||
(the constant is the first operand).
|
||
|
||
(*) All 'skips' (pc++) assume that next instruction is a jump.
|
||
|
||
(*) In instructions OP_RETURN/OP_TAILCALL, 'k' specifies that the
|
||
function builds upvalues, which may need to be closed. C > 0 means
|
||
the function is vararg, so that its 'func' must be corrected before
|
||
returning; in this case, (C - 1) is its number of fixed parameters.
|
||
|
||
(*) In comparisons with an immediate operand, C signals whether the
|
||
original operand was a float. (It must be corrected in case of
|
||
metamethods.)
|
||
|
||
===========================================================================*/
|
||
|
||
|
||
/*
|
||
** masks for instruction properties. The format is:
|
||
** bits 0-2: op mode
|
||
** bit 3: instruction set register A
|
||
** bit 4: operator is a test (next instruction must be a jump)
|
||
** bit 5: instruction uses 'L->top' set by previous instruction (when B == 0)
|
||
** bit 6: instruction sets 'L->top' for next instruction (when C == 0)
|
||
** bit 7: instruction is an MM instruction (call a metamethod)
|
||
*/
|
||
|
||
LUAI_DDEC(const lu_byte luaP_opmodes[NUM_OPCODES];)
|
||
|
||
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
|
||
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
|
||
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
|
||
#define testITMode(m) (luaP_opmodes[m] & (1 << 5))
|
||
#define testOTMode(m) (luaP_opmodes[m] & (1 << 6))
|
||
#define testMMMode(m) (luaP_opmodes[m] & (1 << 7))
|
||
|
||
/* "out top" (set top for next instruction) */
|
||
#define isOT(i) \
|
||
((testOTMode(GET_OPCODE(i)) && GETARG_C(i) == 0) || \
|
||
GET_OPCODE(i) == OP_TAILCALL)
|
||
|
||
/* "in top" (uses top from previous instruction) */
|
||
#define isIT(i) (testITMode(GET_OPCODE(i)) && GETARG_B(i) == 0)
|
||
|
||
#define opmode(mm,ot,it,t,a,m) \
|
||
(((mm) << 7) | ((ot) << 6) | ((it) << 5) | ((t) << 4) | ((a) << 3) | (m))
|
||
|
||
|
||
/* number of list items to accumulate before a SETLIST instruction */
|
||
#define LFIELDS_PER_FLUSH 50
|
||
|
||
#endif
|
||
/*
|
||
** $Id: ldebug.h $
|
||
** Auxiliary functions from Debug Interface module
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef ldebug_h
|
||
#define ldebug_h
|
||
|
||
|
||
/*#include "lstate.h"*/
|
||
|
||
|
||
#define pcRel(pc, p) (cast_int((pc) - (p)->code) - 1)
|
||
|
||
|
||
/* Active Lua function (given call info) */
|
||
#define ci_func(ci) (clLvalue(s2v((ci)->func.p)))
|
||
|
||
|
||
#define resethookcount(L) (L->hookcount = L->basehookcount)
|
||
|
||
/*
|
||
** mark for entries in 'lineinfo' array that has absolute information in
|
||
** 'abslineinfo' array
|
||
*/
|
||
#define ABSLINEINFO (-0x80)
|
||
|
||
|
||
/*
|
||
** MAXimum number of successive Instructions WiTHout ABSolute line
|
||
** information. (A power of two allows fast divisions.)
|
||
*/
|
||
#if !defined(MAXIWTHABS)
|
||
#define MAXIWTHABS 128
|
||
#endif
|
||
|
||
|
||
LUAI_FUNC int luaG_getfuncline (const Proto *f, int pc);
|
||
LUAI_FUNC const char *luaG_findlocal (lua_State *L, CallInfo *ci, int n,
|
||
StkId *pos);
|
||
LUAI_FUNC l_noret luaG_typeerror (lua_State *L, const TValue *o,
|
||
const char *opname);
|
||
LUAI_FUNC l_noret luaG_callerror (lua_State *L, const TValue *o);
|
||
LUAI_FUNC l_noret luaG_forerror (lua_State *L, const TValue *o,
|
||
const char *what);
|
||
LUAI_FUNC l_noret luaG_concaterror (lua_State *L, const TValue *p1,
|
||
const TValue *p2);
|
||
LUAI_FUNC l_noret luaG_opinterror (lua_State *L, const TValue *p1,
|
||
const TValue *p2,
|
||
const char *msg);
|
||
LUAI_FUNC l_noret luaG_tointerror (lua_State *L, const TValue *p1,
|
||
const TValue *p2);
|
||
LUAI_FUNC l_noret luaG_ordererror (lua_State *L, const TValue *p1,
|
||
const TValue *p2);
|
||
LUAI_FUNC l_noret luaG_runerror (lua_State *L, const char *fmt, ...);
|
||
LUAI_FUNC const char *luaG_addinfo (lua_State *L, const char *msg,
|
||
TString *src, int line);
|
||
LUAI_FUNC l_noret luaG_errormsg (lua_State *L);
|
||
LUAI_FUNC int luaG_traceexec (lua_State *L, const Instruction *pc);
|
||
LUAI_FUNC int luaG_tracecall (lua_State *L);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: ldo.h $
|
||
** Stack and Call structure of Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef ldo_h
|
||
#define ldo_h
|
||
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
/*
|
||
** Macro to check stack size and grow stack if needed. Parameters
|
||
** 'pre'/'pos' allow the macro to preserve a pointer into the
|
||
** stack across reallocations, doing the work only when needed.
|
||
** It also allows the running of one GC step when the stack is
|
||
** reallocated.
|
||
** 'condmovestack' is used in heavy tests to force a stack reallocation
|
||
** at every check.
|
||
*/
|
||
#define luaD_checkstackaux(L,n,pre,pos) \
|
||
if (l_unlikely(L->stack_last.p - L->top.p <= (n))) \
|
||
{ pre; luaD_growstack(L, n, 1); pos; } \
|
||
else { condmovestack(L,pre,pos); }
|
||
|
||
/* In general, 'pre'/'pos' are empty (nothing to save) */
|
||
#define luaD_checkstack(L,n) luaD_checkstackaux(L,n,(void)0,(void)0)
|
||
|
||
|
||
|
||
#define savestack(L,pt) (cast_charp(pt) - cast_charp(L->stack.p))
|
||
#define restorestack(L,n) cast(StkId, cast_charp(L->stack.p) + (n))
|
||
|
||
|
||
/* macro to check stack size, preserving 'p' */
|
||
#define checkstackp(L,n,p) \
|
||
luaD_checkstackaux(L, n, \
|
||
ptrdiff_t t__ = savestack(L, p), /* save 'p' */ \
|
||
p = restorestack(L, t__)) /* 'pos' part: restore 'p' */
|
||
|
||
|
||
/* macro to check stack size and GC, preserving 'p' */
|
||
#define checkstackGCp(L,n,p) \
|
||
luaD_checkstackaux(L, n, \
|
||
ptrdiff_t t__ = savestack(L, p); /* save 'p' */ \
|
||
luaC_checkGC(L), /* stack grow uses memory */ \
|
||
p = restorestack(L, t__)) /* 'pos' part: restore 'p' */
|
||
|
||
|
||
/* macro to check stack size and GC */
|
||
#define checkstackGC(L,fsize) \
|
||
luaD_checkstackaux(L, (fsize), luaC_checkGC(L), (void)0)
|
||
|
||
|
||
/* type of protected functions, to be ran by 'runprotected' */
|
||
typedef void (*Pfunc) (lua_State *L, void *ud);
|
||
|
||
LUAI_FUNC void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop);
|
||
LUAI_FUNC int luaD_protectedparser (lua_State *L, ZIO *z, const char *name,
|
||
const char *mode);
|
||
LUAI_FUNC void luaD_hook (lua_State *L, int event, int line,
|
||
int fTransfer, int nTransfer);
|
||
LUAI_FUNC void luaD_hookcall (lua_State *L, CallInfo *ci);
|
||
LUAI_FUNC int luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func,
|
||
int narg1, int delta);
|
||
LUAI_FUNC CallInfo *luaD_precall (lua_State *L, StkId func, int nResults);
|
||
LUAI_FUNC void luaD_call (lua_State *L, StkId func, int nResults);
|
||
LUAI_FUNC void luaD_callnoyield (lua_State *L, StkId func, int nResults);
|
||
LUAI_FUNC int luaD_closeprotected (lua_State *L, ptrdiff_t level, int status);
|
||
LUAI_FUNC int luaD_pcall (lua_State *L, Pfunc func, void *u,
|
||
ptrdiff_t oldtop, ptrdiff_t ef);
|
||
LUAI_FUNC void luaD_poscall (lua_State *L, CallInfo *ci, int nres);
|
||
LUAI_FUNC int luaD_reallocstack (lua_State *L, int newsize, int raiseerror);
|
||
LUAI_FUNC int luaD_growstack (lua_State *L, int n, int raiseerror);
|
||
LUAI_FUNC void luaD_shrinkstack (lua_State *L);
|
||
LUAI_FUNC void luaD_inctop (lua_State *L);
|
||
|
||
LUAI_FUNC l_noret luaD_throw (lua_State *L, int errcode);
|
||
LUAI_FUNC int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud);
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: lgc.h $
|
||
** Garbage Collector
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lgc_h
|
||
#define lgc_h
|
||
|
||
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
|
||
/*
|
||
** Collectable objects may have one of three colors: white, which means
|
||
** the object is not marked; gray, which means the object is marked, but
|
||
** its references may be not marked; and black, which means that the
|
||
** object and all its references are marked. The main invariant of the
|
||
** garbage collector, while marking objects, is that a black object can
|
||
** never point to a white one. Moreover, any gray object must be in a
|
||
** "gray list" (gray, grayagain, weak, allweak, ephemeron) so that it
|
||
** can be visited again before finishing the collection cycle. (Open
|
||
** upvalues are an exception to this rule.) These lists have no meaning
|
||
** when the invariant is not being enforced (e.g., sweep phase).
|
||
*/
|
||
|
||
|
||
/*
|
||
** Possible states of the Garbage Collector
|
||
*/
|
||
#define GCSpropagate 0
|
||
#define GCSenteratomic 1
|
||
#define GCSatomic 2
|
||
#define GCSswpallgc 3
|
||
#define GCSswpfinobj 4
|
||
#define GCSswptobefnz 5
|
||
#define GCSswpend 6
|
||
#define GCScallfin 7
|
||
#define GCSpause 8
|
||
|
||
|
||
#define issweepphase(g) \
|
||
(GCSswpallgc <= (g)->gcstate && (g)->gcstate <= GCSswpend)
|
||
|
||
|
||
/*
|
||
** macro to tell when main invariant (white objects cannot point to black
|
||
** ones) must be kept. During a collection, the sweep
|
||
** phase may break the invariant, as objects turned white may point to
|
||
** still-black objects. The invariant is restored when sweep ends and
|
||
** all objects are white again.
|
||
*/
|
||
|
||
#define keepinvariant(g) ((g)->gcstate <= GCSatomic)
|
||
|
||
|
||
/*
|
||
** some useful bit tricks
|
||
*/
|
||
#define resetbits(x,m) ((x) &= cast_byte(~(m)))
|
||
#define setbits(x,m) ((x) |= (m))
|
||
#define testbits(x,m) ((x) & (m))
|
||
#define bitmask(b) (1<<(b))
|
||
#define bit2mask(b1,b2) (bitmask(b1) | bitmask(b2))
|
||
#define l_setbit(x,b) setbits(x, bitmask(b))
|
||
#define resetbit(x,b) resetbits(x, bitmask(b))
|
||
#define testbit(x,b) testbits(x, bitmask(b))
|
||
|
||
|
||
/*
|
||
** Layout for bit use in 'marked' field. First three bits are
|
||
** used for object "age" in generational mode. Last bit is used
|
||
** by tests.
|
||
*/
|
||
#define WHITE0BIT 3 /* object is white (type 0) */
|
||
#define WHITE1BIT 4 /* object is white (type 1) */
|
||
#define BLACKBIT 5 /* object is black */
|
||
#define FINALIZEDBIT 6 /* object has been marked for finalization */
|
||
|
||
#define TESTBIT 7
|
||
|
||
|
||
|
||
#define WHITEBITS bit2mask(WHITE0BIT, WHITE1BIT)
|
||
|
||
|
||
#define iswhite(x) testbits((x)->marked, WHITEBITS)
|
||
#define isblack(x) testbit((x)->marked, BLACKBIT)
|
||
#define isgray(x) /* neither white nor black */ \
|
||
(!testbits((x)->marked, WHITEBITS | bitmask(BLACKBIT)))
|
||
|
||
#define tofinalize(x) testbit((x)->marked, FINALIZEDBIT)
|
||
|
||
#define otherwhite(g) ((g)->currentwhite ^ WHITEBITS)
|
||
#define isdeadm(ow,m) ((m) & (ow))
|
||
#define isdead(g,v) isdeadm(otherwhite(g), (v)->marked)
|
||
|
||
#define changewhite(x) ((x)->marked ^= WHITEBITS)
|
||
#define nw2black(x) \
|
||
check_exp(!iswhite(x), l_setbit((x)->marked, BLACKBIT))
|
||
|
||
#define luaC_white(g) cast_byte((g)->currentwhite & WHITEBITS)
|
||
|
||
|
||
/* object age in generational mode */
|
||
#define G_NEW 0 /* created in current cycle */
|
||
#define G_SURVIVAL 1 /* created in previous cycle */
|
||
#define G_OLD0 2 /* marked old by frw. barrier in this cycle */
|
||
#define G_OLD1 3 /* first full cycle as old */
|
||
#define G_OLD 4 /* really old object (not to be visited) */
|
||
#define G_TOUCHED1 5 /* old object touched this cycle */
|
||
#define G_TOUCHED2 6 /* old object touched in previous cycle */
|
||
|
||
#define AGEBITS 7 /* all age bits (111) */
|
||
|
||
#define getage(o) ((o)->marked & AGEBITS)
|
||
#define setage(o,a) ((o)->marked = cast_byte(((o)->marked & (~AGEBITS)) | a))
|
||
#define isold(o) (getage(o) > G_SURVIVAL)
|
||
|
||
#define changeage(o,f,t) \
|
||
check_exp(getage(o) == (f), (o)->marked ^= ((f)^(t)))
|
||
|
||
|
||
/* Default Values for GC parameters */
|
||
#define LUAI_GENMAJORMUL 100
|
||
#define LUAI_GENMINORMUL 20
|
||
|
||
/* wait memory to double before starting new cycle */
|
||
#define LUAI_GCPAUSE 200
|
||
|
||
/*
|
||
** some gc parameters are stored divided by 4 to allow a maximum value
|
||
** up to 1023 in a 'lu_byte'.
|
||
*/
|
||
#define getgcparam(p) ((p) * 4)
|
||
#define setgcparam(p,v) ((p) = (v) / 4)
|
||
|
||
#define LUAI_GCMUL 100
|
||
|
||
/* how much to allocate before next GC step (log2) */
|
||
#define LUAI_GCSTEPSIZE 13 /* 8 KB */
|
||
|
||
|
||
/*
|
||
** Check whether the declared GC mode is generational. While in
|
||
** generational mode, the collector can go temporarily to incremental
|
||
** mode to improve performance. This is signaled by 'g->lastatomic != 0'.
|
||
*/
|
||
#define isdecGCmodegen(g) (g->gckind == KGC_GEN || g->lastatomic != 0)
|
||
|
||
|
||
/*
|
||
** Control when GC is running:
|
||
*/
|
||
#define GCSTPUSR 1 /* bit true when GC stopped by user */
|
||
#define GCSTPGC 2 /* bit true when GC stopped by itself */
|
||
#define GCSTPCLS 4 /* bit true when closing Lua state */
|
||
#define gcrunning(g) ((g)->gcstp == 0)
|
||
|
||
|
||
/*
|
||
** Does one step of collection when debt becomes positive. 'pre'/'pos'
|
||
** allows some adjustments to be done only when needed. macro
|
||
** 'condchangemem' is used only for heavy tests (forcing a full
|
||
** GC cycle on every opportunity)
|
||
*/
|
||
#define luaC_condGC(L,pre,pos) \
|
||
{ if (G(L)->GCdebt > 0) { pre; luaC_step(L); pos;}; \
|
||
condchangemem(L,pre,pos); }
|
||
|
||
/* more often than not, 'pre'/'pos' are empty */
|
||
#define luaC_checkGC(L) luaC_condGC(L,(void)0,(void)0)
|
||
|
||
|
||
#define luaC_objbarrier(L,p,o) ( \
|
||
(isblack(p) && iswhite(o)) ? \
|
||
luaC_barrier_(L,obj2gco(p),obj2gco(o)) : cast_void(0))
|
||
|
||
#define luaC_barrier(L,p,v) ( \
|
||
iscollectable(v) ? luaC_objbarrier(L,p,gcvalue(v)) : cast_void(0))
|
||
|
||
#define luaC_objbarrierback(L,p,o) ( \
|
||
(isblack(p) && iswhite(o)) ? luaC_barrierback_(L,p) : cast_void(0))
|
||
|
||
#define luaC_barrierback(L,p,v) ( \
|
||
iscollectable(v) ? luaC_objbarrierback(L, p, gcvalue(v)) : cast_void(0))
|
||
|
||
LUAI_FUNC void luaC_fix (lua_State *L, GCObject *o);
|
||
LUAI_FUNC void luaC_freeallobjects (lua_State *L);
|
||
LUAI_FUNC void luaC_step (lua_State *L);
|
||
LUAI_FUNC void luaC_runtilstate (lua_State *L, int statesmask);
|
||
LUAI_FUNC void luaC_fullgc (lua_State *L, int isemergency);
|
||
LUAI_FUNC GCObject *luaC_newobj (lua_State *L, int tt, size_t sz);
|
||
LUAI_FUNC GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz,
|
||
size_t offset);
|
||
LUAI_FUNC void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v);
|
||
LUAI_FUNC void luaC_barrierback_ (lua_State *L, GCObject *o);
|
||
LUAI_FUNC void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt);
|
||
LUAI_FUNC void luaC_changemode (lua_State *L, int newmode);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lfunc.h $
|
||
** Auxiliary functions to manipulate prototypes and closures
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lfunc_h
|
||
#define lfunc_h
|
||
|
||
|
||
/*#include "lobject.h"*/
|
||
|
||
|
||
#define sizeCclosure(n) (cast_int(offsetof(CClosure, upvalue)) + \
|
||
cast_int(sizeof(TValue)) * (n))
|
||
|
||
#define sizeLclosure(n) (cast_int(offsetof(LClosure, upvals)) + \
|
||
cast_int(sizeof(TValue *)) * (n))
|
||
|
||
|
||
/* test whether thread is in 'twups' list */
|
||
#define isintwups(L) (L->twups != L)
|
||
|
||
|
||
/*
|
||
** maximum number of upvalues in a closure (both C and Lua). (Value
|
||
** must fit in a VM register.)
|
||
*/
|
||
#define MAXUPVAL 255
|
||
|
||
|
||
#define upisopen(up) ((up)->v.p != &(up)->u.value)
|
||
|
||
|
||
#define uplevel(up) check_exp(upisopen(up), cast(StkId, (up)->v.p))
|
||
|
||
|
||
/*
|
||
** maximum number of misses before giving up the cache of closures
|
||
** in prototypes
|
||
*/
|
||
#define MAXMISS 10
|
||
|
||
|
||
|
||
/* special status to close upvalues preserving the top of the stack */
|
||
#define CLOSEKTOP (-1)
|
||
|
||
|
||
LUAI_FUNC Proto *luaF_newproto (lua_State *L);
|
||
LUAI_FUNC CClosure *luaF_newCclosure (lua_State *L, int nupvals);
|
||
LUAI_FUNC LClosure *luaF_newLclosure (lua_State *L, int nupvals);
|
||
LUAI_FUNC void luaF_initupvals (lua_State *L, LClosure *cl);
|
||
LUAI_FUNC UpVal *luaF_findupval (lua_State *L, StkId level);
|
||
LUAI_FUNC void luaF_newtbcupval (lua_State *L, StkId level);
|
||
LUAI_FUNC void luaF_closeupval (lua_State *L, StkId level);
|
||
LUAI_FUNC StkId luaF_close (lua_State *L, StkId level, int status, int yy);
|
||
LUAI_FUNC void luaF_unlinkupval (UpVal *uv);
|
||
LUAI_FUNC void luaF_freeproto (lua_State *L, Proto *f);
|
||
LUAI_FUNC const char *luaF_getlocalname (const Proto *func, int local_number,
|
||
int pc);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lstring.h $
|
||
** String table (keep all strings handled by Lua)
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lstring_h
|
||
#define lstring_h
|
||
|
||
/*#include "lgc.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
|
||
|
||
/*
|
||
** Memory-allocation error message must be preallocated (it cannot
|
||
** be created after memory is exhausted)
|
||
*/
|
||
#define MEMERRMSG "not enough memory"
|
||
|
||
|
||
/*
|
||
** Size of a TString: Size of the header plus space for the string
|
||
** itself (including final '\0').
|
||
*/
|
||
#define sizelstring(l) (offsetof(TString, contents) + ((l) + 1) * sizeof(char))
|
||
|
||
#define luaS_newliteral(L, s) (luaS_newlstr(L, "" s, \
|
||
(sizeof(s)/sizeof(char))-1))
|
||
|
||
|
||
/*
|
||
** test whether a string is a reserved word
|
||
*/
|
||
#define isreserved(s) ((s)->tt == LUA_VSHRSTR && (s)->extra > 0)
|
||
|
||
|
||
/*
|
||
** equality for short strings, which are always internalized
|
||
*/
|
||
#define eqshrstr(a,b) check_exp((a)->tt == LUA_VSHRSTR, (a) == (b))
|
||
|
||
|
||
LUAI_FUNC unsigned int luaS_hash (const char *str, size_t l, unsigned int seed);
|
||
LUAI_FUNC unsigned int luaS_hashlongstr (TString *ts);
|
||
LUAI_FUNC int luaS_eqlngstr (TString *a, TString *b);
|
||
LUAI_FUNC void luaS_resize (lua_State *L, int newsize);
|
||
LUAI_FUNC void luaS_clearcache (global_State *g);
|
||
LUAI_FUNC void luaS_init (lua_State *L);
|
||
LUAI_FUNC void luaS_remove (lua_State *L, TString *ts);
|
||
LUAI_FUNC Udata *luaS_newudata (lua_State *L, size_t s, int nuvalue);
|
||
LUAI_FUNC TString *luaS_newlstr (lua_State *L, const char *str, size_t l);
|
||
LUAI_FUNC TString *luaS_new (lua_State *L, const char *str);
|
||
LUAI_FUNC TString *luaS_createlngstrobj (lua_State *L, size_t l);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lundump.h $
|
||
** load precompiled Lua chunks
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lundump_h
|
||
#define lundump_h
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
/* data to catch conversion errors */
|
||
#define LUAC_DATA "\x19\x93\r\n\x1a\n"
|
||
|
||
#define LUAC_INT 0x5678
|
||
#define LUAC_NUM cast_num(370.5)
|
||
|
||
/*
|
||
** Encode major-minor version in one byte, one nibble for each
|
||
*/
|
||
#define LUAC_VERSION (((LUA_VERSION_NUM / 100) * 16) + LUA_VERSION_NUM % 100)
|
||
|
||
#define LUAC_FORMAT 0 /* this is the official format */
|
||
|
||
/* load one chunk; from lundump.c */
|
||
LUAI_FUNC LClosure* luaU_undump (lua_State* L, ZIO* Z, const char* name);
|
||
|
||
/* dump one chunk; from ldump.c */
|
||
LUAI_FUNC int luaU_dump (lua_State* L, const Proto* f, lua_Writer w,
|
||
void* data, int strip);
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lapi.h $
|
||
** Auxiliary functions from Lua API
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lapi_h
|
||
#define lapi_h
|
||
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lstate.h"*/
|
||
|
||
|
||
/* Increments 'L->top.p', checking for stack overflows */
|
||
#define api_incr_top(L) {L->top.p++; \
|
||
api_check(L, L->top.p <= L->ci->top.p, \
|
||
"stack overflow");}
|
||
|
||
|
||
/*
|
||
** If a call returns too many multiple returns, the callee may not have
|
||
** stack space to accommodate all results. In this case, this macro
|
||
** increases its stack space ('L->ci->top.p').
|
||
*/
|
||
#define adjustresults(L,nres) \
|
||
{ if ((nres) <= LUA_MULTRET && L->ci->top.p < L->top.p) \
|
||
L->ci->top.p = L->top.p; }
|
||
|
||
|
||
/* Ensure the stack has at least 'n' elements */
|
||
#define api_checknelems(L,n) \
|
||
api_check(L, (n) < (L->top.p - L->ci->func.p), \
|
||
"not enough elements in the stack")
|
||
|
||
|
||
/*
|
||
** To reduce the overhead of returning from C functions, the presence of
|
||
** to-be-closed variables in these functions is coded in the CallInfo's
|
||
** field 'nresults', in a way that functions with no to-be-closed variables
|
||
** with zero, one, or "all" wanted results have no overhead. Functions
|
||
** with other number of wanted results, as well as functions with
|
||
** variables to be closed, have an extra check.
|
||
*/
|
||
|
||
#define hastocloseCfunc(n) ((n) < LUA_MULTRET)
|
||
|
||
/* Map [-1, inf) (range of 'nresults') into (-inf, -2] */
|
||
#define codeNresults(n) (-(n) - 3)
|
||
#define decodeNresults(n) (-(n) - 3)
|
||
|
||
#endif
|
||
/*
|
||
** $Id: llex.h $
|
||
** Lexical Analyzer
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef llex_h
|
||
#define llex_h
|
||
|
||
#include <limits.h>
|
||
|
||
/*#include "lobject.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
/*
|
||
** Single-char tokens (terminal symbols) are represented by their own
|
||
** numeric code. Other tokens start at the following value.
|
||
*/
|
||
#define FIRST_RESERVED (UCHAR_MAX + 1)
|
||
|
||
|
||
#if !defined(LUA_ENV)
|
||
#define LUA_ENV "_ENV"
|
||
#endif
|
||
|
||
|
||
/*
|
||
* WARNING: if you change the order of this enumeration,
|
||
* grep "ORDER RESERVED"
|
||
*/
|
||
enum RESERVED {
|
||
/* terminal symbols denoted by reserved words */
|
||
TK_AND = FIRST_RESERVED, TK_BREAK,
|
||
TK_DO, TK_ELSE, TK_ELSEIF, TK_END, TK_FALSE, TK_FOR, TK_FUNCTION,
|
||
TK_GOTO, TK_IF, TK_IN, TK_LOCAL, TK_NIL, TK_NOT, TK_OR, TK_REPEAT,
|
||
TK_RETURN, TK_THEN, TK_TRUE, TK_UNTIL, TK_WHILE,
|
||
/* other terminal symbols */
|
||
TK_IDIV, TK_CONCAT, TK_DOTS, TK_EQ, TK_GE, TK_LE, TK_NE,
|
||
TK_SHL, TK_SHR,
|
||
TK_DBCOLON, TK_EOS,
|
||
TK_FLT, TK_INT, TK_NAME, TK_STRING
|
||
};
|
||
|
||
/* number of reserved words */
|
||
#define NUM_RESERVED (cast_int(TK_WHILE-FIRST_RESERVED + 1))
|
||
|
||
|
||
typedef union {
|
||
lua_Number r;
|
||
lua_Integer i;
|
||
TString *ts;
|
||
} SemInfo; /* semantics information */
|
||
|
||
|
||
typedef struct Token {
|
||
int token;
|
||
SemInfo seminfo;
|
||
} Token;
|
||
|
||
|
||
/* state of the lexer plus state of the parser when shared by all
|
||
functions */
|
||
typedef struct LexState {
|
||
int current; /* current character (charint) */
|
||
int linenumber; /* input line counter */
|
||
int lastline; /* line of last token 'consumed' */
|
||
Token t; /* current token */
|
||
Token lookahead; /* look ahead token */
|
||
struct FuncState *fs; /* current function (parser) */
|
||
struct lua_State *L;
|
||
ZIO *z; /* input stream */
|
||
Mbuffer *buff; /* buffer for tokens */
|
||
Table *h; /* to avoid collection/reuse strings */
|
||
struct Dyndata *dyd; /* dynamic structures used by the parser */
|
||
TString *source; /* current source name */
|
||
TString *envn; /* environment variable name */
|
||
} LexState;
|
||
|
||
|
||
LUAI_FUNC void luaX_init (lua_State *L);
|
||
LUAI_FUNC void luaX_setinput (lua_State *L, LexState *ls, ZIO *z,
|
||
TString *source, int firstchar);
|
||
LUAI_FUNC TString *luaX_newstring (LexState *ls, const char *str, size_t l);
|
||
LUAI_FUNC void luaX_next (LexState *ls);
|
||
LUAI_FUNC int luaX_lookahead (LexState *ls);
|
||
LUAI_FUNC l_noret luaX_syntaxerror (LexState *ls, const char *s);
|
||
LUAI_FUNC const char *luaX_token2str (LexState *ls, int token);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: ltable.h $
|
||
** Lua tables (hash)
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef ltable_h
|
||
#define ltable_h
|
||
|
||
/*#include "lobject.h"*/
|
||
|
||
|
||
#define gnode(t,i) (&(t)->node[i])
|
||
#define gval(n) (&(n)->i_val)
|
||
#define gnext(n) ((n)->u.next)
|
||
|
||
|
||
/*
|
||
** Clear all bits of fast-access metamethods, which means that the table
|
||
** may have any of these metamethods. (First access that fails after the
|
||
** clearing will set the bit again.)
|
||
*/
|
||
#define invalidateTMcache(t) ((t)->flags &= ~maskflags)
|
||
|
||
|
||
/* true when 't' is using 'dummynode' as its hash part */
|
||
#define isdummy(t) ((t)->lastfree == NULL)
|
||
|
||
|
||
/* allocated size for hash nodes */
|
||
#define allocsizenode(t) (isdummy(t) ? 0 : sizenode(t))
|
||
|
||
|
||
/* returns the Node, given the value of a table entry */
|
||
#define nodefromval(v) cast(Node *, (v))
|
||
|
||
|
||
LUAI_FUNC const TValue *luaH_getint (Table *t, lua_Integer key);
|
||
LUAI_FUNC void luaH_setint (lua_State *L, Table *t, lua_Integer key,
|
||
TValue *value);
|
||
LUAI_FUNC const TValue *luaH_getshortstr (Table *t, TString *key);
|
||
LUAI_FUNC const TValue *luaH_getstr (Table *t, TString *key);
|
||
LUAI_FUNC const TValue *luaH_get (Table *t, const TValue *key);
|
||
LUAI_FUNC void luaH_set (lua_State *L, Table *t, const TValue *key,
|
||
TValue *value);
|
||
LUAI_FUNC void luaH_finishset (lua_State *L, Table *t, const TValue *key,
|
||
const TValue *slot, TValue *value);
|
||
LUAI_FUNC Table *luaH_new (lua_State *L);
|
||
LUAI_FUNC void luaH_resize (lua_State *L, Table *t, unsigned int nasize,
|
||
unsigned int nhsize);
|
||
LUAI_FUNC void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize);
|
||
LUAI_FUNC void luaH_free (lua_State *L, Table *t);
|
||
LUAI_FUNC int luaH_next (lua_State *L, Table *t, StkId key);
|
||
LUAI_FUNC lua_Unsigned luaH_getn (Table *t);
|
||
LUAI_FUNC unsigned int luaH_realasize (const Table *t);
|
||
|
||
|
||
#if defined(LUA_DEBUG)
|
||
LUAI_FUNC Node *luaH_mainposition (const Table *t, const TValue *key);
|
||
#endif
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lparser.h $
|
||
** Lua Parser
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lparser_h
|
||
#define lparser_h
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
/*
|
||
** Expression and variable descriptor.
|
||
** Code generation for variables and expressions can be delayed to allow
|
||
** optimizations; An 'expdesc' structure describes a potentially-delayed
|
||
** variable/expression. It has a description of its "main" value plus a
|
||
** list of conditional jumps that can also produce its value (generated
|
||
** by short-circuit operators 'and'/'or').
|
||
*/
|
||
|
||
/* kinds of variables/expressions */
|
||
typedef enum {
|
||
VVOID, /* when 'expdesc' describes the last expression of a list,
|
||
this kind means an empty list (so, no expression) */
|
||
VNIL, /* constant nil */
|
||
VTRUE, /* constant true */
|
||
VFALSE, /* constant false */
|
||
VK, /* constant in 'k'; info = index of constant in 'k' */
|
||
VKFLT, /* floating constant; nval = numerical float value */
|
||
VKINT, /* integer constant; ival = numerical integer value */
|
||
VKSTR, /* string constant; strval = TString address;
|
||
(string is fixed by the lexer) */
|
||
VNONRELOC, /* expression has its value in a fixed register;
|
||
info = result register */
|
||
VLOCAL, /* local variable; var.ridx = register index;
|
||
var.vidx = relative index in 'actvar.arr' */
|
||
VUPVAL, /* upvalue variable; info = index of upvalue in 'upvalues' */
|
||
VCONST, /* compile-time <const> variable;
|
||
info = absolute index in 'actvar.arr' */
|
||
VINDEXED, /* indexed variable;
|
||
ind.t = table register;
|
||
ind.idx = key's R index */
|
||
VINDEXUP, /* indexed upvalue;
|
||
ind.t = table upvalue;
|
||
ind.idx = key's K index */
|
||
VINDEXI, /* indexed variable with constant integer;
|
||
ind.t = table register;
|
||
ind.idx = key's value */
|
||
VINDEXSTR, /* indexed variable with literal string;
|
||
ind.t = table register;
|
||
ind.idx = key's K index */
|
||
VJMP, /* expression is a test/comparison;
|
||
info = pc of corresponding jump instruction */
|
||
VRELOC, /* expression can put result in any register;
|
||
info = instruction pc */
|
||
VCALL, /* expression is a function call; info = instruction pc */
|
||
VVARARG /* vararg expression; info = instruction pc */
|
||
} expkind;
|
||
|
||
|
||
#define vkisvar(k) (VLOCAL <= (k) && (k) <= VINDEXSTR)
|
||
#define vkisindexed(k) (VINDEXED <= (k) && (k) <= VINDEXSTR)
|
||
|
||
|
||
typedef struct expdesc {
|
||
expkind k;
|
||
union {
|
||
lua_Integer ival; /* for VKINT */
|
||
lua_Number nval; /* for VKFLT */
|
||
TString *strval; /* for VKSTR */
|
||
int info; /* for generic use */
|
||
struct { /* for indexed variables */
|
||
short idx; /* index (R or "long" K) */
|
||
lu_byte t; /* table (register or upvalue) */
|
||
} ind;
|
||
struct { /* for local variables */
|
||
lu_byte ridx; /* register holding the variable */
|
||
unsigned short vidx; /* compiler index (in 'actvar.arr') */
|
||
} var;
|
||
} u;
|
||
int t; /* patch list of 'exit when true' */
|
||
int f; /* patch list of 'exit when false' */
|
||
} expdesc;
|
||
|
||
|
||
/* kinds of variables */
|
||
#define VDKREG 0 /* regular */
|
||
#define RDKCONST 1 /* constant */
|
||
#define RDKTOCLOSE 2 /* to-be-closed */
|
||
#define RDKCTC 3 /* compile-time constant */
|
||
|
||
/* description of an active local variable */
|
||
typedef union Vardesc {
|
||
struct {
|
||
TValuefields; /* constant value (if it is a compile-time constant) */
|
||
lu_byte kind;
|
||
lu_byte ridx; /* register holding the variable */
|
||
short pidx; /* index of the variable in the Proto's 'locvars' array */
|
||
TString *name; /* variable name */
|
||
} vd;
|
||
TValue k; /* constant value (if any) */
|
||
} Vardesc;
|
||
|
||
|
||
|
||
/* description of pending goto statements and label statements */
|
||
typedef struct Labeldesc {
|
||
TString *name; /* label identifier */
|
||
int pc; /* position in code */
|
||
int line; /* line where it appeared */
|
||
lu_byte nactvar; /* number of active variables in that position */
|
||
lu_byte close; /* goto that escapes upvalues */
|
||
} Labeldesc;
|
||
|
||
|
||
/* list of labels or gotos */
|
||
typedef struct Labellist {
|
||
Labeldesc *arr; /* array */
|
||
int n; /* number of entries in use */
|
||
int size; /* array size */
|
||
} Labellist;
|
||
|
||
|
||
/* dynamic structures used by the parser */
|
||
typedef struct Dyndata {
|
||
struct { /* list of all active local variables */
|
||
Vardesc *arr;
|
||
int n;
|
||
int size;
|
||
} actvar;
|
||
Labellist gt; /* list of pending gotos */
|
||
Labellist label; /* list of active labels */
|
||
} Dyndata;
|
||
|
||
|
||
/* control of blocks */
|
||
struct BlockCnt; /* defined in lparser.c */
|
||
|
||
|
||
/* state needed to generate code for a given function */
|
||
typedef struct FuncState {
|
||
Proto *f; /* current function header */
|
||
struct FuncState *prev; /* enclosing function */
|
||
struct LexState *ls; /* lexical state */
|
||
struct BlockCnt *bl; /* chain of current blocks */
|
||
int pc; /* next position to code (equivalent to 'ncode') */
|
||
int lasttarget; /* 'label' of last 'jump label' */
|
||
int previousline; /* last line that was saved in 'lineinfo' */
|
||
int nk; /* number of elements in 'k' */
|
||
int np; /* number of elements in 'p' */
|
||
int nabslineinfo; /* number of elements in 'abslineinfo' */
|
||
int firstlocal; /* index of first local var (in Dyndata array) */
|
||
int firstlabel; /* index of first label (in 'dyd->label->arr') */
|
||
short ndebugvars; /* number of elements in 'f->locvars' */
|
||
lu_byte nactvar; /* number of active local variables */
|
||
lu_byte nups; /* number of upvalues */
|
||
lu_byte freereg; /* first free register */
|
||
lu_byte iwthabs; /* instructions issued since last absolute line info */
|
||
lu_byte needclose; /* function needs to close upvalues when returning */
|
||
} FuncState;
|
||
|
||
|
||
LUAI_FUNC int luaY_nvarstack (FuncState *fs);
|
||
LUAI_FUNC LClosure *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff,
|
||
Dyndata *dyd, const char *name, int firstchar);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lcode.h $
|
||
** Code generator for Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lcode_h
|
||
#define lcode_h
|
||
|
||
/*#include "llex.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lparser.h"*/
|
||
|
||
|
||
/*
|
||
** Marks the end of a patch list. It is an invalid value both as an absolute
|
||
** address, and as a list link (would link an element to itself).
|
||
*/
|
||
#define NO_JUMP (-1)
|
||
|
||
|
||
/*
|
||
** grep "ORDER OPR" if you change these enums (ORDER OP)
|
||
*/
|
||
typedef enum BinOpr {
|
||
/* arithmetic operators */
|
||
OPR_ADD, OPR_SUB, OPR_MUL, OPR_MOD, OPR_POW,
|
||
OPR_DIV, OPR_IDIV,
|
||
/* bitwise operators */
|
||
OPR_BAND, OPR_BOR, OPR_BXOR,
|
||
OPR_SHL, OPR_SHR,
|
||
/* string operator */
|
||
OPR_CONCAT,
|
||
/* comparison operators */
|
||
OPR_EQ, OPR_LT, OPR_LE,
|
||
OPR_NE, OPR_GT, OPR_GE,
|
||
/* logical operators */
|
||
OPR_AND, OPR_OR,
|
||
OPR_NOBINOPR
|
||
} BinOpr;
|
||
|
||
|
||
/* true if operation is foldable (that is, it is arithmetic or bitwise) */
|
||
#define foldbinop(op) ((op) <= OPR_SHR)
|
||
|
||
|
||
#define luaK_codeABC(fs,o,a,b,c) luaK_codeABCk(fs,o,a,b,c,0)
|
||
|
||
|
||
typedef enum UnOpr { OPR_MINUS, OPR_BNOT, OPR_NOT, OPR_LEN, OPR_NOUNOPR } UnOpr;
|
||
|
||
|
||
/* get (pointer to) instruction of given 'expdesc' */
|
||
#define getinstruction(fs,e) ((fs)->f->code[(e)->u.info])
|
||
|
||
|
||
#define luaK_setmultret(fs,e) luaK_setreturns(fs, e, LUA_MULTRET)
|
||
|
||
#define luaK_jumpto(fs,t) luaK_patchlist(fs, luaK_jump(fs), t)
|
||
|
||
LUAI_FUNC int luaK_code (FuncState *fs, Instruction i);
|
||
LUAI_FUNC int luaK_codeABx (FuncState *fs, OpCode o, int A, unsigned int Bx);
|
||
LUAI_FUNC int luaK_codeABCk (FuncState *fs, OpCode o, int A,
|
||
int B, int C, int k);
|
||
LUAI_FUNC int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v);
|
||
LUAI_FUNC void luaK_fixline (FuncState *fs, int line);
|
||
LUAI_FUNC void luaK_nil (FuncState *fs, int from, int n);
|
||
LUAI_FUNC void luaK_reserveregs (FuncState *fs, int n);
|
||
LUAI_FUNC void luaK_checkstack (FuncState *fs, int n);
|
||
LUAI_FUNC void luaK_int (FuncState *fs, int reg, lua_Integer n);
|
||
LUAI_FUNC void luaK_dischargevars (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC int luaK_exp2anyreg (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_exp2anyregup (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_exp2nextreg (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_exp2val (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_self (FuncState *fs, expdesc *e, expdesc *key);
|
||
LUAI_FUNC void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k);
|
||
LUAI_FUNC void luaK_goiftrue (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_goiffalse (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC void luaK_storevar (FuncState *fs, expdesc *var, expdesc *e);
|
||
LUAI_FUNC void luaK_setreturns (FuncState *fs, expdesc *e, int nresults);
|
||
LUAI_FUNC void luaK_setoneret (FuncState *fs, expdesc *e);
|
||
LUAI_FUNC int luaK_jump (FuncState *fs);
|
||
LUAI_FUNC void luaK_ret (FuncState *fs, int first, int nret);
|
||
LUAI_FUNC void luaK_patchlist (FuncState *fs, int list, int target);
|
||
LUAI_FUNC void luaK_patchtohere (FuncState *fs, int list);
|
||
LUAI_FUNC void luaK_concat (FuncState *fs, int *l1, int l2);
|
||
LUAI_FUNC int luaK_getlabel (FuncState *fs);
|
||
LUAI_FUNC void luaK_prefix (FuncState *fs, UnOpr op, expdesc *v, int line);
|
||
LUAI_FUNC void luaK_infix (FuncState *fs, BinOpr op, expdesc *v);
|
||
LUAI_FUNC void luaK_posfix (FuncState *fs, BinOpr op, expdesc *v1,
|
||
expdesc *v2, int line);
|
||
LUAI_FUNC void luaK_settablesize (FuncState *fs, int pc,
|
||
int ra, int asize, int hsize);
|
||
LUAI_FUNC void luaK_setlist (FuncState *fs, int base, int nelems, int tostore);
|
||
LUAI_FUNC void luaK_finish (FuncState *fs);
|
||
LUAI_FUNC l_noret luaK_semerror (LexState *ls, const char *msg);
|
||
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lvm.h $
|
||
** Lua virtual machine
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lvm_h
|
||
#define lvm_h
|
||
|
||
|
||
/*#include "ldo.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "ltm.h"*/
|
||
|
||
|
||
#if !defined(LUA_NOCVTN2S)
|
||
#define cvt2str(o) ttisnumber(o)
|
||
#else
|
||
#define cvt2str(o) 0 /* no conversion from numbers to strings */
|
||
#endif
|
||
|
||
|
||
#if !defined(LUA_NOCVTS2N)
|
||
#define cvt2num(o) ttisstring(o)
|
||
#else
|
||
#define cvt2num(o) 0 /* no conversion from strings to numbers */
|
||
#endif
|
||
|
||
|
||
/*
|
||
** You can define LUA_FLOORN2I if you want to convert floats to integers
|
||
** by flooring them (instead of raising an error if they are not
|
||
** integral values)
|
||
*/
|
||
#if !defined(LUA_FLOORN2I)
|
||
#define LUA_FLOORN2I F2Ieq
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Rounding modes for float->integer coercion
|
||
*/
|
||
typedef enum {
|
||
F2Ieq, /* no rounding; accepts only integral values */
|
||
F2Ifloor, /* takes the floor of the number */
|
||
F2Iceil /* takes the ceil of the number */
|
||
} F2Imod;
|
||
|
||
|
||
/* convert an object to a float (including string coercion) */
|
||
#define tonumber(o,n) \
|
||
(ttisfloat(o) ? (*(n) = fltvalue(o), 1) : luaV_tonumber_(o,n))
|
||
|
||
|
||
/* convert an object to a float (without string coercion) */
|
||
#define tonumberns(o,n) \
|
||
(ttisfloat(o) ? ((n) = fltvalue(o), 1) : \
|
||
(ttisinteger(o) ? ((n) = cast_num(ivalue(o)), 1) : 0))
|
||
|
||
|
||
/* convert an object to an integer (including string coercion) */
|
||
#define tointeger(o,i) \
|
||
(l_likely(ttisinteger(o)) ? (*(i) = ivalue(o), 1) \
|
||
: luaV_tointeger(o,i,LUA_FLOORN2I))
|
||
|
||
|
||
/* convert an object to an integer (without string coercion) */
|
||
#define tointegerns(o,i) \
|
||
(l_likely(ttisinteger(o)) ? (*(i) = ivalue(o), 1) \
|
||
: luaV_tointegerns(o,i,LUA_FLOORN2I))
|
||
|
||
|
||
#define intop(op,v1,v2) l_castU2S(l_castS2U(v1) op l_castS2U(v2))
|
||
|
||
#define luaV_rawequalobj(t1,t2) luaV_equalobj(NULL,t1,t2)
|
||
|
||
|
||
/*
|
||
** fast track for 'gettable': if 't' is a table and 't[k]' is present,
|
||
** return 1 with 'slot' pointing to 't[k]' (position of final result).
|
||
** Otherwise, return 0 (meaning it will have to check metamethod)
|
||
** with 'slot' pointing to an empty 't[k]' (if 't' is a table) or NULL
|
||
** (otherwise). 'f' is the raw get function to use.
|
||
*/
|
||
#define luaV_fastget(L,t,k,slot,f) \
|
||
(!ttistable(t) \
|
||
? (slot = NULL, 0) /* not a table; 'slot' is NULL and result is 0 */ \
|
||
: (slot = f(hvalue(t), k), /* else, do raw access */ \
|
||
!isempty(slot))) /* result not empty? */
|
||
|
||
|
||
/*
|
||
** Special case of 'luaV_fastget' for integers, inlining the fast case
|
||
** of 'luaH_getint'.
|
||
*/
|
||
#define luaV_fastgeti(L,t,k,slot) \
|
||
(!ttistable(t) \
|
||
? (slot = NULL, 0) /* not a table; 'slot' is NULL and result is 0 */ \
|
||
: (slot = (l_castS2U(k) - 1u < hvalue(t)->alimit) \
|
||
? &hvalue(t)->array[k - 1] : luaH_getint(hvalue(t), k), \
|
||
!isempty(slot))) /* result not empty? */
|
||
|
||
|
||
/*
|
||
** Finish a fast set operation (when fast get succeeds). In that case,
|
||
** 'slot' points to the place to put the value.
|
||
*/
|
||
#define luaV_finishfastset(L,t,slot,v) \
|
||
{ setobj2t(L, cast(TValue *,slot), v); \
|
||
luaC_barrierback(L, gcvalue(t), v); }
|
||
|
||
|
||
/*
|
||
** Shift right is the same as shift left with a negative 'y'
|
||
*/
|
||
#define luaV_shiftr(x,y) luaV_shiftl(x,intop(-, 0, y))
|
||
|
||
|
||
|
||
LUAI_FUNC int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2);
|
||
LUAI_FUNC int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r);
|
||
LUAI_FUNC int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r);
|
||
LUAI_FUNC int luaV_tonumber_ (const TValue *obj, lua_Number *n);
|
||
LUAI_FUNC int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode);
|
||
LUAI_FUNC int luaV_tointegerns (const TValue *obj, lua_Integer *p,
|
||
F2Imod mode);
|
||
LUAI_FUNC int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode);
|
||
LUAI_FUNC void luaV_finishget (lua_State *L, const TValue *t, TValue *key,
|
||
StkId val, const TValue *slot);
|
||
LUAI_FUNC void luaV_finishset (lua_State *L, const TValue *t, TValue *key,
|
||
TValue *val, const TValue *slot);
|
||
LUAI_FUNC void luaV_finishOp (lua_State *L);
|
||
LUAI_FUNC void luaV_execute (lua_State *L, CallInfo *ci);
|
||
LUAI_FUNC void luaV_concat (lua_State *L, int total);
|
||
LUAI_FUNC lua_Integer luaV_idiv (lua_State *L, lua_Integer x, lua_Integer y);
|
||
LUAI_FUNC lua_Integer luaV_mod (lua_State *L, lua_Integer x, lua_Integer y);
|
||
LUAI_FUNC lua_Number luaV_modf (lua_State *L, lua_Number x, lua_Number y);
|
||
LUAI_FUNC lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y);
|
||
LUAI_FUNC void luaV_objlen (lua_State *L, StkId ra, const TValue *rb);
|
||
|
||
#endif
|
||
/*
|
||
** $Id: lctype.h $
|
||
** 'ctype' functions for Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#ifndef lctype_h
|
||
#define lctype_h
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
|
||
/*
|
||
** WARNING: the functions defined here do not necessarily correspond
|
||
** to the similar functions in the standard C ctype.h. They are
|
||
** optimized for the specific needs of Lua.
|
||
*/
|
||
|
||
#if !defined(LUA_USE_CTYPE)
|
||
|
||
#if 'A' == 65 && '0' == 48
|
||
/* ASCII case: can use its own tables; faster and fixed */
|
||
#define LUA_USE_CTYPE 0
|
||
#else
|
||
/* must use standard C ctype */
|
||
#define LUA_USE_CTYPE 1
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
#if !LUA_USE_CTYPE /* { */
|
||
|
||
#include <limits.h>
|
||
|
||
/*#include "llimits.h"*/
|
||
|
||
|
||
#define ALPHABIT 0
|
||
#define DIGITBIT 1
|
||
#define PRINTBIT 2
|
||
#define SPACEBIT 3
|
||
#define XDIGITBIT 4
|
||
|
||
|
||
#define MASK(B) (1 << (B))
|
||
|
||
|
||
/*
|
||
** add 1 to char to allow index -1 (EOZ)
|
||
*/
|
||
#define testprop(c,p) (luai_ctype_[(c)+1] & (p))
|
||
|
||
/*
|
||
** 'lalpha' (Lua alphabetic) and 'lalnum' (Lua alphanumeric) both include '_'
|
||
*/
|
||
#define lislalpha(c) testprop(c, MASK(ALPHABIT))
|
||
#define lislalnum(c) testprop(c, (MASK(ALPHABIT) | MASK(DIGITBIT)))
|
||
#define lisdigit(c) testprop(c, MASK(DIGITBIT))
|
||
#define lisspace(c) testprop(c, MASK(SPACEBIT))
|
||
#define lisprint(c) testprop(c, MASK(PRINTBIT))
|
||
#define lisxdigit(c) testprop(c, MASK(XDIGITBIT))
|
||
|
||
|
||
/*
|
||
** In ASCII, this 'ltolower' is correct for alphabetic characters and
|
||
** for '.'. That is enough for Lua needs. ('check_exp' ensures that
|
||
** the character either is an upper-case letter or is unchanged by
|
||
** the transformation, which holds for lower-case letters and '.'.)
|
||
*/
|
||
#define ltolower(c) \
|
||
check_exp(('A' <= (c) && (c) <= 'Z') || (c) == ((c) | ('A' ^ 'a')), \
|
||
(c) | ('A' ^ 'a'))
|
||
|
||
|
||
/* one entry for each character and for -1 (EOZ) */
|
||
LUAI_DDEC(const lu_byte luai_ctype_[UCHAR_MAX + 2];)
|
||
|
||
|
||
#else /* }{ */
|
||
|
||
/*
|
||
** use standard C ctypes
|
||
*/
|
||
|
||
#include <ctype.h>
|
||
|
||
|
||
#define lislalpha(c) (isalpha(c) || (c) == '_')
|
||
#define lislalnum(c) (isalnum(c) || (c) == '_')
|
||
#define lisdigit(c) (isdigit(c))
|
||
#define lisspace(c) (isspace(c))
|
||
#define lisprint(c) (isprint(c))
|
||
#define lisxdigit(c) (isxdigit(c))
|
||
|
||
#define ltolower(c) (tolower(c))
|
||
|
||
#endif /* } */
|
||
|
||
#endif
|
||
|
||
/*
|
||
** $Id: lzio.c $
|
||
** Buffered streams
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lzio_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "llimits.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
int luaZ_fill (ZIO *z) {
|
||
size_t size;
|
||
lua_State *L = z->L;
|
||
const char *buff;
|
||
lua_unlock(L);
|
||
buff = z->reader(L, z->data, &size);
|
||
lua_lock(L);
|
||
if (buff == NULL || size == 0)
|
||
return EOZ;
|
||
z->n = size - 1; /* discount char being returned */
|
||
z->p = buff;
|
||
return cast_uchar(*(z->p++));
|
||
}
|
||
|
||
|
||
void luaZ_init (lua_State *L, ZIO *z, lua_Reader reader, void *data) {
|
||
z->L = L;
|
||
z->reader = reader;
|
||
z->data = data;
|
||
z->n = 0;
|
||
z->p = NULL;
|
||
}
|
||
|
||
|
||
/* --------------------------------------------------------------- read --- */
|
||
size_t luaZ_read (ZIO *z, void *b, size_t n) {
|
||
while (n) {
|
||
size_t m;
|
||
if (z->n == 0) { /* no bytes in buffer? */
|
||
if (luaZ_fill(z) == EOZ) /* try to read more */
|
||
return n; /* no more input; return number of missing bytes */
|
||
else {
|
||
z->n++; /* luaZ_fill consumed first byte; put it back */
|
||
z->p--;
|
||
}
|
||
}
|
||
m = (n <= z->n) ? n : z->n; /* min. between n and z->n */
|
||
memcpy(b, z->p, m);
|
||
z->n -= m;
|
||
z->p += m;
|
||
b = (char *)b + m;
|
||
n -= m;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
** $Id: lctype.c $
|
||
** 'ctype' functions for Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lctype_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
/*#include "lctype.h"*/
|
||
|
||
#if !LUA_USE_CTYPE /* { */
|
||
|
||
#include <limits.h>
|
||
|
||
|
||
#if defined (LUA_UCID) /* accept UniCode IDentifiers? */
|
||
/* consider all non-ascii codepoints to be alphabetic */
|
||
#define NONA 0x01
|
||
#else
|
||
#define NONA 0x00 /* default */
|
||
#endif
|
||
|
||
|
||
LUAI_DDEF const lu_byte luai_ctype_[UCHAR_MAX + 2] = {
|
||
0x00, /* EOZ */
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 0. */
|
||
0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00,
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 1. */
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
0x0c, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, /* 2. */
|
||
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
|
||
0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, 0x16, /* 3. */
|
||
0x16, 0x16, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04,
|
||
0x04, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x05, /* 4. */
|
||
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
|
||
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, /* 5. */
|
||
0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x05,
|
||
0x04, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x05, /* 6. */
|
||
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
|
||
0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, /* 7. */
|
||
0x05, 0x05, 0x05, 0x04, 0x04, 0x04, 0x04, 0x00,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* 8. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* 9. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* a. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* b. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
0x00, 0x00, NONA, NONA, NONA, NONA, NONA, NONA, /* c. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* d. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA, /* e. */
|
||
NONA, NONA, NONA, NONA, NONA, NONA, NONA, NONA,
|
||
NONA, NONA, NONA, NONA, NONA, 0x00, 0x00, 0x00, /* f. */
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||
};
|
||
|
||
#endif /* } */
|
||
/*
|
||
** $Id: lopcodes.c $
|
||
** Opcodes for Lua virtual machine
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lopcodes_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
/*#include "lopcodes.h"*/
|
||
|
||
|
||
/* ORDER OP */
|
||
|
||
LUAI_DDEF const lu_byte luaP_opmodes[NUM_OPCODES] = {
|
||
/* MM OT IT T A mode opcode */
|
||
opmode(0, 0, 0, 0, 1, iABC) /* OP_MOVE */
|
||
,opmode(0, 0, 0, 0, 1, iAsBx) /* OP_LOADI */
|
||
,opmode(0, 0, 0, 0, 1, iAsBx) /* OP_LOADF */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_LOADK */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_LOADKX */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADFALSE */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_LFALSESKIP */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADTRUE */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_LOADNIL */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETUPVAL */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETUPVAL */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETTABUP */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETTABLE */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETI */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_GETFIELD */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETTABUP */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETTABLE */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETI */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_SETFIELD */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_NEWTABLE */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SELF */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADDI */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADDK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SUBK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_MULK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_MODK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_POWK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_DIVK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_IDIVK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BANDK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BORK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BXORK */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHRI */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHLI */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_ADD */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SUB */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_MUL */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_MOD */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_POW */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_DIV */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_IDIV */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BAND */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BOR */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BXOR */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHL */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_SHR */
|
||
,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBIN */
|
||
,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBINI*/
|
||
,opmode(1, 0, 0, 0, 0, iABC) /* OP_MMBINK*/
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_UNM */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_BNOT */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_NOT */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_LEN */
|
||
,opmode(0, 0, 0, 0, 1, iABC) /* OP_CONCAT */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_CLOSE */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_TBC */
|
||
,opmode(0, 0, 0, 0, 0, isJ) /* OP_JMP */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQ */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_LT */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_LE */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQK */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_EQI */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_LTI */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_LEI */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_GTI */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_GEI */
|
||
,opmode(0, 0, 0, 1, 0, iABC) /* OP_TEST */
|
||
,opmode(0, 0, 0, 1, 1, iABC) /* OP_TESTSET */
|
||
,opmode(0, 1, 1, 0, 1, iABC) /* OP_CALL */
|
||
,opmode(0, 1, 1, 0, 1, iABC) /* OP_TAILCALL */
|
||
,opmode(0, 0, 1, 0, 0, iABC) /* OP_RETURN */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_RETURN0 */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_RETURN1 */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_FORLOOP */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_FORPREP */
|
||
,opmode(0, 0, 0, 0, 0, iABx) /* OP_TFORPREP */
|
||
,opmode(0, 0, 0, 0, 0, iABC) /* OP_TFORCALL */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_TFORLOOP */
|
||
,opmode(0, 0, 1, 0, 0, iABC) /* OP_SETLIST */
|
||
,opmode(0, 0, 0, 0, 1, iABx) /* OP_CLOSURE */
|
||
,opmode(0, 1, 0, 0, 1, iABC) /* OP_VARARG */
|
||
,opmode(0, 0, 1, 0, 1, iABC) /* OP_VARARGPREP */
|
||
,opmode(0, 0, 0, 0, 0, iAx) /* OP_EXTRAARG */
|
||
};
|
||
|
||
/*
|
||
** $Id: lmem.c $
|
||
** Interface to Memory Manager
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lmem_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stddef.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
|
||
|
||
|
||
/*
|
||
** About the realloc function:
|
||
** void *frealloc (void *ud, void *ptr, size_t osize, size_t nsize);
|
||
** ('osize' is the old size, 'nsize' is the new size)
|
||
**
|
||
** - frealloc(ud, p, x, 0) frees the block 'p' and returns NULL.
|
||
** Particularly, frealloc(ud, NULL, 0, 0) does nothing,
|
||
** which is equivalent to free(NULL) in ISO C.
|
||
**
|
||
** - frealloc(ud, NULL, x, s) creates a new block of size 's'
|
||
** (no matter 'x'). Returns NULL if it cannot create the new block.
|
||
**
|
||
** - otherwise, frealloc(ud, b, x, y) reallocates the block 'b' from
|
||
** size 'x' to size 'y'. Returns NULL if it cannot reallocate the
|
||
** block to the new size.
|
||
*/
|
||
|
||
|
||
/*
|
||
** Macro to call the allocation function.
|
||
*/
|
||
#define callfrealloc(g,block,os,ns) ((*g->frealloc)(g->ud, block, os, ns))
|
||
|
||
|
||
/*
|
||
** When an allocation fails, it will try again after an emergency
|
||
** collection, except when it cannot run a collection. The GC should
|
||
** not be called while the state is not fully built, as the collector
|
||
** is not yet fully initialized. Also, it should not be called when
|
||
** 'gcstopem' is true, because then the interpreter is in the middle of
|
||
** a collection step.
|
||
*/
|
||
#define cantryagain(g) (completestate(g) && !g->gcstopem)
|
||
|
||
|
||
|
||
|
||
#if defined(EMERGENCYGCTESTS)
|
||
/*
|
||
** First allocation will fail except when freeing a block (frees never
|
||
** fail) and when it cannot try again; this fail will trigger 'tryagain'
|
||
** and a full GC cycle at every allocation.
|
||
*/
|
||
static void *firsttry (global_State *g, void *block, size_t os, size_t ns) {
|
||
if (ns > 0 && cantryagain(g))
|
||
return NULL; /* fail */
|
||
else /* normal allocation */
|
||
return callfrealloc(g, block, os, ns);
|
||
}
|
||
#else
|
||
#define firsttry(g,block,os,ns) callfrealloc(g, block, os, ns)
|
||
#endif
|
||
|
||
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Functions to allocate/deallocate arrays for the Parser
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** Minimum size for arrays during parsing, to avoid overhead of
|
||
** reallocating to size 1, then 2, and then 4. All these arrays
|
||
** will be reallocated to exact sizes or erased when parsing ends.
|
||
*/
|
||
#define MINSIZEARRAY 4
|
||
|
||
|
||
void *luaM_growaux_ (lua_State *L, void *block, int nelems, int *psize,
|
||
int size_elems, int limit, const char *what) {
|
||
void *newblock;
|
||
int size = *psize;
|
||
if (nelems + 1 <= size) /* does one extra element still fit? */
|
||
return block; /* nothing to be done */
|
||
if (size >= limit / 2) { /* cannot double it? */
|
||
if (l_unlikely(size >= limit)) /* cannot grow even a little? */
|
||
luaG_runerror(L, "too many %s (limit is %d)", what, limit);
|
||
size = limit; /* still have at least one free place */
|
||
}
|
||
else {
|
||
size *= 2;
|
||
if (size < MINSIZEARRAY)
|
||
size = MINSIZEARRAY; /* minimum size */
|
||
}
|
||
lua_assert(nelems + 1 <= size && size <= limit);
|
||
/* 'limit' ensures that multiplication will not overflow */
|
||
newblock = luaM_saferealloc_(L, block, cast_sizet(*psize) * size_elems,
|
||
cast_sizet(size) * size_elems);
|
||
*psize = size; /* update only when everything else is OK */
|
||
return newblock;
|
||
}
|
||
|
||
|
||
/*
|
||
** In prototypes, the size of the array is also its number of
|
||
** elements (to save memory). So, if it cannot shrink an array
|
||
** to its number of elements, the only option is to raise an
|
||
** error.
|
||
*/
|
||
void *luaM_shrinkvector_ (lua_State *L, void *block, int *size,
|
||
int final_n, int size_elem) {
|
||
void *newblock;
|
||
size_t oldsize = cast_sizet((*size) * size_elem);
|
||
size_t newsize = cast_sizet(final_n * size_elem);
|
||
lua_assert(newsize <= oldsize);
|
||
newblock = luaM_saferealloc_(L, block, oldsize, newsize);
|
||
*size = final_n;
|
||
return newblock;
|
||
}
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
l_noret luaM_toobig (lua_State *L) {
|
||
luaG_runerror(L, "memory allocation error: block too big");
|
||
}
|
||
|
||
|
||
/*
|
||
** Free memory
|
||
*/
|
||
void luaM_free_ (lua_State *L, void *block, size_t osize) {
|
||
global_State *g = G(L);
|
||
lua_assert((osize == 0) == (block == NULL));
|
||
callfrealloc(g, block, osize, 0);
|
||
g->GCdebt -= osize;
|
||
}
|
||
|
||
|
||
/*
|
||
** In case of allocation fail, this function will do an emergency
|
||
** collection to free some memory and then try the allocation again.
|
||
*/
|
||
static void *tryagain (lua_State *L, void *block,
|
||
size_t osize, size_t nsize) {
|
||
global_State *g = G(L);
|
||
if (cantryagain(g)) {
|
||
luaC_fullgc(L, 1); /* try to free some memory... */
|
||
return callfrealloc(g, block, osize, nsize); /* try again */
|
||
}
|
||
else return NULL; /* cannot run an emergency collection */
|
||
}
|
||
|
||
|
||
/*
|
||
** Generic allocation routine.
|
||
*/
|
||
void *luaM_realloc_ (lua_State *L, void *block, size_t osize, size_t nsize) {
|
||
void *newblock;
|
||
global_State *g = G(L);
|
||
lua_assert((osize == 0) == (block == NULL));
|
||
newblock = firsttry(g, block, osize, nsize);
|
||
if (l_unlikely(newblock == NULL && nsize > 0)) {
|
||
newblock = tryagain(L, block, osize, nsize);
|
||
if (newblock == NULL) /* still no memory? */
|
||
return NULL; /* do not update 'GCdebt' */
|
||
}
|
||
lua_assert((nsize == 0) == (newblock == NULL));
|
||
g->GCdebt = (g->GCdebt + nsize) - osize;
|
||
return newblock;
|
||
}
|
||
|
||
|
||
void *luaM_saferealloc_ (lua_State *L, void *block, size_t osize,
|
||
size_t nsize) {
|
||
void *newblock = luaM_realloc_(L, block, osize, nsize);
|
||
if (l_unlikely(newblock == NULL && nsize > 0)) /* allocation failed? */
|
||
luaM_error(L);
|
||
return newblock;
|
||
}
|
||
|
||
|
||
void *luaM_malloc_ (lua_State *L, size_t size, int tag) {
|
||
if (size == 0)
|
||
return NULL; /* that's all */
|
||
else {
|
||
global_State *g = G(L);
|
||
void *newblock = firsttry(g, NULL, tag, size);
|
||
if (l_unlikely(newblock == NULL)) {
|
||
newblock = tryagain(L, NULL, tag, size);
|
||
if (newblock == NULL)
|
||
luaM_error(L);
|
||
}
|
||
g->GCdebt += size;
|
||
return newblock;
|
||
}
|
||
}
|
||
/*
|
||
** $Id: lundump.c $
|
||
** load precompiled Lua chunks
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lundump_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "lundump.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
#if !defined(luai_verifycode)
|
||
#define luai_verifycode(L,f) /* empty */
|
||
#endif
|
||
|
||
|
||
typedef struct {
|
||
lua_State *L;
|
||
ZIO *Z;
|
||
const char *name;
|
||
} LoadState;
|
||
|
||
|
||
static l_noret error (LoadState *S, const char *why) {
|
||
luaO_pushfstring(S->L, "%s: bad binary format (%s)", S->name, why);
|
||
luaD_throw(S->L, LUA_ERRSYNTAX);
|
||
}
|
||
|
||
|
||
/*
|
||
** All high-level loads go through loadVector; you can change it to
|
||
** adapt to the endianness of the input
|
||
*/
|
||
#define loadVector(S,b,n) loadBlock(S,b,(n)*sizeof((b)[0]))
|
||
|
||
static void loadBlock (LoadState *S, void *b, size_t size) {
|
||
if (luaZ_read(S->Z, b, size) != 0)
|
||
error(S, "truncated chunk");
|
||
}
|
||
|
||
|
||
#define loadVar(S,x) loadVector(S,&x,1)
|
||
|
||
|
||
static lu_byte loadByte (LoadState *S) {
|
||
int b = zgetc(S->Z);
|
||
if (b == EOZ)
|
||
error(S, "truncated chunk");
|
||
return cast_byte(b);
|
||
}
|
||
|
||
|
||
static size_t loadUnsigned (LoadState *S, size_t limit) {
|
||
size_t x = 0;
|
||
int b;
|
||
limit >>= 7;
|
||
do {
|
||
b = loadByte(S);
|
||
if (x >= limit)
|
||
error(S, "integer overflow");
|
||
x = (x << 7) | (b & 0x7f);
|
||
} while ((b & 0x80) == 0);
|
||
return x;
|
||
}
|
||
|
||
|
||
static size_t loadSize (LoadState *S) {
|
||
return loadUnsigned(S, MAX_SIZET);
|
||
}
|
||
|
||
|
||
static int loadInt (LoadState *S) {
|
||
return cast_int(loadUnsigned(S, INT_MAX));
|
||
}
|
||
|
||
|
||
static lua_Number loadNumber (LoadState *S) {
|
||
lua_Number x;
|
||
loadVar(S, x);
|
||
return x;
|
||
}
|
||
|
||
|
||
static lua_Integer loadInteger (LoadState *S) {
|
||
lua_Integer x;
|
||
loadVar(S, x);
|
||
return x;
|
||
}
|
||
|
||
|
||
/*
|
||
** Load a nullable string into prototype 'p'.
|
||
*/
|
||
static TString *loadStringN (LoadState *S, Proto *p) {
|
||
lua_State *L = S->L;
|
||
TString *ts;
|
||
size_t size = loadSize(S);
|
||
if (size == 0) /* no string? */
|
||
return NULL;
|
||
else if (--size <= LUAI_MAXSHORTLEN) { /* short string? */
|
||
char buff[LUAI_MAXSHORTLEN];
|
||
loadVector(S, buff, size); /* load string into buffer */
|
||
ts = luaS_newlstr(L, buff, size); /* create string */
|
||
}
|
||
else { /* long string */
|
||
ts = luaS_createlngstrobj(L, size); /* create string */
|
||
setsvalue2s(L, L->top.p, ts); /* anchor it ('loadVector' can GC) */
|
||
luaD_inctop(L);
|
||
loadVector(S, getlngstr(ts), size); /* load directly in final place */
|
||
L->top.p--; /* pop string */
|
||
}
|
||
luaC_objbarrier(L, p, ts);
|
||
return ts;
|
||
}
|
||
|
||
|
||
/*
|
||
** Load a non-nullable string into prototype 'p'.
|
||
*/
|
||
static TString *loadString (LoadState *S, Proto *p) {
|
||
TString *st = loadStringN(S, p);
|
||
if (st == NULL)
|
||
error(S, "bad format for constant string");
|
||
return st;
|
||
}
|
||
|
||
|
||
static void loadCode (LoadState *S, Proto *f) {
|
||
int n = loadInt(S);
|
||
f->code = luaM_newvectorchecked(S->L, n, Instruction);
|
||
f->sizecode = n;
|
||
loadVector(S, f->code, n);
|
||
}
|
||
|
||
|
||
static void loadFunction(LoadState *S, Proto *f, TString *psource);
|
||
|
||
|
||
static void loadConstants (LoadState *S, Proto *f) {
|
||
int i;
|
||
int n = loadInt(S);
|
||
f->k = luaM_newvectorchecked(S->L, n, TValue);
|
||
f->sizek = n;
|
||
for (i = 0; i < n; i++)
|
||
setnilvalue(&f->k[i]);
|
||
for (i = 0; i < n; i++) {
|
||
TValue *o = &f->k[i];
|
||
int t = loadByte(S);
|
||
switch (t) {
|
||
case LUA_VNIL:
|
||
setnilvalue(o);
|
||
break;
|
||
case LUA_VFALSE:
|
||
setbfvalue(o);
|
||
break;
|
||
case LUA_VTRUE:
|
||
setbtvalue(o);
|
||
break;
|
||
case LUA_VNUMFLT:
|
||
setfltvalue(o, loadNumber(S));
|
||
break;
|
||
case LUA_VNUMINT:
|
||
setivalue(o, loadInteger(S));
|
||
break;
|
||
case LUA_VSHRSTR:
|
||
case LUA_VLNGSTR:
|
||
setsvalue2n(S->L, o, loadString(S, f));
|
||
break;
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void loadProtos (LoadState *S, Proto *f) {
|
||
int i;
|
||
int n = loadInt(S);
|
||
f->p = luaM_newvectorchecked(S->L, n, Proto *);
|
||
f->sizep = n;
|
||
for (i = 0; i < n; i++)
|
||
f->p[i] = NULL;
|
||
for (i = 0; i < n; i++) {
|
||
f->p[i] = luaF_newproto(S->L);
|
||
luaC_objbarrier(S->L, f, f->p[i]);
|
||
loadFunction(S, f->p[i], f->source);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Load the upvalues for a function. The names must be filled first,
|
||
** because the filling of the other fields can raise read errors and
|
||
** the creation of the error message can call an emergency collection;
|
||
** in that case all prototypes must be consistent for the GC.
|
||
*/
|
||
static void loadUpvalues (LoadState *S, Proto *f) {
|
||
int i, n;
|
||
n = loadInt(S);
|
||
f->upvalues = luaM_newvectorchecked(S->L, n, Upvaldesc);
|
||
f->sizeupvalues = n;
|
||
for (i = 0; i < n; i++) /* make array valid for GC */
|
||
f->upvalues[i].name = NULL;
|
||
for (i = 0; i < n; i++) { /* following calls can raise errors */
|
||
f->upvalues[i].instack = loadByte(S);
|
||
f->upvalues[i].idx = loadByte(S);
|
||
f->upvalues[i].kind = loadByte(S);
|
||
}
|
||
}
|
||
|
||
|
||
static void loadDebug (LoadState *S, Proto *f) {
|
||
int i, n;
|
||
n = loadInt(S);
|
||
f->lineinfo = luaM_newvectorchecked(S->L, n, ls_byte);
|
||
f->sizelineinfo = n;
|
||
loadVector(S, f->lineinfo, n);
|
||
n = loadInt(S);
|
||
f->abslineinfo = luaM_newvectorchecked(S->L, n, AbsLineInfo);
|
||
f->sizeabslineinfo = n;
|
||
for (i = 0; i < n; i++) {
|
||
f->abslineinfo[i].pc = loadInt(S);
|
||
f->abslineinfo[i].line = loadInt(S);
|
||
}
|
||
n = loadInt(S);
|
||
f->locvars = luaM_newvectorchecked(S->L, n, LocVar);
|
||
f->sizelocvars = n;
|
||
for (i = 0; i < n; i++)
|
||
f->locvars[i].varname = NULL;
|
||
for (i = 0; i < n; i++) {
|
||
f->locvars[i].varname = loadStringN(S, f);
|
||
f->locvars[i].startpc = loadInt(S);
|
||
f->locvars[i].endpc = loadInt(S);
|
||
}
|
||
n = loadInt(S);
|
||
if (n != 0) /* does it have debug information? */
|
||
n = f->sizeupvalues; /* must be this many */
|
||
for (i = 0; i < n; i++)
|
||
f->upvalues[i].name = loadStringN(S, f);
|
||
}
|
||
|
||
|
||
static void loadFunction (LoadState *S, Proto *f, TString *psource) {
|
||
f->source = loadStringN(S, f);
|
||
if (f->source == NULL) /* no source in dump? */
|
||
f->source = psource; /* reuse parent's source */
|
||
f->linedefined = loadInt(S);
|
||
f->lastlinedefined = loadInt(S);
|
||
f->numparams = loadByte(S);
|
||
f->is_vararg = loadByte(S);
|
||
f->maxstacksize = loadByte(S);
|
||
loadCode(S, f);
|
||
loadConstants(S, f);
|
||
loadUpvalues(S, f);
|
||
loadProtos(S, f);
|
||
loadDebug(S, f);
|
||
}
|
||
|
||
|
||
static void checkliteral (LoadState *S, const char *s, const char *msg) {
|
||
char buff[sizeof(LUA_SIGNATURE) + sizeof(LUAC_DATA)]; /* larger than both */
|
||
size_t len = strlen(s);
|
||
loadVector(S, buff, len);
|
||
if (memcmp(s, buff, len) != 0)
|
||
error(S, msg);
|
||
}
|
||
|
||
|
||
static void fchecksize (LoadState *S, size_t size, const char *tname) {
|
||
if (loadByte(S) != size)
|
||
error(S, luaO_pushfstring(S->L, "%s size mismatch", tname));
|
||
}
|
||
|
||
|
||
#define checksize(S,t) fchecksize(S,sizeof(t),#t)
|
||
|
||
static void checkHeader (LoadState *S) {
|
||
/* skip 1st char (already read and checked) */
|
||
checkliteral(S, &LUA_SIGNATURE[1], "not a binary chunk");
|
||
if (loadByte(S) != LUAC_VERSION)
|
||
error(S, "version mismatch");
|
||
if (loadByte(S) != LUAC_FORMAT)
|
||
error(S, "format mismatch");
|
||
checkliteral(S, LUAC_DATA, "corrupted chunk");
|
||
checksize(S, Instruction);
|
||
checksize(S, lua_Integer);
|
||
checksize(S, lua_Number);
|
||
if (loadInteger(S) != LUAC_INT)
|
||
error(S, "integer format mismatch");
|
||
if (loadNumber(S) != LUAC_NUM)
|
||
error(S, "float format mismatch");
|
||
}
|
||
|
||
|
||
/*
|
||
** Load precompiled chunk.
|
||
*/
|
||
LClosure *luaU_undump(lua_State *L, ZIO *Z, const char *name) {
|
||
LoadState S;
|
||
LClosure *cl;
|
||
if (*name == '@' || *name == '=')
|
||
S.name = name + 1;
|
||
else if (*name == LUA_SIGNATURE[0])
|
||
S.name = "binary string";
|
||
else
|
||
S.name = name;
|
||
S.L = L;
|
||
S.Z = Z;
|
||
checkHeader(&S);
|
||
cl = luaF_newLclosure(L, loadByte(&S));
|
||
setclLvalue2s(L, L->top.p, cl);
|
||
luaD_inctop(L);
|
||
cl->p = luaF_newproto(L);
|
||
luaC_objbarrier(L, cl, cl->p);
|
||
loadFunction(&S, cl->p, NULL);
|
||
lua_assert(cl->nupvalues == cl->p->sizeupvalues);
|
||
luai_verifycode(L, cl->p);
|
||
return cl;
|
||
}
|
||
|
||
/*
|
||
** $Id: ldump.c $
|
||
** save precompiled Lua chunks
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ldump_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lundump.h"*/
|
||
|
||
|
||
typedef struct {
|
||
lua_State *L;
|
||
lua_Writer writer;
|
||
void *data;
|
||
int strip;
|
||
int status;
|
||
} DumpState;
|
||
|
||
|
||
/*
|
||
** All high-level dumps go through dumpVector; you can change it to
|
||
** change the endianness of the result
|
||
*/
|
||
#define dumpVector(D,v,n) dumpBlock(D,v,(n)*sizeof((v)[0]))
|
||
|
||
#define dumpLiteral(D, s) dumpBlock(D,s,sizeof(s) - sizeof(char))
|
||
|
||
|
||
static void dumpBlock (DumpState *D, const void *b, size_t size) {
|
||
if (D->status == 0 && size > 0) {
|
||
lua_unlock(D->L);
|
||
D->status = (*D->writer)(D->L, b, size, D->data);
|
||
lua_lock(D->L);
|
||
}
|
||
}
|
||
|
||
|
||
#define dumpVar(D,x) dumpVector(D,&x,1)
|
||
|
||
|
||
static void dumpByte (DumpState *D, int y) {
|
||
lu_byte x = (lu_byte)y;
|
||
dumpVar(D, x);
|
||
}
|
||
|
||
|
||
/*
|
||
** 'dumpSize' buffer size: each byte can store up to 7 bits. (The "+6"
|
||
** rounds up the division.)
|
||
*/
|
||
#define DIBS ((sizeof(size_t) * CHAR_BIT + 6) / 7)
|
||
|
||
static void dumpSize (DumpState *D, size_t x) {
|
||
lu_byte buff[DIBS];
|
||
int n = 0;
|
||
do {
|
||
buff[DIBS - (++n)] = x & 0x7f; /* fill buffer in reverse order */
|
||
x >>= 7;
|
||
} while (x != 0);
|
||
buff[DIBS - 1] |= 0x80; /* mark last byte */
|
||
dumpVector(D, buff + DIBS - n, n);
|
||
}
|
||
|
||
|
||
static void dumpInt (DumpState *D, int x) {
|
||
dumpSize(D, x);
|
||
}
|
||
|
||
|
||
static void dumpNumber (DumpState *D, lua_Number x) {
|
||
dumpVar(D, x);
|
||
}
|
||
|
||
|
||
static void dumpInteger (DumpState *D, lua_Integer x) {
|
||
dumpVar(D, x);
|
||
}
|
||
|
||
|
||
static void dumpString (DumpState *D, const TString *s) {
|
||
if (s == NULL)
|
||
dumpSize(D, 0);
|
||
else {
|
||
size_t size = tsslen(s);
|
||
const char *str = getstr(s);
|
||
dumpSize(D, size + 1);
|
||
dumpVector(D, str, size);
|
||
}
|
||
}
|
||
|
||
|
||
static void dumpCode (DumpState *D, const Proto *f) {
|
||
dumpInt(D, f->sizecode);
|
||
dumpVector(D, f->code, f->sizecode);
|
||
}
|
||
|
||
|
||
static void dumpFunction(DumpState *D, const Proto *f, TString *psource);
|
||
|
||
static void dumpConstants (DumpState *D, const Proto *f) {
|
||
int i;
|
||
int n = f->sizek;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++) {
|
||
const TValue *o = &f->k[i];
|
||
int tt = ttypetag(o);
|
||
dumpByte(D, tt);
|
||
switch (tt) {
|
||
case LUA_VNUMFLT:
|
||
dumpNumber(D, fltvalue(o));
|
||
break;
|
||
case LUA_VNUMINT:
|
||
dumpInteger(D, ivalue(o));
|
||
break;
|
||
case LUA_VSHRSTR:
|
||
case LUA_VLNGSTR:
|
||
dumpString(D, tsvalue(o));
|
||
break;
|
||
default:
|
||
lua_assert(tt == LUA_VNIL || tt == LUA_VFALSE || tt == LUA_VTRUE);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void dumpProtos (DumpState *D, const Proto *f) {
|
||
int i;
|
||
int n = f->sizep;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++)
|
||
dumpFunction(D, f->p[i], f->source);
|
||
}
|
||
|
||
|
||
static void dumpUpvalues (DumpState *D, const Proto *f) {
|
||
int i, n = f->sizeupvalues;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++) {
|
||
dumpByte(D, f->upvalues[i].instack);
|
||
dumpByte(D, f->upvalues[i].idx);
|
||
dumpByte(D, f->upvalues[i].kind);
|
||
}
|
||
}
|
||
|
||
|
||
static void dumpDebug (DumpState *D, const Proto *f) {
|
||
int i, n;
|
||
n = (D->strip) ? 0 : f->sizelineinfo;
|
||
dumpInt(D, n);
|
||
dumpVector(D, f->lineinfo, n);
|
||
n = (D->strip) ? 0 : f->sizeabslineinfo;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++) {
|
||
dumpInt(D, f->abslineinfo[i].pc);
|
||
dumpInt(D, f->abslineinfo[i].line);
|
||
}
|
||
n = (D->strip) ? 0 : f->sizelocvars;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++) {
|
||
dumpString(D, f->locvars[i].varname);
|
||
dumpInt(D, f->locvars[i].startpc);
|
||
dumpInt(D, f->locvars[i].endpc);
|
||
}
|
||
n = (D->strip) ? 0 : f->sizeupvalues;
|
||
dumpInt(D, n);
|
||
for (i = 0; i < n; i++)
|
||
dumpString(D, f->upvalues[i].name);
|
||
}
|
||
|
||
|
||
static void dumpFunction (DumpState *D, const Proto *f, TString *psource) {
|
||
if (D->strip || f->source == psource)
|
||
dumpString(D, NULL); /* no debug info or same source as its parent */
|
||
else
|
||
dumpString(D, f->source);
|
||
dumpInt(D, f->linedefined);
|
||
dumpInt(D, f->lastlinedefined);
|
||
dumpByte(D, f->numparams);
|
||
dumpByte(D, f->is_vararg);
|
||
dumpByte(D, f->maxstacksize);
|
||
dumpCode(D, f);
|
||
dumpConstants(D, f);
|
||
dumpUpvalues(D, f);
|
||
dumpProtos(D, f);
|
||
dumpDebug(D, f);
|
||
}
|
||
|
||
|
||
static void dumpHeader (DumpState *D) {
|
||
dumpLiteral(D, LUA_SIGNATURE);
|
||
dumpByte(D, LUAC_VERSION);
|
||
dumpByte(D, LUAC_FORMAT);
|
||
dumpLiteral(D, LUAC_DATA);
|
||
dumpByte(D, sizeof(Instruction));
|
||
dumpByte(D, sizeof(lua_Integer));
|
||
dumpByte(D, sizeof(lua_Number));
|
||
dumpInteger(D, LUAC_INT);
|
||
dumpNumber(D, LUAC_NUM);
|
||
}
|
||
|
||
|
||
/*
|
||
** dump Lua function as precompiled chunk
|
||
*/
|
||
int luaU_dump(lua_State *L, const Proto *f, lua_Writer w, void *data,
|
||
int strip) {
|
||
DumpState D;
|
||
D.L = L;
|
||
D.writer = w;
|
||
D.data = data;
|
||
D.strip = strip;
|
||
D.status = 0;
|
||
dumpHeader(&D);
|
||
dumpByte(&D, f->sizeupvalues);
|
||
dumpFunction(&D, f, NULL);
|
||
return D.status;
|
||
}
|
||
|
||
/*
|
||
** $Id: lstate.c $
|
||
** Global State
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lstate_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stddef.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lapi.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "llex.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
|
||
|
||
|
||
/*
|
||
** thread state + extra space
|
||
*/
|
||
typedef struct LX {
|
||
lu_byte extra_[LUA_EXTRASPACE];
|
||
lua_State l;
|
||
} LX;
|
||
|
||
|
||
/*
|
||
** Main thread combines a thread state and the global state
|
||
*/
|
||
typedef struct LG {
|
||
LX l;
|
||
global_State g;
|
||
} LG;
|
||
|
||
|
||
|
||
#define fromstate(L) (cast(LX *, cast(lu_byte *, (L)) - offsetof(LX, l)))
|
||
|
||
|
||
/*
|
||
** A macro to create a "random" seed when a state is created;
|
||
** the seed is used to randomize string hashes.
|
||
*/
|
||
#if !defined(luai_makeseed)
|
||
|
||
#include <time.h>
|
||
|
||
/*
|
||
** Compute an initial seed with some level of randomness.
|
||
** Rely on Address Space Layout Randomization (if present) and
|
||
** current time.
|
||
*/
|
||
#define addbuff(b,p,e) \
|
||
{ size_t t = cast_sizet(e); \
|
||
memcpy(b + p, &t, sizeof(t)); p += sizeof(t); }
|
||
|
||
static unsigned int luai_makeseed (lua_State *L) {
|
||
char buff[3 * sizeof(size_t)];
|
||
unsigned int h = cast_uint(time(NULL));
|
||
int p = 0;
|
||
addbuff(buff, p, L); /* heap variable */
|
||
addbuff(buff, p, &h); /* local variable */
|
||
addbuff(buff, p, &lua_newstate); /* public function */
|
||
lua_assert(p == sizeof(buff));
|
||
return luaS_hash(buff, p, h);
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** set GCdebt to a new value keeping the value (totalbytes + GCdebt)
|
||
** invariant (and avoiding underflows in 'totalbytes')
|
||
*/
|
||
void luaE_setdebt (global_State *g, l_mem debt) {
|
||
l_mem tb = gettotalbytes(g);
|
||
lua_assert(tb > 0);
|
||
if (debt < tb - MAX_LMEM)
|
||
debt = tb - MAX_LMEM; /* will make 'totalbytes == MAX_LMEM' */
|
||
g->totalbytes = tb - debt;
|
||
g->GCdebt = debt;
|
||
}
|
||
|
||
|
||
LUA_API int lua_setcstacklimit (lua_State *L, unsigned int limit) {
|
||
UNUSED(L); UNUSED(limit);
|
||
return LUAI_MAXCCALLS; /* warning?? */
|
||
}
|
||
|
||
|
||
CallInfo *luaE_extendCI (lua_State *L) {
|
||
CallInfo *ci;
|
||
lua_assert(L->ci->next == NULL);
|
||
ci = luaM_new(L, CallInfo);
|
||
lua_assert(L->ci->next == NULL);
|
||
L->ci->next = ci;
|
||
ci->previous = L->ci;
|
||
ci->next = NULL;
|
||
ci->u.l.trap = 0;
|
||
L->nci++;
|
||
return ci;
|
||
}
|
||
|
||
|
||
/*
|
||
** free all CallInfo structures not in use by a thread
|
||
*/
|
||
static void freeCI (lua_State *L) {
|
||
CallInfo *ci = L->ci;
|
||
CallInfo *next = ci->next;
|
||
ci->next = NULL;
|
||
while ((ci = next) != NULL) {
|
||
next = ci->next;
|
||
luaM_free(L, ci);
|
||
L->nci--;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** free half of the CallInfo structures not in use by a thread,
|
||
** keeping the first one.
|
||
*/
|
||
void luaE_shrinkCI (lua_State *L) {
|
||
CallInfo *ci = L->ci->next; /* first free CallInfo */
|
||
CallInfo *next;
|
||
if (ci == NULL)
|
||
return; /* no extra elements */
|
||
while ((next = ci->next) != NULL) { /* two extra elements? */
|
||
CallInfo *next2 = next->next; /* next's next */
|
||
ci->next = next2; /* remove next from the list */
|
||
L->nci--;
|
||
luaM_free(L, next); /* free next */
|
||
if (next2 == NULL)
|
||
break; /* no more elements */
|
||
else {
|
||
next2->previous = ci;
|
||
ci = next2; /* continue */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Called when 'getCcalls(L)' larger or equal to LUAI_MAXCCALLS.
|
||
** If equal, raises an overflow error. If value is larger than
|
||
** LUAI_MAXCCALLS (which means it is handling an overflow) but
|
||
** not much larger, does not report an error (to allow overflow
|
||
** handling to work).
|
||
*/
|
||
void luaE_checkcstack (lua_State *L) {
|
||
if (getCcalls(L) == LUAI_MAXCCALLS)
|
||
luaG_runerror(L, "C stack overflow");
|
||
else if (getCcalls(L) >= (LUAI_MAXCCALLS / 10 * 11))
|
||
luaD_throw(L, LUA_ERRERR); /* error while handling stack error */
|
||
}
|
||
|
||
|
||
LUAI_FUNC void luaE_incCstack (lua_State *L) {
|
||
L->nCcalls++;
|
||
if (l_unlikely(getCcalls(L) >= LUAI_MAXCCALLS))
|
||
luaE_checkcstack(L);
|
||
}
|
||
|
||
|
||
static void stack_init (lua_State *L1, lua_State *L) {
|
||
int i; CallInfo *ci;
|
||
/* initialize stack array */
|
||
L1->stack.p = luaM_newvector(L, BASIC_STACK_SIZE + EXTRA_STACK, StackValue);
|
||
L1->tbclist.p = L1->stack.p;
|
||
for (i = 0; i < BASIC_STACK_SIZE + EXTRA_STACK; i++)
|
||
setnilvalue(s2v(L1->stack.p + i)); /* erase new stack */
|
||
L1->top.p = L1->stack.p;
|
||
L1->stack_last.p = L1->stack.p + BASIC_STACK_SIZE;
|
||
/* initialize first ci */
|
||
ci = &L1->base_ci;
|
||
ci->next = ci->previous = NULL;
|
||
ci->callstatus = CIST_C;
|
||
ci->func.p = L1->top.p;
|
||
ci->u.c.k = NULL;
|
||
ci->nresults = 0;
|
||
setnilvalue(s2v(L1->top.p)); /* 'function' entry for this 'ci' */
|
||
L1->top.p++;
|
||
ci->top.p = L1->top.p + LUA_MINSTACK;
|
||
L1->ci = ci;
|
||
}
|
||
|
||
|
||
static void freestack (lua_State *L) {
|
||
if (L->stack.p == NULL)
|
||
return; /* stack not completely built yet */
|
||
L->ci = &L->base_ci; /* free the entire 'ci' list */
|
||
freeCI(L);
|
||
lua_assert(L->nci == 0);
|
||
luaM_freearray(L, L->stack.p, stacksize(L) + EXTRA_STACK); /* free stack */
|
||
}
|
||
|
||
|
||
/*
|
||
** Create registry table and its predefined values
|
||
*/
|
||
static void init_registry (lua_State *L, global_State *g) {
|
||
/* create registry */
|
||
Table *registry = luaH_new(L);
|
||
sethvalue(L, &g->l_registry, registry);
|
||
luaH_resize(L, registry, LUA_RIDX_LAST, 0);
|
||
/* registry[LUA_RIDX_MAINTHREAD] = L */
|
||
setthvalue(L, ®istry->array[LUA_RIDX_MAINTHREAD - 1], L);
|
||
/* registry[LUA_RIDX_GLOBALS] = new table (table of globals) */
|
||
sethvalue(L, ®istry->array[LUA_RIDX_GLOBALS - 1], luaH_new(L));
|
||
}
|
||
|
||
|
||
/*
|
||
** open parts of the state that may cause memory-allocation errors.
|
||
*/
|
||
static void f_luaopen (lua_State *L, void *ud) {
|
||
global_State *g = G(L);
|
||
UNUSED(ud);
|
||
stack_init(L, L); /* init stack */
|
||
init_registry(L, g);
|
||
luaS_init(L);
|
||
luaT_init(L);
|
||
luaX_init(L);
|
||
g->gcstp = 0; /* allow gc */
|
||
setnilvalue(&g->nilvalue); /* now state is complete */
|
||
luai_userstateopen(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** preinitialize a thread with consistent values without allocating
|
||
** any memory (to avoid errors)
|
||
*/
|
||
static void preinit_thread (lua_State *L, global_State *g) {
|
||
G(L) = g;
|
||
L->stack.p = NULL;
|
||
L->ci = NULL;
|
||
L->nci = 0;
|
||
L->twups = L; /* thread has no upvalues */
|
||
L->nCcalls = 0;
|
||
L->errorJmp = NULL;
|
||
L->hook = NULL;
|
||
L->hookmask = 0;
|
||
L->basehookcount = 0;
|
||
L->allowhook = 1;
|
||
resethookcount(L);
|
||
L->openupval = NULL;
|
||
L->status = LUA_OK;
|
||
L->errfunc = 0;
|
||
L->oldpc = 0;
|
||
}
|
||
|
||
|
||
static void close_state (lua_State *L) {
|
||
global_State *g = G(L);
|
||
if (!completestate(g)) /* closing a partially built state? */
|
||
luaC_freeallobjects(L); /* just collect its objects */
|
||
else { /* closing a fully built state */
|
||
L->ci = &L->base_ci; /* unwind CallInfo list */
|
||
luaD_closeprotected(L, 1, LUA_OK); /* close all upvalues */
|
||
luaC_freeallobjects(L); /* collect all objects */
|
||
luai_userstateclose(L);
|
||
}
|
||
luaM_freearray(L, G(L)->strt.hash, G(L)->strt.size);
|
||
freestack(L);
|
||
lua_assert(gettotalbytes(g) == sizeof(LG));
|
||
(*g->frealloc)(g->ud, fromstate(L), sizeof(LG), 0); /* free main block */
|
||
}
|
||
|
||
|
||
LUA_API lua_State *lua_newthread (lua_State *L) {
|
||
global_State *g = G(L);
|
||
GCObject *o;
|
||
lua_State *L1;
|
||
lua_lock(L);
|
||
luaC_checkGC(L);
|
||
/* create new thread */
|
||
o = luaC_newobjdt(L, LUA_TTHREAD, sizeof(LX), offsetof(LX, l));
|
||
L1 = gco2th(o);
|
||
/* anchor it on L stack */
|
||
setthvalue2s(L, L->top.p, L1);
|
||
api_incr_top(L);
|
||
preinit_thread(L1, g);
|
||
L1->hookmask = L->hookmask;
|
||
L1->basehookcount = L->basehookcount;
|
||
L1->hook = L->hook;
|
||
resethookcount(L1);
|
||
/* initialize L1 extra space */
|
||
memcpy(lua_getextraspace(L1), lua_getextraspace(g->mainthread),
|
||
LUA_EXTRASPACE);
|
||
luai_userstatethread(L, L1);
|
||
stack_init(L1, L); /* init stack */
|
||
lua_unlock(L);
|
||
return L1;
|
||
}
|
||
|
||
|
||
void luaE_freethread (lua_State *L, lua_State *L1) {
|
||
LX *l = fromstate(L1);
|
||
luaF_closeupval(L1, L1->stack.p); /* close all upvalues */
|
||
lua_assert(L1->openupval == NULL);
|
||
luai_userstatefree(L, L1);
|
||
freestack(L1);
|
||
luaM_free(L, l);
|
||
}
|
||
|
||
|
||
int luaE_resetthread (lua_State *L, int status) {
|
||
CallInfo *ci = L->ci = &L->base_ci; /* unwind CallInfo list */
|
||
setnilvalue(s2v(L->stack.p)); /* 'function' entry for basic 'ci' */
|
||
ci->func.p = L->stack.p;
|
||
ci->callstatus = CIST_C;
|
||
if (status == LUA_YIELD)
|
||
status = LUA_OK;
|
||
L->status = LUA_OK; /* so it can run __close metamethods */
|
||
status = luaD_closeprotected(L, 1, status);
|
||
if (status != LUA_OK) /* errors? */
|
||
luaD_seterrorobj(L, status, L->stack.p + 1);
|
||
else
|
||
L->top.p = L->stack.p + 1;
|
||
ci->top.p = L->top.p + LUA_MINSTACK;
|
||
luaD_reallocstack(L, cast_int(ci->top.p - L->stack.p), 0);
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_closethread (lua_State *L, lua_State *from) {
|
||
int status;
|
||
lua_lock(L);
|
||
L->nCcalls = (from) ? getCcalls(from) : 0;
|
||
status = luaE_resetthread(L, L->status);
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
/*
|
||
** Deprecated! Use 'lua_closethread' instead.
|
||
*/
|
||
LUA_API int lua_resetthread (lua_State *L) {
|
||
return lua_closethread(L, NULL);
|
||
}
|
||
|
||
|
||
LUA_API lua_State *lua_newstate (lua_Alloc f, void *ud) {
|
||
int i;
|
||
lua_State *L;
|
||
global_State *g;
|
||
LG *l = cast(LG *, (*f)(ud, NULL, LUA_TTHREAD, sizeof(LG)));
|
||
if (l == NULL) return NULL;
|
||
L = &l->l.l;
|
||
g = &l->g;
|
||
L->tt = LUA_VTHREAD;
|
||
g->currentwhite = bitmask(WHITE0BIT);
|
||
L->marked = luaC_white(g);
|
||
preinit_thread(L, g);
|
||
g->allgc = obj2gco(L); /* by now, only object is the main thread */
|
||
L->next = NULL;
|
||
incnny(L); /* main thread is always non yieldable */
|
||
g->frealloc = f;
|
||
g->ud = ud;
|
||
g->warnf = NULL;
|
||
g->ud_warn = NULL;
|
||
g->mainthread = L;
|
||
g->seed = luai_makeseed(L);
|
||
g->gcstp = GCSTPGC; /* no GC while building state */
|
||
g->strt.size = g->strt.nuse = 0;
|
||
g->strt.hash = NULL;
|
||
setnilvalue(&g->l_registry);
|
||
g->panic = NULL;
|
||
g->gcstate = GCSpause;
|
||
g->gckind = KGC_INC;
|
||
g->gcstopem = 0;
|
||
g->gcemergency = 0;
|
||
g->finobj = g->tobefnz = g->fixedgc = NULL;
|
||
g->firstold1 = g->survival = g->old1 = g->reallyold = NULL;
|
||
g->finobjsur = g->finobjold1 = g->finobjrold = NULL;
|
||
g->sweepgc = NULL;
|
||
g->gray = g->grayagain = NULL;
|
||
g->weak = g->ephemeron = g->allweak = NULL;
|
||
g->twups = NULL;
|
||
g->totalbytes = sizeof(LG);
|
||
g->GCdebt = 0;
|
||
g->lastatomic = 0;
|
||
setivalue(&g->nilvalue, 0); /* to signal that state is not yet built */
|
||
setgcparam(g->gcpause, LUAI_GCPAUSE);
|
||
setgcparam(g->gcstepmul, LUAI_GCMUL);
|
||
g->gcstepsize = LUAI_GCSTEPSIZE;
|
||
setgcparam(g->genmajormul, LUAI_GENMAJORMUL);
|
||
g->genminormul = LUAI_GENMINORMUL;
|
||
for (i=0; i < LUA_NUMTAGS; i++) g->mt[i] = NULL;
|
||
if (luaD_rawrunprotected(L, f_luaopen, NULL) != LUA_OK) {
|
||
/* memory allocation error: free partial state */
|
||
close_state(L);
|
||
L = NULL;
|
||
}
|
||
return L;
|
||
}
|
||
|
||
|
||
LUA_API void lua_close (lua_State *L) {
|
||
lua_lock(L);
|
||
L = G(L)->mainthread; /* only the main thread can be closed */
|
||
close_state(L);
|
||
}
|
||
|
||
|
||
void luaE_warning (lua_State *L, const char *msg, int tocont) {
|
||
lua_WarnFunction wf = G(L)->warnf;
|
||
if (wf != NULL)
|
||
wf(G(L)->ud_warn, msg, tocont);
|
||
}
|
||
|
||
|
||
/*
|
||
** Generate a warning from an error message
|
||
*/
|
||
void luaE_warnerror (lua_State *L, const char *where) {
|
||
TValue *errobj = s2v(L->top.p - 1); /* error object */
|
||
const char *msg = (ttisstring(errobj))
|
||
? getstr(tsvalue(errobj))
|
||
: "error object is not a string";
|
||
/* produce warning "error in %s (%s)" (where, msg) */
|
||
luaE_warning(L, "error in ", 1);
|
||
luaE_warning(L, where, 1);
|
||
luaE_warning(L, " (", 1);
|
||
luaE_warning(L, msg, 1);
|
||
luaE_warning(L, ")", 0);
|
||
}
|
||
|
||
/*
|
||
** $Id: lgc.c $
|
||
** Garbage Collector
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lgc_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
|
||
|
||
/*
|
||
** Maximum number of elements to sweep in each single step.
|
||
** (Large enough to dissipate fixed overheads but small enough
|
||
** to allow small steps for the collector.)
|
||
*/
|
||
#define GCSWEEPMAX 100
|
||
|
||
/*
|
||
** Maximum number of finalizers to call in each single step.
|
||
*/
|
||
#define GCFINMAX 10
|
||
|
||
|
||
/*
|
||
** Cost of calling one finalizer.
|
||
*/
|
||
#define GCFINALIZECOST 50
|
||
|
||
|
||
/*
|
||
** The equivalent, in bytes, of one unit of "work" (visiting a slot,
|
||
** sweeping an object, etc.)
|
||
*/
|
||
#define WORK2MEM sizeof(TValue)
|
||
|
||
|
||
/*
|
||
** macro to adjust 'pause': 'pause' is actually used like
|
||
** 'pause / PAUSEADJ' (value chosen by tests)
|
||
*/
|
||
#define PAUSEADJ 100
|
||
|
||
|
||
/* mask with all color bits */
|
||
#define maskcolors (bitmask(BLACKBIT) | WHITEBITS)
|
||
|
||
/* mask with all GC bits */
|
||
#define maskgcbits (maskcolors | AGEBITS)
|
||
|
||
|
||
/* macro to erase all color bits then set only the current white bit */
|
||
#define makewhite(g,x) \
|
||
(x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
|
||
|
||
/* make an object gray (neither white nor black) */
|
||
#define set2gray(x) resetbits(x->marked, maskcolors)
|
||
|
||
|
||
/* make an object black (coming from any color) */
|
||
#define set2black(x) \
|
||
(x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
|
||
|
||
|
||
#define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x)))
|
||
|
||
#define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n)))
|
||
|
||
|
||
/*
|
||
** Protected access to objects in values
|
||
*/
|
||
#define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL)
|
||
|
||
|
||
#define markvalue(g,o) { checkliveness(g->mainthread,o); \
|
||
if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
|
||
|
||
#define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); }
|
||
|
||
#define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
|
||
|
||
/*
|
||
** mark an object that can be NULL (either because it is really optional,
|
||
** or it was stripped as debug info, or inside an uncompleted structure)
|
||
*/
|
||
#define markobjectN(g,t) { if (t) markobject(g,t); }
|
||
|
||
static void reallymarkobject (global_State *g, GCObject *o);
|
||
static lu_mem atomic (lua_State *L);
|
||
static void entersweep (lua_State *L);
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Generic functions
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** one after last element in a hash array
|
||
*/
|
||
#define gnodelast(h) gnode(h, cast_sizet(sizenode(h)))
|
||
|
||
|
||
static GCObject **getgclist (GCObject *o) {
|
||
switch (o->tt) {
|
||
case LUA_VTABLE: return &gco2t(o)->gclist;
|
||
case LUA_VLCL: return &gco2lcl(o)->gclist;
|
||
case LUA_VCCL: return &gco2ccl(o)->gclist;
|
||
case LUA_VTHREAD: return &gco2th(o)->gclist;
|
||
case LUA_VPROTO: return &gco2p(o)->gclist;
|
||
case LUA_VUSERDATA: {
|
||
Udata *u = gco2u(o);
|
||
lua_assert(u->nuvalue > 0);
|
||
return &u->gclist;
|
||
}
|
||
default: lua_assert(0); return 0;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Link a collectable object 'o' with a known type into the list 'p'.
|
||
** (Must be a macro to access the 'gclist' field in different types.)
|
||
*/
|
||
#define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p))
|
||
|
||
static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
|
||
lua_assert(!isgray(o)); /* cannot be in a gray list */
|
||
*pnext = *list;
|
||
*list = o;
|
||
set2gray(o); /* now it is */
|
||
}
|
||
|
||
|
||
/*
|
||
** Link a generic collectable object 'o' into the list 'p'.
|
||
*/
|
||
#define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
|
||
|
||
|
||
|
||
/*
|
||
** Clear keys for empty entries in tables. If entry is empty, mark its
|
||
** entry as dead. This allows the collection of the key, but keeps its
|
||
** entry in the table: its removal could break a chain and could break
|
||
** a table traversal. Other places never manipulate dead keys, because
|
||
** its associated empty value is enough to signal that the entry is
|
||
** logically empty.
|
||
*/
|
||
static void clearkey (Node *n) {
|
||
lua_assert(isempty(gval(n)));
|
||
if (keyiscollectable(n))
|
||
setdeadkey(n); /* unused key; remove it */
|
||
}
|
||
|
||
|
||
/*
|
||
** tells whether a key or value can be cleared from a weak
|
||
** table. Non-collectable objects are never removed from weak
|
||
** tables. Strings behave as 'values', so are never removed too. for
|
||
** other objects: if really collected, cannot keep them; for objects
|
||
** being finalized, keep them in keys, but not in values
|
||
*/
|
||
static int iscleared (global_State *g, const GCObject *o) {
|
||
if (o == NULL) return 0; /* non-collectable value */
|
||
else if (novariant(o->tt) == LUA_TSTRING) {
|
||
markobject(g, o); /* strings are 'values', so are never weak */
|
||
return 0;
|
||
}
|
||
else return iswhite(o);
|
||
}
|
||
|
||
|
||
/*
|
||
** Barrier that moves collector forward, that is, marks the white object
|
||
** 'v' being pointed by the black object 'o'. In the generational
|
||
** mode, 'v' must also become old, if 'o' is old; however, it cannot
|
||
** be changed directly to OLD, because it may still point to non-old
|
||
** objects. So, it is marked as OLD0. In the next cycle it will become
|
||
** OLD1, and in the next it will finally become OLD (regular old). By
|
||
** then, any object it points to will also be old. If called in the
|
||
** incremental sweep phase, it clears the black object to white (sweep
|
||
** it) to avoid other barrier calls for this same object. (That cannot
|
||
** be done is generational mode, as its sweep does not distinguish
|
||
** whites from deads.)
|
||
*/
|
||
void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
|
||
global_State *g = G(L);
|
||
lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
|
||
if (keepinvariant(g)) { /* must keep invariant? */
|
||
reallymarkobject(g, v); /* restore invariant */
|
||
if (isold(o)) {
|
||
lua_assert(!isold(v)); /* white object could not be old */
|
||
setage(v, G_OLD0); /* restore generational invariant */
|
||
}
|
||
}
|
||
else { /* sweep phase */
|
||
lua_assert(issweepphase(g));
|
||
if (g->gckind == KGC_INC) /* incremental mode? */
|
||
makewhite(g, o); /* mark 'o' as white to avoid other barriers */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** barrier that moves collector backward, that is, mark the black object
|
||
** pointing to a white object as gray again.
|
||
*/
|
||
void luaC_barrierback_ (lua_State *L, GCObject *o) {
|
||
global_State *g = G(L);
|
||
lua_assert(isblack(o) && !isdead(g, o));
|
||
lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
|
||
if (getage(o) == G_TOUCHED2) /* already in gray list? */
|
||
set2gray(o); /* make it gray to become touched1 */
|
||
else /* link it in 'grayagain' and paint it gray */
|
||
linkobjgclist(o, g->grayagain);
|
||
if (isold(o)) /* generational mode? */
|
||
setage(o, G_TOUCHED1); /* touched in current cycle */
|
||
}
|
||
|
||
|
||
void luaC_fix (lua_State *L, GCObject *o) {
|
||
global_State *g = G(L);
|
||
lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */
|
||
set2gray(o); /* they will be gray forever */
|
||
setage(o, G_OLD); /* and old forever */
|
||
g->allgc = o->next; /* remove object from 'allgc' list */
|
||
o->next = g->fixedgc; /* link it to 'fixedgc' list */
|
||
g->fixedgc = o;
|
||
}
|
||
|
||
|
||
/*
|
||
** create a new collectable object (with given type, size, and offset)
|
||
** and link it to 'allgc' list.
|
||
*/
|
||
GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
|
||
global_State *g = G(L);
|
||
char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
|
||
GCObject *o = cast(GCObject *, p + offset);
|
||
o->marked = luaC_white(g);
|
||
o->tt = tt;
|
||
o->next = g->allgc;
|
||
g->allgc = o;
|
||
return o;
|
||
}
|
||
|
||
|
||
GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
|
||
return luaC_newobjdt(L, tt, sz, 0);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Mark functions
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Mark an object. Userdata with no user values, strings, and closed
|
||
** upvalues are visited and turned black here. Open upvalues are
|
||
** already indirectly linked through their respective threads in the
|
||
** 'twups' list, so they don't go to the gray list; nevertheless, they
|
||
** are kept gray to avoid barriers, as their values will be revisited
|
||
** by the thread or by 'remarkupvals'. Other objects are added to the
|
||
** gray list to be visited (and turned black) later. Both userdata and
|
||
** upvalues can call this function recursively, but this recursion goes
|
||
** for at most two levels: An upvalue cannot refer to another upvalue
|
||
** (only closures can), and a userdata's metatable must be a table.
|
||
*/
|
||
static void reallymarkobject (global_State *g, GCObject *o) {
|
||
switch (o->tt) {
|
||
case LUA_VSHRSTR:
|
||
case LUA_VLNGSTR: {
|
||
set2black(o); /* nothing to visit */
|
||
break;
|
||
}
|
||
case LUA_VUPVAL: {
|
||
UpVal *uv = gco2upv(o);
|
||
if (upisopen(uv))
|
||
set2gray(uv); /* open upvalues are kept gray */
|
||
else
|
||
set2black(uv); /* closed upvalues are visited here */
|
||
markvalue(g, uv->v.p); /* mark its content */
|
||
break;
|
||
}
|
||
case LUA_VUSERDATA: {
|
||
Udata *u = gco2u(o);
|
||
if (u->nuvalue == 0) { /* no user values? */
|
||
markobjectN(g, u->metatable); /* mark its metatable */
|
||
set2black(u); /* nothing else to mark */
|
||
break;
|
||
}
|
||
/* else... */
|
||
} /* FALLTHROUGH */
|
||
case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
|
||
case LUA_VTHREAD: case LUA_VPROTO: {
|
||
linkobjgclist(o, g->gray); /* to be visited later */
|
||
break;
|
||
}
|
||
default: lua_assert(0); break;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** mark metamethods for basic types
|
||
*/
|
||
static void markmt (global_State *g) {
|
||
int i;
|
||
for (i=0; i < LUA_NUMTAGS; i++)
|
||
markobjectN(g, g->mt[i]);
|
||
}
|
||
|
||
|
||
/*
|
||
** mark all objects in list of being-finalized
|
||
*/
|
||
static lu_mem markbeingfnz (global_State *g) {
|
||
GCObject *o;
|
||
lu_mem count = 0;
|
||
for (o = g->tobefnz; o != NULL; o = o->next) {
|
||
count++;
|
||
markobject(g, o);
|
||
}
|
||
return count;
|
||
}
|
||
|
||
|
||
/*
|
||
** For each non-marked thread, simulates a barrier between each open
|
||
** upvalue and its value. (If the thread is collected, the value will be
|
||
** assigned to the upvalue, but then it can be too late for the barrier
|
||
** to act. The "barrier" does not need to check colors: A non-marked
|
||
** thread must be young; upvalues cannot be older than their threads; so
|
||
** any visited upvalue must be young too.) Also removes the thread from
|
||
** the list, as it was already visited. Removes also threads with no
|
||
** upvalues, as they have nothing to be checked. (If the thread gets an
|
||
** upvalue later, it will be linked in the list again.)
|
||
*/
|
||
static int remarkupvals (global_State *g) {
|
||
lua_State *thread;
|
||
lua_State **p = &g->twups;
|
||
int work = 0; /* estimate of how much work was done here */
|
||
while ((thread = *p) != NULL) {
|
||
work++;
|
||
if (!iswhite(thread) && thread->openupval != NULL)
|
||
p = &thread->twups; /* keep marked thread with upvalues in the list */
|
||
else { /* thread is not marked or without upvalues */
|
||
UpVal *uv;
|
||
lua_assert(!isold(thread) || thread->openupval == NULL);
|
||
*p = thread->twups; /* remove thread from the list */
|
||
thread->twups = thread; /* mark that it is out of list */
|
||
for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
|
||
lua_assert(getage(uv) <= getage(thread));
|
||
work++;
|
||
if (!iswhite(uv)) { /* upvalue already visited? */
|
||
lua_assert(upisopen(uv) && isgray(uv));
|
||
markvalue(g, uv->v.p); /* mark its value */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
return work;
|
||
}
|
||
|
||
|
||
static void cleargraylists (global_State *g) {
|
||
g->gray = g->grayagain = NULL;
|
||
g->weak = g->allweak = g->ephemeron = NULL;
|
||
}
|
||
|
||
|
||
/*
|
||
** mark root set and reset all gray lists, to start a new collection
|
||
*/
|
||
static void restartcollection (global_State *g) {
|
||
cleargraylists(g);
|
||
markobject(g, g->mainthread);
|
||
markvalue(g, &g->l_registry);
|
||
markmt(g);
|
||
markbeingfnz(g); /* mark any finalizing object left from previous cycle */
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Traverse functions
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Check whether object 'o' should be kept in the 'grayagain' list for
|
||
** post-processing by 'correctgraylist'. (It could put all old objects
|
||
** in the list and leave all the work to 'correctgraylist', but it is
|
||
** more efficient to avoid adding elements that will be removed.) Only
|
||
** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
|
||
** back to a gray list, but then it must become OLD. (That is what
|
||
** 'correctgraylist' does when it finds a TOUCHED2 object.)
|
||
*/
|
||
static void genlink (global_State *g, GCObject *o) {
|
||
lua_assert(isblack(o));
|
||
if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */
|
||
linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */
|
||
} /* everything else do not need to be linked back */
|
||
else if (getage(o) == G_TOUCHED2)
|
||
changeage(o, G_TOUCHED2, G_OLD); /* advance age */
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a table with weak values and link it to proper list. During
|
||
** propagate phase, keep it in 'grayagain' list, to be revisited in the
|
||
** atomic phase. In the atomic phase, if table has any white value,
|
||
** put it in 'weak' list, to be cleared.
|
||
*/
|
||
static void traverseweakvalue (global_State *g, Table *h) {
|
||
Node *n, *limit = gnodelast(h);
|
||
/* if there is array part, assume it may have white values (it is not
|
||
worth traversing it now just to check) */
|
||
int hasclears = (h->alimit > 0);
|
||
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
|
||
if (isempty(gval(n))) /* entry is empty? */
|
||
clearkey(n); /* clear its key */
|
||
else {
|
||
lua_assert(!keyisnil(n));
|
||
markkey(g, n);
|
||
if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */
|
||
hasclears = 1; /* table will have to be cleared */
|
||
}
|
||
}
|
||
if (g->gcstate == GCSatomic && hasclears)
|
||
linkgclist(h, g->weak); /* has to be cleared later */
|
||
else
|
||
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse an ephemeron table and link it to proper list. Returns true
|
||
** iff any object was marked during this traversal (which implies that
|
||
** convergence has to continue). During propagation phase, keep table
|
||
** in 'grayagain' list, to be visited again in the atomic phase. In
|
||
** the atomic phase, if table has any white->white entry, it has to
|
||
** be revisited during ephemeron convergence (as that key may turn
|
||
** black). Otherwise, if it has any white key, table has to be cleared
|
||
** (in the atomic phase). In generational mode, some tables
|
||
** must be kept in some gray list for post-processing; this is done
|
||
** by 'genlink'.
|
||
*/
|
||
static int traverseephemeron (global_State *g, Table *h, int inv) {
|
||
int marked = 0; /* true if an object is marked in this traversal */
|
||
int hasclears = 0; /* true if table has white keys */
|
||
int hasww = 0; /* true if table has entry "white-key -> white-value" */
|
||
unsigned int i;
|
||
unsigned int asize = luaH_realasize(h);
|
||
unsigned int nsize = sizenode(h);
|
||
/* traverse array part */
|
||
for (i = 0; i < asize; i++) {
|
||
if (valiswhite(&h->array[i])) {
|
||
marked = 1;
|
||
reallymarkobject(g, gcvalue(&h->array[i]));
|
||
}
|
||
}
|
||
/* traverse hash part; if 'inv', traverse descending
|
||
(see 'convergeephemerons') */
|
||
for (i = 0; i < nsize; i++) {
|
||
Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
|
||
if (isempty(gval(n))) /* entry is empty? */
|
||
clearkey(n); /* clear its key */
|
||
else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */
|
||
hasclears = 1; /* table must be cleared */
|
||
if (valiswhite(gval(n))) /* value not marked yet? */
|
||
hasww = 1; /* white-white entry */
|
||
}
|
||
else if (valiswhite(gval(n))) { /* value not marked yet? */
|
||
marked = 1;
|
||
reallymarkobject(g, gcvalue(gval(n))); /* mark it now */
|
||
}
|
||
}
|
||
/* link table into proper list */
|
||
if (g->gcstate == GCSpropagate)
|
||
linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */
|
||
else if (hasww) /* table has white->white entries? */
|
||
linkgclist(h, g->ephemeron); /* have to propagate again */
|
||
else if (hasclears) /* table has white keys? */
|
||
linkgclist(h, g->allweak); /* may have to clean white keys */
|
||
else
|
||
genlink(g, obj2gco(h)); /* check whether collector still needs to see it */
|
||
return marked;
|
||
}
|
||
|
||
|
||
static void traversestrongtable (global_State *g, Table *h) {
|
||
Node *n, *limit = gnodelast(h);
|
||
unsigned int i;
|
||
unsigned int asize = luaH_realasize(h);
|
||
for (i = 0; i < asize; i++) /* traverse array part */
|
||
markvalue(g, &h->array[i]);
|
||
for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */
|
||
if (isempty(gval(n))) /* entry is empty? */
|
||
clearkey(n); /* clear its key */
|
||
else {
|
||
lua_assert(!keyisnil(n));
|
||
markkey(g, n);
|
||
markvalue(g, gval(n));
|
||
}
|
||
}
|
||
genlink(g, obj2gco(h));
|
||
}
|
||
|
||
|
||
static lu_mem traversetable (global_State *g, Table *h) {
|
||
const char *weakkey, *weakvalue;
|
||
const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
|
||
TString *smode;
|
||
markobjectN(g, h->metatable);
|
||
if (mode && ttisshrstring(mode) && /* is there a weak mode? */
|
||
(cast_void(smode = tsvalue(mode)),
|
||
cast_void(weakkey = strchr(getshrstr(smode), 'k')),
|
||
cast_void(weakvalue = strchr(getshrstr(smode), 'v')),
|
||
(weakkey || weakvalue))) { /* is really weak? */
|
||
if (!weakkey) /* strong keys? */
|
||
traverseweakvalue(g, h);
|
||
else if (!weakvalue) /* strong values? */
|
||
traverseephemeron(g, h, 0);
|
||
else /* all weak */
|
||
linkgclist(h, g->allweak); /* nothing to traverse now */
|
||
}
|
||
else /* not weak */
|
||
traversestrongtable(g, h);
|
||
return 1 + h->alimit + 2 * allocsizenode(h);
|
||
}
|
||
|
||
|
||
static int traverseudata (global_State *g, Udata *u) {
|
||
int i;
|
||
markobjectN(g, u->metatable); /* mark its metatable */
|
||
for (i = 0; i < u->nuvalue; i++)
|
||
markvalue(g, &u->uv[i].uv);
|
||
genlink(g, obj2gco(u));
|
||
return 1 + u->nuvalue;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a prototype. (While a prototype is being build, its
|
||
** arrays can be larger than needed; the extra slots are filled with
|
||
** NULL, so the use of 'markobjectN')
|
||
*/
|
||
static int traverseproto (global_State *g, Proto *f) {
|
||
int i;
|
||
markobjectN(g, f->source);
|
||
for (i = 0; i < f->sizek; i++) /* mark literals */
|
||
markvalue(g, &f->k[i]);
|
||
for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */
|
||
markobjectN(g, f->upvalues[i].name);
|
||
for (i = 0; i < f->sizep; i++) /* mark nested protos */
|
||
markobjectN(g, f->p[i]);
|
||
for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */
|
||
markobjectN(g, f->locvars[i].varname);
|
||
return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
|
||
}
|
||
|
||
|
||
static int traverseCclosure (global_State *g, CClosure *cl) {
|
||
int i;
|
||
for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */
|
||
markvalue(g, &cl->upvalue[i]);
|
||
return 1 + cl->nupvalues;
|
||
}
|
||
|
||
/*
|
||
** Traverse a Lua closure, marking its prototype and its upvalues.
|
||
** (Both can be NULL while closure is being created.)
|
||
*/
|
||
static int traverseLclosure (global_State *g, LClosure *cl) {
|
||
int i;
|
||
markobjectN(g, cl->p); /* mark its prototype */
|
||
for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */
|
||
UpVal *uv = cl->upvals[i];
|
||
markobjectN(g, uv); /* mark upvalue */
|
||
}
|
||
return 1 + cl->nupvalues;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a thread, marking the elements in the stack up to its top
|
||
** and cleaning the rest of the stack in the final traversal. That
|
||
** ensures that the entire stack have valid (non-dead) objects.
|
||
** Threads have no barriers. In gen. mode, old threads must be visited
|
||
** at every cycle, because they might point to young objects. In inc.
|
||
** mode, the thread can still be modified before the end of the cycle,
|
||
** and therefore it must be visited again in the atomic phase. To ensure
|
||
** these visits, threads must return to a gray list if they are not new
|
||
** (which can only happen in generational mode) or if the traverse is in
|
||
** the propagate phase (which can only happen in incremental mode).
|
||
*/
|
||
static int traversethread (global_State *g, lua_State *th) {
|
||
UpVal *uv;
|
||
StkId o = th->stack.p;
|
||
if (isold(th) || g->gcstate == GCSpropagate)
|
||
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
||
if (o == NULL)
|
||
return 1; /* stack not completely built yet */
|
||
lua_assert(g->gcstate == GCSatomic ||
|
||
th->openupval == NULL || isintwups(th));
|
||
for (; o < th->top.p; o++) /* mark live elements in the stack */
|
||
markvalue(g, s2v(o));
|
||
for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
|
||
markobject(g, uv); /* open upvalues cannot be collected */
|
||
if (g->gcstate == GCSatomic) { /* final traversal? */
|
||
if (!g->gcemergency)
|
||
luaD_shrinkstack(th); /* do not change stack in emergency cycle */
|
||
for (o = th->top.p; o < th->stack_last.p + EXTRA_STACK; o++)
|
||
setnilvalue(s2v(o)); /* clear dead stack slice */
|
||
/* 'remarkupvals' may have removed thread from 'twups' list */
|
||
if (!isintwups(th) && th->openupval != NULL) {
|
||
th->twups = g->twups; /* link it back to the list */
|
||
g->twups = th;
|
||
}
|
||
}
|
||
return 1 + stacksize(th);
|
||
}
|
||
|
||
|
||
/*
|
||
** traverse one gray object, turning it to black.
|
||
*/
|
||
static lu_mem propagatemark (global_State *g) {
|
||
GCObject *o = g->gray;
|
||
nw2black(o);
|
||
g->gray = *getgclist(o); /* remove from 'gray' list */
|
||
switch (o->tt) {
|
||
case LUA_VTABLE: return traversetable(g, gco2t(o));
|
||
case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
|
||
case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
|
||
case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
|
||
case LUA_VPROTO: return traverseproto(g, gco2p(o));
|
||
case LUA_VTHREAD: return traversethread(g, gco2th(o));
|
||
default: lua_assert(0); return 0;
|
||
}
|
||
}
|
||
|
||
|
||
static lu_mem propagateall (global_State *g) {
|
||
lu_mem tot = 0;
|
||
while (g->gray)
|
||
tot += propagatemark(g);
|
||
return tot;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse all ephemeron tables propagating marks from keys to values.
|
||
** Repeat until it converges, that is, nothing new is marked. 'dir'
|
||
** inverts the direction of the traversals, trying to speed up
|
||
** convergence on chains in the same table.
|
||
**
|
||
*/
|
||
static void convergeephemerons (global_State *g) {
|
||
int changed;
|
||
int dir = 0;
|
||
do {
|
||
GCObject *w;
|
||
GCObject *next = g->ephemeron; /* get ephemeron list */
|
||
g->ephemeron = NULL; /* tables may return to this list when traversed */
|
||
changed = 0;
|
||
while ((w = next) != NULL) { /* for each ephemeron table */
|
||
Table *h = gco2t(w);
|
||
next = h->gclist; /* list is rebuilt during loop */
|
||
nw2black(h); /* out of the list (for now) */
|
||
if (traverseephemeron(g, h, dir)) { /* marked some value? */
|
||
propagateall(g); /* propagate changes */
|
||
changed = 1; /* will have to revisit all ephemeron tables */
|
||
}
|
||
}
|
||
dir = !dir; /* invert direction next time */
|
||
} while (changed); /* repeat until no more changes */
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Sweep Functions
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** clear entries with unmarked keys from all weaktables in list 'l'
|
||
*/
|
||
static void clearbykeys (global_State *g, GCObject *l) {
|
||
for (; l; l = gco2t(l)->gclist) {
|
||
Table *h = gco2t(l);
|
||
Node *limit = gnodelast(h);
|
||
Node *n;
|
||
for (n = gnode(h, 0); n < limit; n++) {
|
||
if (iscleared(g, gckeyN(n))) /* unmarked key? */
|
||
setempty(gval(n)); /* remove entry */
|
||
if (isempty(gval(n))) /* is entry empty? */
|
||
clearkey(n); /* clear its key */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** clear entries with unmarked values from all weaktables in list 'l' up
|
||
** to element 'f'
|
||
*/
|
||
static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
|
||
for (; l != f; l = gco2t(l)->gclist) {
|
||
Table *h = gco2t(l);
|
||
Node *n, *limit = gnodelast(h);
|
||
unsigned int i;
|
||
unsigned int asize = luaH_realasize(h);
|
||
for (i = 0; i < asize; i++) {
|
||
TValue *o = &h->array[i];
|
||
if (iscleared(g, gcvalueN(o))) /* value was collected? */
|
||
setempty(o); /* remove entry */
|
||
}
|
||
for (n = gnode(h, 0); n < limit; n++) {
|
||
if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */
|
||
setempty(gval(n)); /* remove entry */
|
||
if (isempty(gval(n))) /* is entry empty? */
|
||
clearkey(n); /* clear its key */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void freeupval (lua_State *L, UpVal *uv) {
|
||
if (upisopen(uv))
|
||
luaF_unlinkupval(uv);
|
||
luaM_free(L, uv);
|
||
}
|
||
|
||
|
||
static void freeobj (lua_State *L, GCObject *o) {
|
||
switch (o->tt) {
|
||
case LUA_VPROTO:
|
||
luaF_freeproto(L, gco2p(o));
|
||
break;
|
||
case LUA_VUPVAL:
|
||
freeupval(L, gco2upv(o));
|
||
break;
|
||
case LUA_VLCL: {
|
||
LClosure *cl = gco2lcl(o);
|
||
luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
|
||
break;
|
||
}
|
||
case LUA_VCCL: {
|
||
CClosure *cl = gco2ccl(o);
|
||
luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
|
||
break;
|
||
}
|
||
case LUA_VTABLE:
|
||
luaH_free(L, gco2t(o));
|
||
break;
|
||
case LUA_VTHREAD:
|
||
luaE_freethread(L, gco2th(o));
|
||
break;
|
||
case LUA_VUSERDATA: {
|
||
Udata *u = gco2u(o);
|
||
luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
|
||
break;
|
||
}
|
||
case LUA_VSHRSTR: {
|
||
TString *ts = gco2ts(o);
|
||
luaS_remove(L, ts); /* remove it from hash table */
|
||
luaM_freemem(L, ts, sizelstring(ts->shrlen));
|
||
break;
|
||
}
|
||
case LUA_VLNGSTR: {
|
||
TString *ts = gco2ts(o);
|
||
luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
|
||
break;
|
||
}
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** sweep at most 'countin' elements from a list of GCObjects erasing dead
|
||
** objects, where a dead object is one marked with the old (non current)
|
||
** white; change all non-dead objects back to white, preparing for next
|
||
** collection cycle. Return where to continue the traversal or NULL if
|
||
** list is finished. ('*countout' gets the number of elements traversed.)
|
||
*/
|
||
static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
|
||
int *countout) {
|
||
global_State *g = G(L);
|
||
int ow = otherwhite(g);
|
||
int i;
|
||
int white = luaC_white(g); /* current white */
|
||
for (i = 0; *p != NULL && i < countin; i++) {
|
||
GCObject *curr = *p;
|
||
int marked = curr->marked;
|
||
if (isdeadm(ow, marked)) { /* is 'curr' dead? */
|
||
*p = curr->next; /* remove 'curr' from list */
|
||
freeobj(L, curr); /* erase 'curr' */
|
||
}
|
||
else { /* change mark to 'white' */
|
||
curr->marked = cast_byte((marked & ~maskgcbits) | white);
|
||
p = &curr->next; /* go to next element */
|
||
}
|
||
}
|
||
if (countout)
|
||
*countout = i; /* number of elements traversed */
|
||
return (*p == NULL) ? NULL : p;
|
||
}
|
||
|
||
|
||
/*
|
||
** sweep a list until a live object (or end of list)
|
||
*/
|
||
static GCObject **sweeptolive (lua_State *L, GCObject **p) {
|
||
GCObject **old = p;
|
||
do {
|
||
p = sweeplist(L, p, 1, NULL);
|
||
} while (p == old);
|
||
return p;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Finalization
|
||
** =======================================================
|
||
*/
|
||
|
||
/*
|
||
** If possible, shrink string table.
|
||
*/
|
||
static void checkSizes (lua_State *L, global_State *g) {
|
||
if (!g->gcemergency) {
|
||
if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */
|
||
l_mem olddebt = g->GCdebt;
|
||
luaS_resize(L, g->strt.size / 2);
|
||
g->GCestimate += g->GCdebt - olddebt; /* correct estimate */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the next udata to be finalized from the 'tobefnz' list, and
|
||
** link it back into the 'allgc' list.
|
||
*/
|
||
static GCObject *udata2finalize (global_State *g) {
|
||
GCObject *o = g->tobefnz; /* get first element */
|
||
lua_assert(tofinalize(o));
|
||
g->tobefnz = o->next; /* remove it from 'tobefnz' list */
|
||
o->next = g->allgc; /* return it to 'allgc' list */
|
||
g->allgc = o;
|
||
resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */
|
||
if (issweepphase(g))
|
||
makewhite(g, o); /* "sweep" object */
|
||
else if (getage(o) == G_OLD1)
|
||
g->firstold1 = o; /* it is the first OLD1 object in the list */
|
||
return o;
|
||
}
|
||
|
||
|
||
static void dothecall (lua_State *L, void *ud) {
|
||
UNUSED(ud);
|
||
luaD_callnoyield(L, L->top.p - 2, 0);
|
||
}
|
||
|
||
|
||
static void GCTM (lua_State *L) {
|
||
global_State *g = G(L);
|
||
const TValue *tm;
|
||
TValue v;
|
||
lua_assert(!g->gcemergency);
|
||
setgcovalue(L, &v, udata2finalize(g));
|
||
tm = luaT_gettmbyobj(L, &v, TM_GC);
|
||
if (!notm(tm)) { /* is there a finalizer? */
|
||
int status;
|
||
lu_byte oldah = L->allowhook;
|
||
int oldgcstp = g->gcstp;
|
||
g->gcstp |= GCSTPGC; /* avoid GC steps */
|
||
L->allowhook = 0; /* stop debug hooks during GC metamethod */
|
||
setobj2s(L, L->top.p++, tm); /* push finalizer... */
|
||
setobj2s(L, L->top.p++, &v); /* ... and its argument */
|
||
L->ci->callstatus |= CIST_FIN; /* will run a finalizer */
|
||
status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
|
||
L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */
|
||
L->allowhook = oldah; /* restore hooks */
|
||
g->gcstp = oldgcstp; /* restore state */
|
||
if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */
|
||
luaE_warnerror(L, "__gc");
|
||
L->top.p--; /* pops error object */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Call a few finalizers
|
||
*/
|
||
static int runafewfinalizers (lua_State *L, int n) {
|
||
global_State *g = G(L);
|
||
int i;
|
||
for (i = 0; i < n && g->tobefnz; i++)
|
||
GCTM(L); /* call one finalizer */
|
||
return i;
|
||
}
|
||
|
||
|
||
/*
|
||
** call all pending finalizers
|
||
*/
|
||
static void callallpendingfinalizers (lua_State *L) {
|
||
global_State *g = G(L);
|
||
while (g->tobefnz)
|
||
GCTM(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** find last 'next' field in list 'p' list (to add elements in its end)
|
||
*/
|
||
static GCObject **findlast (GCObject **p) {
|
||
while (*p != NULL)
|
||
p = &(*p)->next;
|
||
return p;
|
||
}
|
||
|
||
|
||
/*
|
||
** Move all unreachable objects (or 'all' objects) that need
|
||
** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
|
||
** (Note that objects after 'finobjold1' cannot be white, so they
|
||
** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
|
||
** so the whole list is traversed.)
|
||
*/
|
||
static void separatetobefnz (global_State *g, int all) {
|
||
GCObject *curr;
|
||
GCObject **p = &g->finobj;
|
||
GCObject **lastnext = findlast(&g->tobefnz);
|
||
while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */
|
||
lua_assert(tofinalize(curr));
|
||
if (!(iswhite(curr) || all)) /* not being collected? */
|
||
p = &curr->next; /* don't bother with it */
|
||
else {
|
||
if (curr == g->finobjsur) /* removing 'finobjsur'? */
|
||
g->finobjsur = curr->next; /* correct it */
|
||
*p = curr->next; /* remove 'curr' from 'finobj' list */
|
||
curr->next = *lastnext; /* link at the end of 'tobefnz' list */
|
||
*lastnext = curr;
|
||
lastnext = &curr->next;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** If pointer 'p' points to 'o', move it to the next element.
|
||
*/
|
||
static void checkpointer (GCObject **p, GCObject *o) {
|
||
if (o == *p)
|
||
*p = o->next;
|
||
}
|
||
|
||
|
||
/*
|
||
** Correct pointers to objects inside 'allgc' list when
|
||
** object 'o' is being removed from the list.
|
||
*/
|
||
static void correctpointers (global_State *g, GCObject *o) {
|
||
checkpointer(&g->survival, o);
|
||
checkpointer(&g->old1, o);
|
||
checkpointer(&g->reallyold, o);
|
||
checkpointer(&g->firstold1, o);
|
||
}
|
||
|
||
|
||
/*
|
||
** if object 'o' has a finalizer, remove it from 'allgc' list (must
|
||
** search the list to find it) and link it in 'finobj' list.
|
||
*/
|
||
void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
|
||
global_State *g = G(L);
|
||
if (tofinalize(o) || /* obj. is already marked... */
|
||
gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */
|
||
(g->gcstp & GCSTPCLS)) /* or closing state? */
|
||
return; /* nothing to be done */
|
||
else { /* move 'o' to 'finobj' list */
|
||
GCObject **p;
|
||
if (issweepphase(g)) {
|
||
makewhite(g, o); /* "sweep" object 'o' */
|
||
if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */
|
||
g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */
|
||
}
|
||
else
|
||
correctpointers(g, o);
|
||
/* search for pointer pointing to 'o' */
|
||
for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
|
||
*p = o->next; /* remove 'o' from 'allgc' list */
|
||
o->next = g->finobj; /* link it in 'finobj' list */
|
||
g->finobj = o;
|
||
l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */
|
||
}
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Generational Collector
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Set the "time" to wait before starting a new GC cycle; cycle will
|
||
** start when memory use hits the threshold of ('estimate' * pause /
|
||
** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
|
||
** because Lua cannot even start with less than PAUSEADJ bytes).
|
||
*/
|
||
static void setpause (global_State *g) {
|
||
l_mem threshold, debt;
|
||
int pause = getgcparam(g->gcpause);
|
||
l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */
|
||
lua_assert(estimate > 0);
|
||
threshold = (pause < MAX_LMEM / estimate) /* overflow? */
|
||
? estimate * pause /* no overflow */
|
||
: MAX_LMEM; /* overflow; truncate to maximum */
|
||
debt = gettotalbytes(g) - threshold;
|
||
if (debt > 0) debt = 0;
|
||
luaE_setdebt(g, debt);
|
||
}
|
||
|
||
|
||
/*
|
||
** Sweep a list of objects to enter generational mode. Deletes dead
|
||
** objects and turns the non dead to old. All non-dead threads---which
|
||
** are now old---must be in a gray list. Everything else is not in a
|
||
** gray list. Open upvalues are also kept gray.
|
||
*/
|
||
static void sweep2old (lua_State *L, GCObject **p) {
|
||
GCObject *curr;
|
||
global_State *g = G(L);
|
||
while ((curr = *p) != NULL) {
|
||
if (iswhite(curr)) { /* is 'curr' dead? */
|
||
lua_assert(isdead(g, curr));
|
||
*p = curr->next; /* remove 'curr' from list */
|
||
freeobj(L, curr); /* erase 'curr' */
|
||
}
|
||
else { /* all surviving objects become old */
|
||
setage(curr, G_OLD);
|
||
if (curr->tt == LUA_VTHREAD) { /* threads must be watched */
|
||
lua_State *th = gco2th(curr);
|
||
linkgclist(th, g->grayagain); /* insert into 'grayagain' list */
|
||
}
|
||
else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
|
||
set2gray(curr); /* open upvalues are always gray */
|
||
else /* everything else is black */
|
||
nw2black(curr);
|
||
p = &curr->next; /* go to next element */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Sweep for generational mode. Delete dead objects. (Because the
|
||
** collection is not incremental, there are no "new white" objects
|
||
** during the sweep. So, any white object must be dead.) For
|
||
** non-dead objects, advance their ages and clear the color of
|
||
** new objects. (Old objects keep their colors.)
|
||
** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
|
||
** here, because these old-generation objects are usually not swept
|
||
** here. They will all be advanced in 'correctgraylist'. That function
|
||
** will also remove objects turned white here from any gray list.
|
||
*/
|
||
static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
|
||
GCObject *limit, GCObject **pfirstold1) {
|
||
static const lu_byte nextage[] = {
|
||
G_SURVIVAL, /* from G_NEW */
|
||
G_OLD1, /* from G_SURVIVAL */
|
||
G_OLD1, /* from G_OLD0 */
|
||
G_OLD, /* from G_OLD1 */
|
||
G_OLD, /* from G_OLD (do not change) */
|
||
G_TOUCHED1, /* from G_TOUCHED1 (do not change) */
|
||
G_TOUCHED2 /* from G_TOUCHED2 (do not change) */
|
||
};
|
||
int white = luaC_white(g);
|
||
GCObject *curr;
|
||
while ((curr = *p) != limit) {
|
||
if (iswhite(curr)) { /* is 'curr' dead? */
|
||
lua_assert(!isold(curr) && isdead(g, curr));
|
||
*p = curr->next; /* remove 'curr' from list */
|
||
freeobj(L, curr); /* erase 'curr' */
|
||
}
|
||
else { /* correct mark and age */
|
||
if (getage(curr) == G_NEW) { /* new objects go back to white */
|
||
int marked = curr->marked & ~maskgcbits; /* erase GC bits */
|
||
curr->marked = cast_byte(marked | G_SURVIVAL | white);
|
||
}
|
||
else { /* all other objects will be old, and so keep their color */
|
||
setage(curr, nextage[getage(curr)]);
|
||
if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
|
||
*pfirstold1 = curr; /* first OLD1 object in the list */
|
||
}
|
||
p = &curr->next; /* go to next element */
|
||
}
|
||
}
|
||
return p;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a list making all its elements white and clearing their
|
||
** age. In incremental mode, all objects are 'new' all the time,
|
||
** except for fixed strings (which are always old).
|
||
*/
|
||
static void whitelist (global_State *g, GCObject *p) {
|
||
int white = luaC_white(g);
|
||
for (; p != NULL; p = p->next)
|
||
p->marked = cast_byte((p->marked & ~maskgcbits) | white);
|
||
}
|
||
|
||
|
||
/*
|
||
** Correct a list of gray objects. Return pointer to where rest of the
|
||
** list should be linked.
|
||
** Because this correction is done after sweeping, young objects might
|
||
** be turned white and still be in the list. They are only removed.
|
||
** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
|
||
** Non-white threads also remain on the list; 'TOUCHED2' objects become
|
||
** regular old; they and anything else are removed from the list.
|
||
*/
|
||
static GCObject **correctgraylist (GCObject **p) {
|
||
GCObject *curr;
|
||
while ((curr = *p) != NULL) {
|
||
GCObject **next = getgclist(curr);
|
||
if (iswhite(curr))
|
||
goto remove; /* remove all white objects */
|
||
else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */
|
||
lua_assert(isgray(curr));
|
||
nw2black(curr); /* make it black, for next barrier */
|
||
changeage(curr, G_TOUCHED1, G_TOUCHED2);
|
||
goto remain; /* keep it in the list and go to next element */
|
||
}
|
||
else if (curr->tt == LUA_VTHREAD) {
|
||
lua_assert(isgray(curr));
|
||
goto remain; /* keep non-white threads on the list */
|
||
}
|
||
else { /* everything else is removed */
|
||
lua_assert(isold(curr)); /* young objects should be white here */
|
||
if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */
|
||
changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */
|
||
nw2black(curr); /* make object black (to be removed) */
|
||
goto remove;
|
||
}
|
||
remove: *p = *next; continue;
|
||
remain: p = next; continue;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
|
||
/*
|
||
** Correct all gray lists, coalescing them into 'grayagain'.
|
||
*/
|
||
static void correctgraylists (global_State *g) {
|
||
GCObject **list = correctgraylist(&g->grayagain);
|
||
*list = g->weak; g->weak = NULL;
|
||
list = correctgraylist(list);
|
||
*list = g->allweak; g->allweak = NULL;
|
||
list = correctgraylist(list);
|
||
*list = g->ephemeron; g->ephemeron = NULL;
|
||
correctgraylist(list);
|
||
}
|
||
|
||
|
||
/*
|
||
** Mark black 'OLD1' objects when starting a new young collection.
|
||
** Gray objects are already in some gray list, and so will be visited
|
||
** in the atomic step.
|
||
*/
|
||
static void markold (global_State *g, GCObject *from, GCObject *to) {
|
||
GCObject *p;
|
||
for (p = from; p != to; p = p->next) {
|
||
if (getage(p) == G_OLD1) {
|
||
lua_assert(!iswhite(p));
|
||
changeage(p, G_OLD1, G_OLD); /* now they are old */
|
||
if (isblack(p))
|
||
reallymarkobject(g, p);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Finish a young-generation collection.
|
||
*/
|
||
static void finishgencycle (lua_State *L, global_State *g) {
|
||
correctgraylists(g);
|
||
checkSizes(L, g);
|
||
g->gcstate = GCSpropagate; /* skip restart */
|
||
if (!g->gcemergency)
|
||
callallpendingfinalizers(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** Does a young collection. First, mark 'OLD1' objects. Then does the
|
||
** atomic step. Then, sweep all lists and advance pointers. Finally,
|
||
** finish the collection.
|
||
*/
|
||
static void youngcollection (lua_State *L, global_State *g) {
|
||
GCObject **psurvival; /* to point to first non-dead survival object */
|
||
GCObject *dummy; /* dummy out parameter to 'sweepgen' */
|
||
lua_assert(g->gcstate == GCSpropagate);
|
||
if (g->firstold1) { /* are there regular OLD1 objects? */
|
||
markold(g, g->firstold1, g->reallyold); /* mark them */
|
||
g->firstold1 = NULL; /* no more OLD1 objects (for now) */
|
||
}
|
||
markold(g, g->finobj, g->finobjrold);
|
||
markold(g, g->tobefnz, NULL);
|
||
atomic(L);
|
||
|
||
/* sweep nursery and get a pointer to its last live element */
|
||
g->gcstate = GCSswpallgc;
|
||
psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
|
||
/* sweep 'survival' */
|
||
sweepgen(L, g, psurvival, g->old1, &g->firstold1);
|
||
g->reallyold = g->old1;
|
||
g->old1 = *psurvival; /* 'survival' survivals are old now */
|
||
g->survival = g->allgc; /* all news are survivals */
|
||
|
||
/* repeat for 'finobj' lists */
|
||
dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */
|
||
psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
|
||
/* sweep 'survival' */
|
||
sweepgen(L, g, psurvival, g->finobjold1, &dummy);
|
||
g->finobjrold = g->finobjold1;
|
||
g->finobjold1 = *psurvival; /* 'survival' survivals are old now */
|
||
g->finobjsur = g->finobj; /* all news are survivals */
|
||
|
||
sweepgen(L, g, &g->tobefnz, NULL, &dummy);
|
||
finishgencycle(L, g);
|
||
}
|
||
|
||
|
||
/*
|
||
** Clears all gray lists, sweeps objects, and prepare sublists to enter
|
||
** generational mode. The sweeps remove dead objects and turn all
|
||
** surviving objects to old. Threads go back to 'grayagain'; everything
|
||
** else is turned black (not in any gray list).
|
||
*/
|
||
static void atomic2gen (lua_State *L, global_State *g) {
|
||
cleargraylists(g);
|
||
/* sweep all elements making them old */
|
||
g->gcstate = GCSswpallgc;
|
||
sweep2old(L, &g->allgc);
|
||
/* everything alive now is old */
|
||
g->reallyold = g->old1 = g->survival = g->allgc;
|
||
g->firstold1 = NULL; /* there are no OLD1 objects anywhere */
|
||
|
||
/* repeat for 'finobj' lists */
|
||
sweep2old(L, &g->finobj);
|
||
g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
|
||
|
||
sweep2old(L, &g->tobefnz);
|
||
|
||
g->gckind = KGC_GEN;
|
||
g->lastatomic = 0;
|
||
g->GCestimate = gettotalbytes(g); /* base for memory control */
|
||
finishgencycle(L, g);
|
||
}
|
||
|
||
|
||
/*
|
||
** Set debt for the next minor collection, which will happen when
|
||
** memory grows 'genminormul'%.
|
||
*/
|
||
static void setminordebt (global_State *g) {
|
||
luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
|
||
}
|
||
|
||
|
||
/*
|
||
** Enter generational mode. Must go until the end of an atomic cycle
|
||
** to ensure that all objects are correctly marked and weak tables
|
||
** are cleared. Then, turn all objects into old and finishes the
|
||
** collection.
|
||
*/
|
||
static lu_mem entergen (lua_State *L, global_State *g) {
|
||
lu_mem numobjs;
|
||
luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */
|
||
luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
|
||
numobjs = atomic(L); /* propagates all and then do the atomic stuff */
|
||
atomic2gen(L, g);
|
||
setminordebt(g); /* set debt assuming next cycle will be minor */
|
||
return numobjs;
|
||
}
|
||
|
||
|
||
/*
|
||
** Enter incremental mode. Turn all objects white, make all
|
||
** intermediate lists point to NULL (to avoid invalid pointers),
|
||
** and go to the pause state.
|
||
*/
|
||
static void enterinc (global_State *g) {
|
||
whitelist(g, g->allgc);
|
||
g->reallyold = g->old1 = g->survival = NULL;
|
||
whitelist(g, g->finobj);
|
||
whitelist(g, g->tobefnz);
|
||
g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
|
||
g->gcstate = GCSpause;
|
||
g->gckind = KGC_INC;
|
||
g->lastatomic = 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Change collector mode to 'newmode'.
|
||
*/
|
||
void luaC_changemode (lua_State *L, int newmode) {
|
||
global_State *g = G(L);
|
||
if (newmode != g->gckind) {
|
||
if (newmode == KGC_GEN) /* entering generational mode? */
|
||
entergen(L, g);
|
||
else
|
||
enterinc(g); /* entering incremental mode */
|
||
}
|
||
g->lastatomic = 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Does a full collection in generational mode.
|
||
*/
|
||
static lu_mem fullgen (lua_State *L, global_State *g) {
|
||
enterinc(g);
|
||
return entergen(L, g);
|
||
}
|
||
|
||
|
||
/*
|
||
** Does a major collection after last collection was a "bad collection".
|
||
**
|
||
** When the program is building a big structure, it allocates lots of
|
||
** memory but generates very little garbage. In those scenarios,
|
||
** the generational mode just wastes time doing small collections, and
|
||
** major collections are frequently what we call a "bad collection", a
|
||
** collection that frees too few objects. To avoid the cost of switching
|
||
** between generational mode and the incremental mode needed for full
|
||
** (major) collections, the collector tries to stay in incremental mode
|
||
** after a bad collection, and to switch back to generational mode only
|
||
** after a "good" collection (one that traverses less than 9/8 objects
|
||
** of the previous one).
|
||
** The collector must choose whether to stay in incremental mode or to
|
||
** switch back to generational mode before sweeping. At this point, it
|
||
** does not know the real memory in use, so it cannot use memory to
|
||
** decide whether to return to generational mode. Instead, it uses the
|
||
** number of objects traversed (returned by 'atomic') as a proxy. The
|
||
** field 'g->lastatomic' keeps this count from the last collection.
|
||
** ('g->lastatomic != 0' also means that the last collection was bad.)
|
||
*/
|
||
static void stepgenfull (lua_State *L, global_State *g) {
|
||
lu_mem newatomic; /* count of traversed objects */
|
||
lu_mem lastatomic = g->lastatomic; /* count from last collection */
|
||
if (g->gckind == KGC_GEN) /* still in generational mode? */
|
||
enterinc(g); /* enter incremental mode */
|
||
luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
|
||
newatomic = atomic(L); /* mark everybody */
|
||
if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */
|
||
atomic2gen(L, g); /* return to generational mode */
|
||
setminordebt(g);
|
||
}
|
||
else { /* another bad collection; stay in incremental mode */
|
||
g->GCestimate = gettotalbytes(g); /* first estimate */
|
||
entersweep(L);
|
||
luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
|
||
setpause(g);
|
||
g->lastatomic = newatomic;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Does a generational "step".
|
||
** Usually, this means doing a minor collection and setting the debt to
|
||
** make another collection when memory grows 'genminormul'% larger.
|
||
**
|
||
** However, there are exceptions. If memory grows 'genmajormul'%
|
||
** larger than it was at the end of the last major collection (kept
|
||
** in 'g->GCestimate'), the function does a major collection. At the
|
||
** end, it checks whether the major collection was able to free a
|
||
** decent amount of memory (at least half the growth in memory since
|
||
** previous major collection). If so, the collector keeps its state,
|
||
** and the next collection will probably be minor again. Otherwise,
|
||
** we have what we call a "bad collection". In that case, set the field
|
||
** 'g->lastatomic' to signal that fact, so that the next collection will
|
||
** go to 'stepgenfull'.
|
||
**
|
||
** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
|
||
** in that case, do a minor collection.
|
||
*/
|
||
static void genstep (lua_State *L, global_State *g) {
|
||
if (g->lastatomic != 0) /* last collection was a bad one? */
|
||
stepgenfull(L, g); /* do a full step */
|
||
else {
|
||
lu_mem majorbase = g->GCestimate; /* memory after last major collection */
|
||
lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
|
||
if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
|
||
lu_mem numobjs = fullgen(L, g); /* do a major collection */
|
||
if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
|
||
/* collected at least half of memory growth since last major
|
||
collection; keep doing minor collections. */
|
||
lua_assert(g->lastatomic == 0);
|
||
}
|
||
else { /* bad collection */
|
||
g->lastatomic = numobjs; /* signal that last collection was bad */
|
||
setpause(g); /* do a long wait for next (major) collection */
|
||
}
|
||
}
|
||
else { /* regular case; do a minor collection */
|
||
youngcollection(L, g);
|
||
setminordebt(g);
|
||
g->GCestimate = majorbase; /* preserve base value */
|
||
}
|
||
}
|
||
lua_assert(isdecGCmodegen(g));
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** GC control
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Enter first sweep phase.
|
||
** The call to 'sweeptolive' makes the pointer point to an object
|
||
** inside the list (instead of to the header), so that the real sweep do
|
||
** not need to skip objects created between "now" and the start of the
|
||
** real sweep.
|
||
*/
|
||
static void entersweep (lua_State *L) {
|
||
global_State *g = G(L);
|
||
g->gcstate = GCSswpallgc;
|
||
lua_assert(g->sweepgc == NULL);
|
||
g->sweepgc = sweeptolive(L, &g->allgc);
|
||
}
|
||
|
||
|
||
/*
|
||
** Delete all objects in list 'p' until (but not including) object
|
||
** 'limit'.
|
||
*/
|
||
static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
|
||
while (p != limit) {
|
||
GCObject *next = p->next;
|
||
freeobj(L, p);
|
||
p = next;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Call all finalizers of the objects in the given Lua state, and
|
||
** then free all objects, except for the main thread.
|
||
*/
|
||
void luaC_freeallobjects (lua_State *L) {
|
||
global_State *g = G(L);
|
||
g->gcstp = GCSTPCLS; /* no extra finalizers after here */
|
||
luaC_changemode(L, KGC_INC);
|
||
separatetobefnz(g, 1); /* separate all objects with finalizers */
|
||
lua_assert(g->finobj == NULL);
|
||
callallpendingfinalizers(L);
|
||
deletelist(L, g->allgc, obj2gco(g->mainthread));
|
||
lua_assert(g->finobj == NULL); /* no new finalizers */
|
||
deletelist(L, g->fixedgc, NULL); /* collect fixed objects */
|
||
lua_assert(g->strt.nuse == 0);
|
||
}
|
||
|
||
|
||
static lu_mem atomic (lua_State *L) {
|
||
global_State *g = G(L);
|
||
lu_mem work = 0;
|
||
GCObject *origweak, *origall;
|
||
GCObject *grayagain = g->grayagain; /* save original list */
|
||
g->grayagain = NULL;
|
||
lua_assert(g->ephemeron == NULL && g->weak == NULL);
|
||
lua_assert(!iswhite(g->mainthread));
|
||
g->gcstate = GCSatomic;
|
||
markobject(g, L); /* mark running thread */
|
||
/* registry and global metatables may be changed by API */
|
||
markvalue(g, &g->l_registry);
|
||
markmt(g); /* mark global metatables */
|
||
work += propagateall(g); /* empties 'gray' list */
|
||
/* remark occasional upvalues of (maybe) dead threads */
|
||
work += remarkupvals(g);
|
||
work += propagateall(g); /* propagate changes */
|
||
g->gray = grayagain;
|
||
work += propagateall(g); /* traverse 'grayagain' list */
|
||
convergeephemerons(g);
|
||
/* at this point, all strongly accessible objects are marked. */
|
||
/* Clear values from weak tables, before checking finalizers */
|
||
clearbyvalues(g, g->weak, NULL);
|
||
clearbyvalues(g, g->allweak, NULL);
|
||
origweak = g->weak; origall = g->allweak;
|
||
separatetobefnz(g, 0); /* separate objects to be finalized */
|
||
work += markbeingfnz(g); /* mark objects that will be finalized */
|
||
work += propagateall(g); /* remark, to propagate 'resurrection' */
|
||
convergeephemerons(g);
|
||
/* at this point, all resurrected objects are marked. */
|
||
/* remove dead objects from weak tables */
|
||
clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */
|
||
clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */
|
||
/* clear values from resurrected weak tables */
|
||
clearbyvalues(g, g->weak, origweak);
|
||
clearbyvalues(g, g->allweak, origall);
|
||
luaS_clearcache(g);
|
||
g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */
|
||
lua_assert(g->gray == NULL);
|
||
return work; /* estimate of slots marked by 'atomic' */
|
||
}
|
||
|
||
|
||
static int sweepstep (lua_State *L, global_State *g,
|
||
int nextstate, GCObject **nextlist) {
|
||
if (g->sweepgc) {
|
||
l_mem olddebt = g->GCdebt;
|
||
int count;
|
||
g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
|
||
g->GCestimate += g->GCdebt - olddebt; /* update estimate */
|
||
return count;
|
||
}
|
||
else { /* enter next state */
|
||
g->gcstate = nextstate;
|
||
g->sweepgc = nextlist;
|
||
return 0; /* no work done */
|
||
}
|
||
}
|
||
|
||
|
||
static lu_mem singlestep (lua_State *L) {
|
||
global_State *g = G(L);
|
||
lu_mem work;
|
||
lua_assert(!g->gcstopem); /* collector is not reentrant */
|
||
g->gcstopem = 1; /* no emergency collections while collecting */
|
||
switch (g->gcstate) {
|
||
case GCSpause: {
|
||
restartcollection(g);
|
||
g->gcstate = GCSpropagate;
|
||
work = 1;
|
||
break;
|
||
}
|
||
case GCSpropagate: {
|
||
if (g->gray == NULL) { /* no more gray objects? */
|
||
g->gcstate = GCSenteratomic; /* finish propagate phase */
|
||
work = 0;
|
||
}
|
||
else
|
||
work = propagatemark(g); /* traverse one gray object */
|
||
break;
|
||
}
|
||
case GCSenteratomic: {
|
||
work = atomic(L); /* work is what was traversed by 'atomic' */
|
||
entersweep(L);
|
||
g->GCestimate = gettotalbytes(g); /* first estimate */
|
||
break;
|
||
}
|
||
case GCSswpallgc: { /* sweep "regular" objects */
|
||
work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
|
||
break;
|
||
}
|
||
case GCSswpfinobj: { /* sweep objects with finalizers */
|
||
work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
|
||
break;
|
||
}
|
||
case GCSswptobefnz: { /* sweep objects to be finalized */
|
||
work = sweepstep(L, g, GCSswpend, NULL);
|
||
break;
|
||
}
|
||
case GCSswpend: { /* finish sweeps */
|
||
checkSizes(L, g);
|
||
g->gcstate = GCScallfin;
|
||
work = 0;
|
||
break;
|
||
}
|
||
case GCScallfin: { /* call remaining finalizers */
|
||
if (g->tobefnz && !g->gcemergency) {
|
||
g->gcstopem = 0; /* ok collections during finalizers */
|
||
work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
|
||
}
|
||
else { /* emergency mode or no more finalizers */
|
||
g->gcstate = GCSpause; /* finish collection */
|
||
work = 0;
|
||
}
|
||
break;
|
||
}
|
||
default: lua_assert(0); return 0;
|
||
}
|
||
g->gcstopem = 0;
|
||
return work;
|
||
}
|
||
|
||
|
||
/*
|
||
** advances the garbage collector until it reaches a state allowed
|
||
** by 'statemask'
|
||
*/
|
||
void luaC_runtilstate (lua_State *L, int statesmask) {
|
||
global_State *g = G(L);
|
||
while (!testbit(statesmask, g->gcstate))
|
||
singlestep(L);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** Performs a basic incremental step. The debt and step size are
|
||
** converted from bytes to "units of work"; then the function loops
|
||
** running single steps until adding that many units of work or
|
||
** finishing a cycle (pause state). Finally, it sets the debt that
|
||
** controls when next step will be performed.
|
||
*/
|
||
static void incstep (lua_State *L, global_State *g) {
|
||
int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */
|
||
l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
|
||
l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
|
||
? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
|
||
: MAX_LMEM; /* overflow; keep maximum value */
|
||
do { /* repeat until pause or enough "credit" (negative debt) */
|
||
lu_mem work = singlestep(L); /* perform one single step */
|
||
debt -= work;
|
||
} while (debt > -stepsize && g->gcstate != GCSpause);
|
||
if (g->gcstate == GCSpause)
|
||
setpause(g); /* pause until next cycle */
|
||
else {
|
||
debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */
|
||
luaE_setdebt(g, debt);
|
||
}
|
||
}
|
||
|
||
/*
|
||
** Performs a basic GC step if collector is running. (If collector is
|
||
** not running, set a reasonable debt to avoid it being called at
|
||
** every single check.)
|
||
*/
|
||
void luaC_step (lua_State *L) {
|
||
global_State *g = G(L);
|
||
if (!gcrunning(g)) /* not running? */
|
||
luaE_setdebt(g, -2000);
|
||
else {
|
||
if(isdecGCmodegen(g))
|
||
genstep(L, g);
|
||
else
|
||
incstep(L, g);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Perform a full collection in incremental mode.
|
||
** Before running the collection, check 'keepinvariant'; if it is true,
|
||
** there may be some objects marked as black, so the collector has
|
||
** to sweep all objects to turn them back to white (as white has not
|
||
** changed, nothing will be collected).
|
||
*/
|
||
static void fullinc (lua_State *L, global_State *g) {
|
||
if (keepinvariant(g)) /* black objects? */
|
||
entersweep(L); /* sweep everything to turn them back to white */
|
||
/* finish any pending sweep phase to start a new cycle */
|
||
luaC_runtilstate(L, bitmask(GCSpause));
|
||
luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */
|
||
g->gcstate = GCSenteratomic; /* go straight to atomic phase */
|
||
luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */
|
||
/* estimate must be correct after a full GC cycle */
|
||
lua_assert(g->GCestimate == gettotalbytes(g));
|
||
luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */
|
||
setpause(g);
|
||
}
|
||
|
||
|
||
/*
|
||
** Performs a full GC cycle; if 'isemergency', set a flag to avoid
|
||
** some operations which could change the interpreter state in some
|
||
** unexpected ways (running finalizers and shrinking some structures).
|
||
*/
|
||
void luaC_fullgc (lua_State *L, int isemergency) {
|
||
global_State *g = G(L);
|
||
lua_assert(!g->gcemergency);
|
||
g->gcemergency = isemergency; /* set flag */
|
||
if (g->gckind == KGC_INC)
|
||
fullinc(L, g);
|
||
else
|
||
fullgen(L, g);
|
||
g->gcemergency = 0;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** $Id: llex.c $
|
||
** Lexical Analyzer
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define llex_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <locale.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lctype.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "llex.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lparser.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
|
||
#define next(ls) (ls->current = zgetc(ls->z))
|
||
|
||
|
||
|
||
#define currIsNewline(ls) (ls->current == '\n' || ls->current == '\r')
|
||
|
||
|
||
/* ORDER RESERVED */
|
||
static const char *const luaX_tokens [] = {
|
||
"and", "break", "do", "else", "elseif",
|
||
"end", "false", "for", "function", "goto", "if",
|
||
"in", "local", "nil", "not", "or", "repeat",
|
||
"return", "then", "true", "until", "while",
|
||
"//", "..", "...", "==", ">=", "<=", "~=",
|
||
"<<", ">>", "::", "<eof>",
|
||
"<number>", "<integer>", "<name>", "<string>"
|
||
};
|
||
|
||
|
||
#define save_and_next(ls) (save(ls, ls->current), next(ls))
|
||
|
||
|
||
static l_noret lexerror (LexState *ls, const char *msg, int token);
|
||
|
||
|
||
static void save (LexState *ls, int c) {
|
||
Mbuffer *b = ls->buff;
|
||
if (luaZ_bufflen(b) + 1 > luaZ_sizebuffer(b)) {
|
||
size_t newsize;
|
||
if (luaZ_sizebuffer(b) >= MAX_SIZE/2)
|
||
lexerror(ls, "lexical element too long", 0);
|
||
newsize = luaZ_sizebuffer(b) * 2;
|
||
luaZ_resizebuffer(ls->L, b, newsize);
|
||
}
|
||
b->buffer[luaZ_bufflen(b)++] = cast_char(c);
|
||
}
|
||
|
||
|
||
void luaX_init (lua_State *L) {
|
||
int i;
|
||
TString *e = luaS_newliteral(L, LUA_ENV); /* create env name */
|
||
luaC_fix(L, obj2gco(e)); /* never collect this name */
|
||
for (i=0; i<NUM_RESERVED; i++) {
|
||
TString *ts = luaS_new(L, luaX_tokens[i]);
|
||
luaC_fix(L, obj2gco(ts)); /* reserved words are never collected */
|
||
ts->extra = cast_byte(i+1); /* reserved word */
|
||
}
|
||
}
|
||
|
||
|
||
const char *luaX_token2str (LexState *ls, int token) {
|
||
if (token < FIRST_RESERVED) { /* single-byte symbols? */
|
||
if (lisprint(token))
|
||
return luaO_pushfstring(ls->L, "'%c'", token);
|
||
else /* control character */
|
||
return luaO_pushfstring(ls->L, "'<\\%d>'", token);
|
||
}
|
||
else {
|
||
const char *s = luaX_tokens[token - FIRST_RESERVED];
|
||
if (token < TK_EOS) /* fixed format (symbols and reserved words)? */
|
||
return luaO_pushfstring(ls->L, "'%s'", s);
|
||
else /* names, strings, and numerals */
|
||
return s;
|
||
}
|
||
}
|
||
|
||
|
||
static const char *txtToken (LexState *ls, int token) {
|
||
switch (token) {
|
||
case TK_NAME: case TK_STRING:
|
||
case TK_FLT: case TK_INT:
|
||
save(ls, '\0');
|
||
return luaO_pushfstring(ls->L, "'%s'", luaZ_buffer(ls->buff));
|
||
default:
|
||
return luaX_token2str(ls, token);
|
||
}
|
||
}
|
||
|
||
|
||
static l_noret lexerror (LexState *ls, const char *msg, int token) {
|
||
msg = luaG_addinfo(ls->L, msg, ls->source, ls->linenumber);
|
||
if (token)
|
||
luaO_pushfstring(ls->L, "%s near %s", msg, txtToken(ls, token));
|
||
luaD_throw(ls->L, LUA_ERRSYNTAX);
|
||
}
|
||
|
||
|
||
l_noret luaX_syntaxerror (LexState *ls, const char *msg) {
|
||
lexerror(ls, msg, ls->t.token);
|
||
}
|
||
|
||
|
||
/*
|
||
** Creates a new string and anchors it in scanner's table so that it
|
||
** will not be collected until the end of the compilation; by that time
|
||
** it should be anchored somewhere. It also internalizes long strings,
|
||
** ensuring there is only one copy of each unique string. The table
|
||
** here is used as a set: the string enters as the key, while its value
|
||
** is irrelevant. We use the string itself as the value only because it
|
||
** is a TValue readily available. Later, the code generation can change
|
||
** this value.
|
||
*/
|
||
TString *luaX_newstring (LexState *ls, const char *str, size_t l) {
|
||
lua_State *L = ls->L;
|
||
TString *ts = luaS_newlstr(L, str, l); /* create new string */
|
||
const TValue *o = luaH_getstr(ls->h, ts);
|
||
if (!ttisnil(o)) /* string already present? */
|
||
ts = keystrval(nodefromval(o)); /* get saved copy */
|
||
else { /* not in use yet */
|
||
TValue *stv = s2v(L->top.p++); /* reserve stack space for string */
|
||
setsvalue(L, stv, ts); /* temporarily anchor the string */
|
||
luaH_finishset(L, ls->h, stv, o, stv); /* t[string] = string */
|
||
/* table is not a metatable, so it does not need to invalidate cache */
|
||
luaC_checkGC(L);
|
||
L->top.p--; /* remove string from stack */
|
||
}
|
||
return ts;
|
||
}
|
||
|
||
|
||
/*
|
||
** increment line number and skips newline sequence (any of
|
||
** \n, \r, \n\r, or \r\n)
|
||
*/
|
||
static void inclinenumber (LexState *ls) {
|
||
int old = ls->current;
|
||
lua_assert(currIsNewline(ls));
|
||
next(ls); /* skip '\n' or '\r' */
|
||
if (currIsNewline(ls) && ls->current != old)
|
||
next(ls); /* skip '\n\r' or '\r\n' */
|
||
if (++ls->linenumber >= MAX_INT)
|
||
lexerror(ls, "chunk has too many lines", 0);
|
||
}
|
||
|
||
|
||
void luaX_setinput (lua_State *L, LexState *ls, ZIO *z, TString *source,
|
||
int firstchar) {
|
||
ls->t.token = 0;
|
||
ls->L = L;
|
||
ls->current = firstchar;
|
||
ls->lookahead.token = TK_EOS; /* no look-ahead token */
|
||
ls->z = z;
|
||
ls->fs = NULL;
|
||
ls->linenumber = 1;
|
||
ls->lastline = 1;
|
||
ls->source = source;
|
||
ls->envn = luaS_newliteral(L, LUA_ENV); /* get env name */
|
||
luaZ_resizebuffer(ls->L, ls->buff, LUA_MINBUFFER); /* initialize buffer */
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** =======================================================
|
||
** LEXICAL ANALYZER
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
static int check_next1 (LexState *ls, int c) {
|
||
if (ls->current == c) {
|
||
next(ls);
|
||
return 1;
|
||
}
|
||
else return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether current char is in set 'set' (with two chars) and
|
||
** saves it
|
||
*/
|
||
static int check_next2 (LexState *ls, const char *set) {
|
||
lua_assert(set[2] == '\0');
|
||
if (ls->current == set[0] || ls->current == set[1]) {
|
||
save_and_next(ls);
|
||
return 1;
|
||
}
|
||
else return 0;
|
||
}
|
||
|
||
|
||
/* LUA_NUMBER */
|
||
/*
|
||
** This function is quite liberal in what it accepts, as 'luaO_str2num'
|
||
** will reject ill-formed numerals. Roughly, it accepts the following
|
||
** pattern:
|
||
**
|
||
** %d(%x|%.|([Ee][+-]?))* | 0[Xx](%x|%.|([Pp][+-]?))*
|
||
**
|
||
** The only tricky part is to accept [+-] only after a valid exponent
|
||
** mark, to avoid reading '3-4' or '0xe+1' as a single number.
|
||
**
|
||
** The caller might have already read an initial dot.
|
||
*/
|
||
static int read_numeral (LexState *ls, SemInfo *seminfo) {
|
||
TValue obj;
|
||
const char *expo = "Ee";
|
||
int first = ls->current;
|
||
lua_assert(lisdigit(ls->current));
|
||
save_and_next(ls);
|
||
if (first == '0' && check_next2(ls, "xX")) /* hexadecimal? */
|
||
expo = "Pp";
|
||
for (;;) {
|
||
if (check_next2(ls, expo)) /* exponent mark? */
|
||
check_next2(ls, "-+"); /* optional exponent sign */
|
||
else if (lisxdigit(ls->current) || ls->current == '.') /* '%x|%.' */
|
||
save_and_next(ls);
|
||
else break;
|
||
}
|
||
if (lislalpha(ls->current)) /* is numeral touching a letter? */
|
||
save_and_next(ls); /* force an error */
|
||
save(ls, '\0');
|
||
if (luaO_str2num(luaZ_buffer(ls->buff), &obj) == 0) /* format error? */
|
||
lexerror(ls, "malformed number", TK_FLT);
|
||
if (ttisinteger(&obj)) {
|
||
seminfo->i = ivalue(&obj);
|
||
return TK_INT;
|
||
}
|
||
else {
|
||
lua_assert(ttisfloat(&obj));
|
||
seminfo->r = fltvalue(&obj);
|
||
return TK_FLT;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** read a sequence '[=*[' or ']=*]', leaving the last bracket. If
|
||
** sequence is well formed, return its number of '='s + 2; otherwise,
|
||
** return 1 if it is a single bracket (no '='s and no 2nd bracket);
|
||
** otherwise (an unfinished '[==...') return 0.
|
||
*/
|
||
static size_t skip_sep (LexState *ls) {
|
||
size_t count = 0;
|
||
int s = ls->current;
|
||
lua_assert(s == '[' || s == ']');
|
||
save_and_next(ls);
|
||
while (ls->current == '=') {
|
||
save_and_next(ls);
|
||
count++;
|
||
}
|
||
return (ls->current == s) ? count + 2
|
||
: (count == 0) ? 1
|
||
: 0;
|
||
}
|
||
|
||
|
||
static void read_long_string (LexState *ls, SemInfo *seminfo, size_t sep) {
|
||
int line = ls->linenumber; /* initial line (for error message) */
|
||
save_and_next(ls); /* skip 2nd '[' */
|
||
if (currIsNewline(ls)) /* string starts with a newline? */
|
||
inclinenumber(ls); /* skip it */
|
||
for (;;) {
|
||
switch (ls->current) {
|
||
case EOZ: { /* error */
|
||
const char *what = (seminfo ? "string" : "comment");
|
||
const char *msg = luaO_pushfstring(ls->L,
|
||
"unfinished long %s (starting at line %d)", what, line);
|
||
lexerror(ls, msg, TK_EOS);
|
||
break; /* to avoid warnings */
|
||
}
|
||
case ']': {
|
||
if (skip_sep(ls) == sep) {
|
||
save_and_next(ls); /* skip 2nd ']' */
|
||
goto endloop;
|
||
}
|
||
break;
|
||
}
|
||
case '\n': case '\r': {
|
||
save(ls, '\n');
|
||
inclinenumber(ls);
|
||
if (!seminfo) luaZ_resetbuffer(ls->buff); /* avoid wasting space */
|
||
break;
|
||
}
|
||
default: {
|
||
if (seminfo) save_and_next(ls);
|
||
else next(ls);
|
||
}
|
||
}
|
||
} endloop:
|
||
if (seminfo)
|
||
seminfo->ts = luaX_newstring(ls, luaZ_buffer(ls->buff) + sep,
|
||
luaZ_bufflen(ls->buff) - 2 * sep);
|
||
}
|
||
|
||
|
||
static void esccheck (LexState *ls, int c, const char *msg) {
|
||
if (!c) {
|
||
if (ls->current != EOZ)
|
||
save_and_next(ls); /* add current to buffer for error message */
|
||
lexerror(ls, msg, TK_STRING);
|
||
}
|
||
}
|
||
|
||
|
||
static int gethexa (LexState *ls) {
|
||
save_and_next(ls);
|
||
esccheck (ls, lisxdigit(ls->current), "hexadecimal digit expected");
|
||
return luaO_hexavalue(ls->current);
|
||
}
|
||
|
||
|
||
static int readhexaesc (LexState *ls) {
|
||
int r = gethexa(ls);
|
||
r = (r << 4) + gethexa(ls);
|
||
luaZ_buffremove(ls->buff, 2); /* remove saved chars from buffer */
|
||
return r;
|
||
}
|
||
|
||
|
||
static unsigned long readutf8esc (LexState *ls) {
|
||
unsigned long r;
|
||
int i = 4; /* chars to be removed: '\', 'u', '{', and first digit */
|
||
save_and_next(ls); /* skip 'u' */
|
||
esccheck(ls, ls->current == '{', "missing '{'");
|
||
r = gethexa(ls); /* must have at least one digit */
|
||
while (cast_void(save_and_next(ls)), lisxdigit(ls->current)) {
|
||
i++;
|
||
esccheck(ls, r <= (0x7FFFFFFFu >> 4), "UTF-8 value too large");
|
||
r = (r << 4) + luaO_hexavalue(ls->current);
|
||
}
|
||
esccheck(ls, ls->current == '}', "missing '}'");
|
||
next(ls); /* skip '}' */
|
||
luaZ_buffremove(ls->buff, i); /* remove saved chars from buffer */
|
||
return r;
|
||
}
|
||
|
||
|
||
static void utf8esc (LexState *ls) {
|
||
char buff[UTF8BUFFSZ];
|
||
int n = luaO_utf8esc(buff, readutf8esc(ls));
|
||
for (; n > 0; n--) /* add 'buff' to string */
|
||
save(ls, buff[UTF8BUFFSZ - n]);
|
||
}
|
||
|
||
|
||
static int readdecesc (LexState *ls) {
|
||
int i;
|
||
int r = 0; /* result accumulator */
|
||
for (i = 0; i < 3 && lisdigit(ls->current); i++) { /* read up to 3 digits */
|
||
r = 10*r + ls->current - '0';
|
||
save_and_next(ls);
|
||
}
|
||
esccheck(ls, r <= UCHAR_MAX, "decimal escape too large");
|
||
luaZ_buffremove(ls->buff, i); /* remove read digits from buffer */
|
||
return r;
|
||
}
|
||
|
||
|
||
static void read_string (LexState *ls, int del, SemInfo *seminfo) {
|
||
save_and_next(ls); /* keep delimiter (for error messages) */
|
||
while (ls->current != del) {
|
||
switch (ls->current) {
|
||
case EOZ:
|
||
lexerror(ls, "unfinished string", TK_EOS);
|
||
break; /* to avoid warnings */
|
||
case '\n':
|
||
case '\r':
|
||
lexerror(ls, "unfinished string", TK_STRING);
|
||
break; /* to avoid warnings */
|
||
case '\\': { /* escape sequences */
|
||
int c; /* final character to be saved */
|
||
save_and_next(ls); /* keep '\\' for error messages */
|
||
switch (ls->current) {
|
||
case 'a': c = '\a'; goto read_save;
|
||
case 'b': c = '\b'; goto read_save;
|
||
case 'f': c = '\f'; goto read_save;
|
||
case 'n': c = '\n'; goto read_save;
|
||
case 'r': c = '\r'; goto read_save;
|
||
case 't': c = '\t'; goto read_save;
|
||
case 'v': c = '\v'; goto read_save;
|
||
case 'x': c = readhexaesc(ls); goto read_save;
|
||
case 'u': utf8esc(ls); goto no_save;
|
||
case '\n': case '\r':
|
||
inclinenumber(ls); c = '\n'; goto only_save;
|
||
case '\\': case '\"': case '\'':
|
||
c = ls->current; goto read_save;
|
||
case EOZ: goto no_save; /* will raise an error next loop */
|
||
case 'z': { /* zap following span of spaces */
|
||
luaZ_buffremove(ls->buff, 1); /* remove '\\' */
|
||
next(ls); /* skip the 'z' */
|
||
while (lisspace(ls->current)) {
|
||
if (currIsNewline(ls)) inclinenumber(ls);
|
||
else next(ls);
|
||
}
|
||
goto no_save;
|
||
}
|
||
default: {
|
||
esccheck(ls, lisdigit(ls->current), "invalid escape sequence");
|
||
c = readdecesc(ls); /* digital escape '\ddd' */
|
||
goto only_save;
|
||
}
|
||
}
|
||
read_save:
|
||
next(ls);
|
||
/* go through */
|
||
only_save:
|
||
luaZ_buffremove(ls->buff, 1); /* remove '\\' */
|
||
save(ls, c);
|
||
/* go through */
|
||
no_save: break;
|
||
}
|
||
default:
|
||
save_and_next(ls);
|
||
}
|
||
}
|
||
save_and_next(ls); /* skip delimiter */
|
||
seminfo->ts = luaX_newstring(ls, luaZ_buffer(ls->buff) + 1,
|
||
luaZ_bufflen(ls->buff) - 2);
|
||
}
|
||
|
||
|
||
static int llex (LexState *ls, SemInfo *seminfo) {
|
||
luaZ_resetbuffer(ls->buff);
|
||
for (;;) {
|
||
switch (ls->current) {
|
||
case '\n': case '\r': { /* line breaks */
|
||
inclinenumber(ls);
|
||
break;
|
||
}
|
||
case ' ': case '\f': case '\t': case '\v': { /* spaces */
|
||
next(ls);
|
||
break;
|
||
}
|
||
case '-': { /* '-' or '--' (comment) */
|
||
next(ls);
|
||
if (ls->current != '-') return '-';
|
||
/* else is a comment */
|
||
next(ls);
|
||
if (ls->current == '[') { /* long comment? */
|
||
size_t sep = skip_sep(ls);
|
||
luaZ_resetbuffer(ls->buff); /* 'skip_sep' may dirty the buffer */
|
||
if (sep >= 2) {
|
||
read_long_string(ls, NULL, sep); /* skip long comment */
|
||
luaZ_resetbuffer(ls->buff); /* previous call may dirty the buff. */
|
||
break;
|
||
}
|
||
}
|
||
/* else short comment */
|
||
while (!currIsNewline(ls) && ls->current != EOZ)
|
||
next(ls); /* skip until end of line (or end of file) */
|
||
break;
|
||
}
|
||
case '[': { /* long string or simply '[' */
|
||
size_t sep = skip_sep(ls);
|
||
if (sep >= 2) {
|
||
read_long_string(ls, seminfo, sep);
|
||
return TK_STRING;
|
||
}
|
||
else if (sep == 0) /* '[=...' missing second bracket? */
|
||
lexerror(ls, "invalid long string delimiter", TK_STRING);
|
||
return '[';
|
||
}
|
||
case '=': {
|
||
next(ls);
|
||
if (check_next1(ls, '=')) return TK_EQ; /* '==' */
|
||
else return '=';
|
||
}
|
||
case '<': {
|
||
next(ls);
|
||
if (check_next1(ls, '=')) return TK_LE; /* '<=' */
|
||
else if (check_next1(ls, '<')) return TK_SHL; /* '<<' */
|
||
else return '<';
|
||
}
|
||
case '>': {
|
||
next(ls);
|
||
if (check_next1(ls, '=')) return TK_GE; /* '>=' */
|
||
else if (check_next1(ls, '>')) return TK_SHR; /* '>>' */
|
||
else return '>';
|
||
}
|
||
case '/': {
|
||
next(ls);
|
||
if (check_next1(ls, '/')) return TK_IDIV; /* '//' */
|
||
else return '/';
|
||
}
|
||
case '~': {
|
||
next(ls);
|
||
if (check_next1(ls, '=')) return TK_NE; /* '~=' */
|
||
else return '~';
|
||
}
|
||
case ':': {
|
||
next(ls);
|
||
if (check_next1(ls, ':')) return TK_DBCOLON; /* '::' */
|
||
else return ':';
|
||
}
|
||
case '"': case '\'': { /* short literal strings */
|
||
read_string(ls, ls->current, seminfo);
|
||
return TK_STRING;
|
||
}
|
||
case '.': { /* '.', '..', '...', or number */
|
||
save_and_next(ls);
|
||
if (check_next1(ls, '.')) {
|
||
if (check_next1(ls, '.'))
|
||
return TK_DOTS; /* '...' */
|
||
else return TK_CONCAT; /* '..' */
|
||
}
|
||
else if (!lisdigit(ls->current)) return '.';
|
||
else return read_numeral(ls, seminfo);
|
||
}
|
||
case '0': case '1': case '2': case '3': case '4':
|
||
case '5': case '6': case '7': case '8': case '9': {
|
||
return read_numeral(ls, seminfo);
|
||
}
|
||
case EOZ: {
|
||
return TK_EOS;
|
||
}
|
||
default: {
|
||
if (lislalpha(ls->current)) { /* identifier or reserved word? */
|
||
TString *ts;
|
||
do {
|
||
save_and_next(ls);
|
||
} while (lislalnum(ls->current));
|
||
ts = luaX_newstring(ls, luaZ_buffer(ls->buff),
|
||
luaZ_bufflen(ls->buff));
|
||
seminfo->ts = ts;
|
||
if (isreserved(ts)) /* reserved word? */
|
||
return ts->extra - 1 + FIRST_RESERVED;
|
||
else {
|
||
return TK_NAME;
|
||
}
|
||
}
|
||
else { /* single-char tokens ('+', '*', '%', '{', '}', ...) */
|
||
int c = ls->current;
|
||
next(ls);
|
||
return c;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void luaX_next (LexState *ls) {
|
||
ls->lastline = ls->linenumber;
|
||
if (ls->lookahead.token != TK_EOS) { /* is there a look-ahead token? */
|
||
ls->t = ls->lookahead; /* use this one */
|
||
ls->lookahead.token = TK_EOS; /* and discharge it */
|
||
}
|
||
else
|
||
ls->t.token = llex(ls, &ls->t.seminfo); /* read next token */
|
||
}
|
||
|
||
|
||
int luaX_lookahead (LexState *ls) {
|
||
lua_assert(ls->lookahead.token == TK_EOS);
|
||
ls->lookahead.token = llex(ls, &ls->lookahead.seminfo);
|
||
return ls->lookahead.token;
|
||
}
|
||
|
||
/*
|
||
** $Id: lcode.c $
|
||
** Code generator for Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lcode_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <float.h>
|
||
#include <limits.h>
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lcode.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "llex.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lparser.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
/* Maximum number of registers in a Lua function (must fit in 8 bits) */
|
||
#define MAXREGS 255
|
||
|
||
|
||
#define hasjumps(e) ((e)->t != (e)->f)
|
||
|
||
|
||
static int codesJ (FuncState *fs, OpCode o, int sj, int k);
|
||
|
||
|
||
|
||
/* semantic error */
|
||
l_noret luaK_semerror (LexState *ls, const char *msg) {
|
||
ls->t.token = 0; /* remove "near <token>" from final message */
|
||
luaX_syntaxerror(ls, msg);
|
||
}
|
||
|
||
|
||
/*
|
||
** If expression is a numeric constant, fills 'v' with its value
|
||
** and returns 1. Otherwise, returns 0.
|
||
*/
|
||
static int tonumeral (const expdesc *e, TValue *v) {
|
||
if (hasjumps(e))
|
||
return 0; /* not a numeral */
|
||
switch (e->k) {
|
||
case VKINT:
|
||
if (v) setivalue(v, e->u.ival);
|
||
return 1;
|
||
case VKFLT:
|
||
if (v) setfltvalue(v, e->u.nval);
|
||
return 1;
|
||
default: return 0;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the constant value from a constant expression
|
||
*/
|
||
static TValue *const2val (FuncState *fs, const expdesc *e) {
|
||
lua_assert(e->k == VCONST);
|
||
return &fs->ls->dyd->actvar.arr[e->u.info].k;
|
||
}
|
||
|
||
|
||
/*
|
||
** If expression is a constant, fills 'v' with its value
|
||
** and returns 1. Otherwise, returns 0.
|
||
*/
|
||
int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
|
||
if (hasjumps(e))
|
||
return 0; /* not a constant */
|
||
switch (e->k) {
|
||
case VFALSE:
|
||
setbfvalue(v);
|
||
return 1;
|
||
case VTRUE:
|
||
setbtvalue(v);
|
||
return 1;
|
||
case VNIL:
|
||
setnilvalue(v);
|
||
return 1;
|
||
case VKSTR: {
|
||
setsvalue(fs->ls->L, v, e->u.strval);
|
||
return 1;
|
||
}
|
||
case VCONST: {
|
||
setobj(fs->ls->L, v, const2val(fs, e));
|
||
return 1;
|
||
}
|
||
default: return tonumeral(e, v);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Return the previous instruction of the current code. If there
|
||
** may be a jump target between the current instruction and the
|
||
** previous one, return an invalid instruction (to avoid wrong
|
||
** optimizations).
|
||
*/
|
||
static Instruction *previousinstruction (FuncState *fs) {
|
||
static const Instruction invalidinstruction = ~(Instruction)0;
|
||
if (fs->pc > fs->lasttarget)
|
||
return &fs->f->code[fs->pc - 1]; /* previous instruction */
|
||
else
|
||
return cast(Instruction*, &invalidinstruction);
|
||
}
|
||
|
||
|
||
/*
|
||
** Create a OP_LOADNIL instruction, but try to optimize: if the previous
|
||
** instruction is also OP_LOADNIL and ranges are compatible, adjust
|
||
** range of previous instruction instead of emitting a new one. (For
|
||
** instance, 'local a; local b' will generate a single opcode.)
|
||
*/
|
||
void luaK_nil (FuncState *fs, int from, int n) {
|
||
int l = from + n - 1; /* last register to set nil */
|
||
Instruction *previous = previousinstruction(fs);
|
||
if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */
|
||
int pfrom = GETARG_A(*previous); /* get previous range */
|
||
int pl = pfrom + GETARG_B(*previous);
|
||
if ((pfrom <= from && from <= pl + 1) ||
|
||
(from <= pfrom && pfrom <= l + 1)) { /* can connect both? */
|
||
if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */
|
||
if (pl > l) l = pl; /* l = max(l, pl) */
|
||
SETARG_A(*previous, from);
|
||
SETARG_B(*previous, l - from);
|
||
return;
|
||
} /* else go through */
|
||
}
|
||
luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */
|
||
}
|
||
|
||
|
||
/*
|
||
** Gets the destination address of a jump instruction. Used to traverse
|
||
** a list of jumps.
|
||
*/
|
||
static int getjump (FuncState *fs, int pc) {
|
||
int offset = GETARG_sJ(fs->f->code[pc]);
|
||
if (offset == NO_JUMP) /* point to itself represents end of list */
|
||
return NO_JUMP; /* end of list */
|
||
else
|
||
return (pc+1)+offset; /* turn offset into absolute position */
|
||
}
|
||
|
||
|
||
/*
|
||
** Fix jump instruction at position 'pc' to jump to 'dest'.
|
||
** (Jump addresses are relative in Lua)
|
||
*/
|
||
static void fixjump (FuncState *fs, int pc, int dest) {
|
||
Instruction *jmp = &fs->f->code[pc];
|
||
int offset = dest - (pc + 1);
|
||
lua_assert(dest != NO_JUMP);
|
||
if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
|
||
luaX_syntaxerror(fs->ls, "control structure too long");
|
||
lua_assert(GET_OPCODE(*jmp) == OP_JMP);
|
||
SETARG_sJ(*jmp, offset);
|
||
}
|
||
|
||
|
||
/*
|
||
** Concatenate jump-list 'l2' into jump-list 'l1'
|
||
*/
|
||
void luaK_concat (FuncState *fs, int *l1, int l2) {
|
||
if (l2 == NO_JUMP) return; /* nothing to concatenate? */
|
||
else if (*l1 == NO_JUMP) /* no original list? */
|
||
*l1 = l2; /* 'l1' points to 'l2' */
|
||
else {
|
||
int list = *l1;
|
||
int next;
|
||
while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */
|
||
list = next;
|
||
fixjump(fs, list, l2); /* last element links to 'l2' */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Create a jump instruction and return its position, so its destination
|
||
** can be fixed later (with 'fixjump').
|
||
*/
|
||
int luaK_jump (FuncState *fs) {
|
||
return codesJ(fs, OP_JMP, NO_JUMP, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Code a 'return' instruction
|
||
*/
|
||
void luaK_ret (FuncState *fs, int first, int nret) {
|
||
OpCode op;
|
||
switch (nret) {
|
||
case 0: op = OP_RETURN0; break;
|
||
case 1: op = OP_RETURN1; break;
|
||
default: op = OP_RETURN; break;
|
||
}
|
||
luaK_codeABC(fs, op, first, nret + 1, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Code a "conditional jump", that is, a test or comparison opcode
|
||
** followed by a jump. Return jump position.
|
||
*/
|
||
static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
|
||
luaK_codeABCk(fs, op, A, B, C, k);
|
||
return luaK_jump(fs);
|
||
}
|
||
|
||
|
||
/*
|
||
** returns current 'pc' and marks it as a jump target (to avoid wrong
|
||
** optimizations with consecutive instructions not in the same basic block).
|
||
*/
|
||
int luaK_getlabel (FuncState *fs) {
|
||
fs->lasttarget = fs->pc;
|
||
return fs->pc;
|
||
}
|
||
|
||
|
||
/*
|
||
** Returns the position of the instruction "controlling" a given
|
||
** jump (that is, its condition), or the jump itself if it is
|
||
** unconditional.
|
||
*/
|
||
static Instruction *getjumpcontrol (FuncState *fs, int pc) {
|
||
Instruction *pi = &fs->f->code[pc];
|
||
if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
|
||
return pi-1;
|
||
else
|
||
return pi;
|
||
}
|
||
|
||
|
||
/*
|
||
** Patch destination register for a TESTSET instruction.
|
||
** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
|
||
** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
|
||
** register. Otherwise, change instruction to a simple 'TEST' (produces
|
||
** no register value)
|
||
*/
|
||
static int patchtestreg (FuncState *fs, int node, int reg) {
|
||
Instruction *i = getjumpcontrol(fs, node);
|
||
if (GET_OPCODE(*i) != OP_TESTSET)
|
||
return 0; /* cannot patch other instructions */
|
||
if (reg != NO_REG && reg != GETARG_B(*i))
|
||
SETARG_A(*i, reg);
|
||
else {
|
||
/* no register to put value or register already has the value;
|
||
change instruction to simple test */
|
||
*i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a list of tests ensuring no one produces a value
|
||
*/
|
||
static void removevalues (FuncState *fs, int list) {
|
||
for (; list != NO_JUMP; list = getjump(fs, list))
|
||
patchtestreg(fs, list, NO_REG);
|
||
}
|
||
|
||
|
||
/*
|
||
** Traverse a list of tests, patching their destination address and
|
||
** registers: tests producing values jump to 'vtarget' (and put their
|
||
** values in 'reg'), other tests jump to 'dtarget'.
|
||
*/
|
||
static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
|
||
int dtarget) {
|
||
while (list != NO_JUMP) {
|
||
int next = getjump(fs, list);
|
||
if (patchtestreg(fs, list, reg))
|
||
fixjump(fs, list, vtarget);
|
||
else
|
||
fixjump(fs, list, dtarget); /* jump to default target */
|
||
list = next;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Path all jumps in 'list' to jump to 'target'.
|
||
** (The assert means that we cannot fix a jump to a forward address
|
||
** because we only know addresses once code is generated.)
|
||
*/
|
||
void luaK_patchlist (FuncState *fs, int list, int target) {
|
||
lua_assert(target <= fs->pc);
|
||
patchlistaux(fs, list, target, NO_REG, target);
|
||
}
|
||
|
||
|
||
void luaK_patchtohere (FuncState *fs, int list) {
|
||
int hr = luaK_getlabel(fs); /* mark "here" as a jump target */
|
||
luaK_patchlist(fs, list, hr);
|
||
}
|
||
|
||
|
||
/* limit for difference between lines in relative line info. */
|
||
#define LIMLINEDIFF 0x80
|
||
|
||
|
||
/*
|
||
** Save line info for a new instruction. If difference from last line
|
||
** does not fit in a byte, of after that many instructions, save a new
|
||
** absolute line info; (in that case, the special value 'ABSLINEINFO'
|
||
** in 'lineinfo' signals the existence of this absolute information.)
|
||
** Otherwise, store the difference from last line in 'lineinfo'.
|
||
*/
|
||
static void savelineinfo (FuncState *fs, Proto *f, int line) {
|
||
int linedif = line - fs->previousline;
|
||
int pc = fs->pc - 1; /* last instruction coded */
|
||
if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
|
||
luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
|
||
f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
|
||
f->abslineinfo[fs->nabslineinfo].pc = pc;
|
||
f->abslineinfo[fs->nabslineinfo++].line = line;
|
||
linedif = ABSLINEINFO; /* signal that there is absolute information */
|
||
fs->iwthabs = 1; /* restart counter */
|
||
}
|
||
luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
|
||
MAX_INT, "opcodes");
|
||
f->lineinfo[pc] = linedif;
|
||
fs->previousline = line; /* last line saved */
|
||
}
|
||
|
||
|
||
/*
|
||
** Remove line information from the last instruction.
|
||
** If line information for that instruction is absolute, set 'iwthabs'
|
||
** above its max to force the new (replacing) instruction to have
|
||
** absolute line info, too.
|
||
*/
|
||
static void removelastlineinfo (FuncState *fs) {
|
||
Proto *f = fs->f;
|
||
int pc = fs->pc - 1; /* last instruction coded */
|
||
if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */
|
||
fs->previousline -= f->lineinfo[pc]; /* correct last line saved */
|
||
fs->iwthabs--; /* undo previous increment */
|
||
}
|
||
else { /* absolute line information */
|
||
lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
|
||
fs->nabslineinfo--; /* remove it */
|
||
fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Remove the last instruction created, correcting line information
|
||
** accordingly.
|
||
*/
|
||
static void removelastinstruction (FuncState *fs) {
|
||
removelastlineinfo(fs);
|
||
fs->pc--;
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit instruction 'i', checking for array sizes and saving also its
|
||
** line information. Return 'i' position.
|
||
*/
|
||
int luaK_code (FuncState *fs, Instruction i) {
|
||
Proto *f = fs->f;
|
||
/* put new instruction in code array */
|
||
luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
|
||
MAX_INT, "opcodes");
|
||
f->code[fs->pc++] = i;
|
||
savelineinfo(fs, f, fs->ls->lastline);
|
||
return fs->pc - 1; /* index of new instruction */
|
||
}
|
||
|
||
|
||
/*
|
||
** Format and emit an 'iABC' instruction. (Assertions check consistency
|
||
** of parameters versus opcode.)
|
||
*/
|
||
int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
|
||
lua_assert(getOpMode(o) == iABC);
|
||
lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
|
||
c <= MAXARG_C && (k & ~1) == 0);
|
||
return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
|
||
}
|
||
|
||
|
||
/*
|
||
** Format and emit an 'iABx' instruction.
|
||
*/
|
||
int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
|
||
lua_assert(getOpMode(o) == iABx);
|
||
lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
|
||
return luaK_code(fs, CREATE_ABx(o, a, bc));
|
||
}
|
||
|
||
|
||
/*
|
||
** Format and emit an 'iAsBx' instruction.
|
||
*/
|
||
static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
|
||
unsigned int b = bc + OFFSET_sBx;
|
||
lua_assert(getOpMode(o) == iAsBx);
|
||
lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
|
||
return luaK_code(fs, CREATE_ABx(o, a, b));
|
||
}
|
||
|
||
|
||
/*
|
||
** Format and emit an 'isJ' instruction.
|
||
*/
|
||
static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
|
||
unsigned int j = sj + OFFSET_sJ;
|
||
lua_assert(getOpMode(o) == isJ);
|
||
lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
|
||
return luaK_code(fs, CREATE_sJ(o, j, k));
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit an "extra argument" instruction (format 'iAx')
|
||
*/
|
||
static int codeextraarg (FuncState *fs, int a) {
|
||
lua_assert(a <= MAXARG_Ax);
|
||
return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit a "load constant" instruction, using either 'OP_LOADK'
|
||
** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
|
||
** instruction with "extra argument".
|
||
*/
|
||
static int luaK_codek (FuncState *fs, int reg, int k) {
|
||
if (k <= MAXARG_Bx)
|
||
return luaK_codeABx(fs, OP_LOADK, reg, k);
|
||
else {
|
||
int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
|
||
codeextraarg(fs, k);
|
||
return p;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check register-stack level, keeping track of its maximum size
|
||
** in field 'maxstacksize'
|
||
*/
|
||
void luaK_checkstack (FuncState *fs, int n) {
|
||
int newstack = fs->freereg + n;
|
||
if (newstack > fs->f->maxstacksize) {
|
||
if (newstack >= MAXREGS)
|
||
luaX_syntaxerror(fs->ls,
|
||
"function or expression needs too many registers");
|
||
fs->f->maxstacksize = cast_byte(newstack);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Reserve 'n' registers in register stack
|
||
*/
|
||
void luaK_reserveregs (FuncState *fs, int n) {
|
||
luaK_checkstack(fs, n);
|
||
fs->freereg += n;
|
||
}
|
||
|
||
|
||
/*
|
||
** Free register 'reg', if it is neither a constant index nor
|
||
** a local variable.
|
||
)
|
||
*/
|
||
static void freereg (FuncState *fs, int reg) {
|
||
if (reg >= luaY_nvarstack(fs)) {
|
||
fs->freereg--;
|
||
lua_assert(reg == fs->freereg);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Free two registers in proper order
|
||
*/
|
||
static void freeregs (FuncState *fs, int r1, int r2) {
|
||
if (r1 > r2) {
|
||
freereg(fs, r1);
|
||
freereg(fs, r2);
|
||
}
|
||
else {
|
||
freereg(fs, r2);
|
||
freereg(fs, r1);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Free register used by expression 'e' (if any)
|
||
*/
|
||
static void freeexp (FuncState *fs, expdesc *e) {
|
||
if (e->k == VNONRELOC)
|
||
freereg(fs, e->u.info);
|
||
}
|
||
|
||
|
||
/*
|
||
** Free registers used by expressions 'e1' and 'e2' (if any) in proper
|
||
** order.
|
||
*/
|
||
static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
|
||
int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
|
||
int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
|
||
freeregs(fs, r1, r2);
|
||
}
|
||
|
||
|
||
/*
|
||
** Add constant 'v' to prototype's list of constants (field 'k').
|
||
** Use scanner's table to cache position of constants in constant list
|
||
** and try to reuse constants. Because some values should not be used
|
||
** as keys (nil cannot be a key, integer keys can collapse with float
|
||
** keys), the caller must provide a useful 'key' for indexing the cache.
|
||
** Note that all functions share the same table, so entering or exiting
|
||
** a function can make some indices wrong.
|
||
*/
|
||
static int addk (FuncState *fs, TValue *key, TValue *v) {
|
||
TValue val;
|
||
lua_State *L = fs->ls->L;
|
||
Proto *f = fs->f;
|
||
const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */
|
||
int k, oldsize;
|
||
if (ttisinteger(idx)) { /* is there an index there? */
|
||
k = cast_int(ivalue(idx));
|
||
/* correct value? (warning: must distinguish floats from integers!) */
|
||
if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
|
||
luaV_rawequalobj(&f->k[k], v))
|
||
return k; /* reuse index */
|
||
}
|
||
/* constant not found; create a new entry */
|
||
oldsize = f->sizek;
|
||
k = fs->nk;
|
||
/* numerical value does not need GC barrier;
|
||
table has no metatable, so it does not need to invalidate cache */
|
||
setivalue(&val, k);
|
||
luaH_finishset(L, fs->ls->h, key, idx, &val);
|
||
luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
|
||
while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
|
||
setobj(L, &f->k[k], v);
|
||
fs->nk++;
|
||
luaC_barrier(L, f, v);
|
||
return k;
|
||
}
|
||
|
||
|
||
/*
|
||
** Add a string to list of constants and return its index.
|
||
*/
|
||
static int stringK (FuncState *fs, TString *s) {
|
||
TValue o;
|
||
setsvalue(fs->ls->L, &o, s);
|
||
return addk(fs, &o, &o); /* use string itself as key */
|
||
}
|
||
|
||
|
||
/*
|
||
** Add an integer to list of constants and return its index.
|
||
*/
|
||
static int luaK_intK (FuncState *fs, lua_Integer n) {
|
||
TValue o;
|
||
setivalue(&o, n);
|
||
return addk(fs, &o, &o); /* use integer itself as key */
|
||
}
|
||
|
||
/*
|
||
** Add a float to list of constants and return its index. Floats
|
||
** with integral values need a different key, to avoid collision
|
||
** with actual integers. To that, we add to the number its smaller
|
||
** power-of-two fraction that is still significant in its scale.
|
||
** For doubles, that would be 1/2^52.
|
||
** (This method is not bulletproof: there may be another float
|
||
** with that value, and for floats larger than 2^53 the result is
|
||
** still an integer. At worst, this only wastes an entry with
|
||
** a duplicate.)
|
||
*/
|
||
static int luaK_numberK (FuncState *fs, lua_Number r) {
|
||
TValue o;
|
||
lua_Integer ik;
|
||
setfltvalue(&o, r);
|
||
if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */
|
||
return addk(fs, &o, &o); /* use number itself as key */
|
||
else { /* must build an alternative key */
|
||
const int nbm = l_floatatt(MANT_DIG);
|
||
const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
|
||
const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */
|
||
TValue kv;
|
||
setfltvalue(&kv, k);
|
||
/* result is not an integral value, unless value is too large */
|
||
lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
|
||
l_mathop(fabs)(r) >= l_mathop(1e6));
|
||
return addk(fs, &kv, &o);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Add a false to list of constants and return its index.
|
||
*/
|
||
static int boolF (FuncState *fs) {
|
||
TValue o;
|
||
setbfvalue(&o);
|
||
return addk(fs, &o, &o); /* use boolean itself as key */
|
||
}
|
||
|
||
|
||
/*
|
||
** Add a true to list of constants and return its index.
|
||
*/
|
||
static int boolT (FuncState *fs) {
|
||
TValue o;
|
||
setbtvalue(&o);
|
||
return addk(fs, &o, &o); /* use boolean itself as key */
|
||
}
|
||
|
||
|
||
/*
|
||
** Add nil to list of constants and return its index.
|
||
*/
|
||
static int nilK (FuncState *fs) {
|
||
TValue k, v;
|
||
setnilvalue(&v);
|
||
/* cannot use nil as key; instead use table itself to represent nil */
|
||
sethvalue(fs->ls->L, &k, fs->ls->h);
|
||
return addk(fs, &k, &v);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
|
||
** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
|
||
** overflows in the hidden addition inside 'int2sC'.
|
||
*/
|
||
static int fitsC (lua_Integer i) {
|
||
return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether 'i' can be stored in an 'sBx' operand.
|
||
*/
|
||
static int fitsBx (lua_Integer i) {
|
||
return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
|
||
}
|
||
|
||
|
||
void luaK_int (FuncState *fs, int reg, lua_Integer i) {
|
||
if (fitsBx(i))
|
||
codeAsBx(fs, OP_LOADI, reg, cast_int(i));
|
||
else
|
||
luaK_codek(fs, reg, luaK_intK(fs, i));
|
||
}
|
||
|
||
|
||
static void luaK_float (FuncState *fs, int reg, lua_Number f) {
|
||
lua_Integer fi;
|
||
if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
|
||
codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
|
||
else
|
||
luaK_codek(fs, reg, luaK_numberK(fs, f));
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a constant in 'v' into an expression description 'e'
|
||
*/
|
||
static void const2exp (TValue *v, expdesc *e) {
|
||
switch (ttypetag(v)) {
|
||
case LUA_VNUMINT:
|
||
e->k = VKINT; e->u.ival = ivalue(v);
|
||
break;
|
||
case LUA_VNUMFLT:
|
||
e->k = VKFLT; e->u.nval = fltvalue(v);
|
||
break;
|
||
case LUA_VFALSE:
|
||
e->k = VFALSE;
|
||
break;
|
||
case LUA_VTRUE:
|
||
e->k = VTRUE;
|
||
break;
|
||
case LUA_VNIL:
|
||
e->k = VNIL;
|
||
break;
|
||
case LUA_VSHRSTR: case LUA_VLNGSTR:
|
||
e->k = VKSTR; e->u.strval = tsvalue(v);
|
||
break;
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Fix an expression to return the number of results 'nresults'.
|
||
** 'e' must be a multi-ret expression (function call or vararg).
|
||
*/
|
||
void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
|
||
Instruction *pc = &getinstruction(fs, e);
|
||
if (e->k == VCALL) /* expression is an open function call? */
|
||
SETARG_C(*pc, nresults + 1);
|
||
else {
|
||
lua_assert(e->k == VVARARG);
|
||
SETARG_C(*pc, nresults + 1);
|
||
SETARG_A(*pc, fs->freereg);
|
||
luaK_reserveregs(fs, 1);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a VKSTR to a VK
|
||
*/
|
||
static void str2K (FuncState *fs, expdesc *e) {
|
||
lua_assert(e->k == VKSTR);
|
||
e->u.info = stringK(fs, e->u.strval);
|
||
e->k = VK;
|
||
}
|
||
|
||
|
||
/*
|
||
** Fix an expression to return one result.
|
||
** If expression is not a multi-ret expression (function call or
|
||
** vararg), it already returns one result, so nothing needs to be done.
|
||
** Function calls become VNONRELOC expressions (as its result comes
|
||
** fixed in the base register of the call), while vararg expressions
|
||
** become VRELOC (as OP_VARARG puts its results where it wants).
|
||
** (Calls are created returning one result, so that does not need
|
||
** to be fixed.)
|
||
*/
|
||
void luaK_setoneret (FuncState *fs, expdesc *e) {
|
||
if (e->k == VCALL) { /* expression is an open function call? */
|
||
/* already returns 1 value */
|
||
lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
|
||
e->k = VNONRELOC; /* result has fixed position */
|
||
e->u.info = GETARG_A(getinstruction(fs, e));
|
||
}
|
||
else if (e->k == VVARARG) {
|
||
SETARG_C(getinstruction(fs, e), 2);
|
||
e->k = VRELOC; /* can relocate its simple result */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensure that expression 'e' is not a variable (nor a <const>).
|
||
** (Expression still may have jump lists.)
|
||
*/
|
||
void luaK_dischargevars (FuncState *fs, expdesc *e) {
|
||
switch (e->k) {
|
||
case VCONST: {
|
||
const2exp(const2val(fs, e), e);
|
||
break;
|
||
}
|
||
case VLOCAL: { /* already in a register */
|
||
int temp = e->u.var.ridx;
|
||
e->u.info = temp; /* (can't do a direct assignment; values overlap) */
|
||
e->k = VNONRELOC; /* becomes a non-relocatable value */
|
||
break;
|
||
}
|
||
case VUPVAL: { /* move value to some (pending) register */
|
||
e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
case VINDEXUP: {
|
||
e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
case VINDEXI: {
|
||
freereg(fs, e->u.ind.t);
|
||
e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
case VINDEXSTR: {
|
||
freereg(fs, e->u.ind.t);
|
||
e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
case VINDEXED: {
|
||
freeregs(fs, e->u.ind.t, e->u.ind.idx);
|
||
e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
case VVARARG: case VCALL: {
|
||
luaK_setoneret(fs, e);
|
||
break;
|
||
}
|
||
default: break; /* there is one value available (somewhere) */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensure expression value is in register 'reg', making 'e' a
|
||
** non-relocatable expression.
|
||
** (Expression still may have jump lists.)
|
||
*/
|
||
static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
|
||
luaK_dischargevars(fs, e);
|
||
switch (e->k) {
|
||
case VNIL: {
|
||
luaK_nil(fs, reg, 1);
|
||
break;
|
||
}
|
||
case VFALSE: {
|
||
luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
|
||
break;
|
||
}
|
||
case VTRUE: {
|
||
luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
|
||
break;
|
||
}
|
||
case VKSTR: {
|
||
str2K(fs, e);
|
||
} /* FALLTHROUGH */
|
||
case VK: {
|
||
luaK_codek(fs, reg, e->u.info);
|
||
break;
|
||
}
|
||
case VKFLT: {
|
||
luaK_float(fs, reg, e->u.nval);
|
||
break;
|
||
}
|
||
case VKINT: {
|
||
luaK_int(fs, reg, e->u.ival);
|
||
break;
|
||
}
|
||
case VRELOC: {
|
||
Instruction *pc = &getinstruction(fs, e);
|
||
SETARG_A(*pc, reg); /* instruction will put result in 'reg' */
|
||
break;
|
||
}
|
||
case VNONRELOC: {
|
||
if (reg != e->u.info)
|
||
luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
|
||
break;
|
||
}
|
||
default: {
|
||
lua_assert(e->k == VJMP);
|
||
return; /* nothing to do... */
|
||
}
|
||
}
|
||
e->u.info = reg;
|
||
e->k = VNONRELOC;
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensure expression value is in a register, making 'e' a
|
||
** non-relocatable expression.
|
||
** (Expression still may have jump lists.)
|
||
*/
|
||
static void discharge2anyreg (FuncState *fs, expdesc *e) {
|
||
if (e->k != VNONRELOC) { /* no fixed register yet? */
|
||
luaK_reserveregs(fs, 1); /* get a register */
|
||
discharge2reg(fs, e, fs->freereg-1); /* put value there */
|
||
}
|
||
}
|
||
|
||
|
||
static int code_loadbool (FuncState *fs, int A, OpCode op) {
|
||
luaK_getlabel(fs); /* those instructions may be jump targets */
|
||
return luaK_codeABC(fs, op, A, 0, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** check whether list has any jump that do not produce a value
|
||
** or produce an inverted value
|
||
*/
|
||
static int need_value (FuncState *fs, int list) {
|
||
for (; list != NO_JUMP; list = getjump(fs, list)) {
|
||
Instruction i = *getjumpcontrol(fs, list);
|
||
if (GET_OPCODE(i) != OP_TESTSET) return 1;
|
||
}
|
||
return 0; /* not found */
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result (which includes results from its
|
||
** jump lists) is in register 'reg'.
|
||
** If expression has jumps, need to patch these jumps either to
|
||
** its final position or to "load" instructions (for those tests
|
||
** that do not produce values).
|
||
*/
|
||
static void exp2reg (FuncState *fs, expdesc *e, int reg) {
|
||
discharge2reg(fs, e, reg);
|
||
if (e->k == VJMP) /* expression itself is a test? */
|
||
luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */
|
||
if (hasjumps(e)) {
|
||
int final; /* position after whole expression */
|
||
int p_f = NO_JUMP; /* position of an eventual LOAD false */
|
||
int p_t = NO_JUMP; /* position of an eventual LOAD true */
|
||
if (need_value(fs, e->t) || need_value(fs, e->f)) {
|
||
int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
|
||
p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */
|
||
p_t = code_loadbool(fs, reg, OP_LOADTRUE);
|
||
/* jump around these booleans if 'e' is not a test */
|
||
luaK_patchtohere(fs, fj);
|
||
}
|
||
final = luaK_getlabel(fs);
|
||
patchlistaux(fs, e->f, final, reg, p_f);
|
||
patchlistaux(fs, e->t, final, reg, p_t);
|
||
}
|
||
e->f = e->t = NO_JUMP;
|
||
e->u.info = reg;
|
||
e->k = VNONRELOC;
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result is in next available register.
|
||
*/
|
||
void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
|
||
luaK_dischargevars(fs, e);
|
||
freeexp(fs, e);
|
||
luaK_reserveregs(fs, 1);
|
||
exp2reg(fs, e, fs->freereg - 1);
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result is in some (any) register
|
||
** and return that register.
|
||
*/
|
||
int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
|
||
luaK_dischargevars(fs, e);
|
||
if (e->k == VNONRELOC) { /* expression already has a register? */
|
||
if (!hasjumps(e)) /* no jumps? */
|
||
return e->u.info; /* result is already in a register */
|
||
if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */
|
||
exp2reg(fs, e, e->u.info); /* put final result in it */
|
||
return e->u.info;
|
||
}
|
||
/* else expression has jumps and cannot change its register
|
||
to hold the jump values, because it is a local variable.
|
||
Go through to the default case. */
|
||
}
|
||
luaK_exp2nextreg(fs, e); /* default: use next available register */
|
||
return e->u.info;
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result is either in a register
|
||
** or in an upvalue.
|
||
*/
|
||
void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
|
||
if (e->k != VUPVAL || hasjumps(e))
|
||
luaK_exp2anyreg(fs, e);
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result is either in a register
|
||
** or it is a constant.
|
||
*/
|
||
void luaK_exp2val (FuncState *fs, expdesc *e) {
|
||
if (hasjumps(e))
|
||
luaK_exp2anyreg(fs, e);
|
||
else
|
||
luaK_dischargevars(fs, e);
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to make 'e' a K expression with an index in the range of R/K
|
||
** indices. Return true iff succeeded.
|
||
*/
|
||
static int luaK_exp2K (FuncState *fs, expdesc *e) {
|
||
if (!hasjumps(e)) {
|
||
int info;
|
||
switch (e->k) { /* move constants to 'k' */
|
||
case VTRUE: info = boolT(fs); break;
|
||
case VFALSE: info = boolF(fs); break;
|
||
case VNIL: info = nilK(fs); break;
|
||
case VKINT: info = luaK_intK(fs, e->u.ival); break;
|
||
case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
|
||
case VKSTR: info = stringK(fs, e->u.strval); break;
|
||
case VK: info = e->u.info; break;
|
||
default: return 0; /* not a constant */
|
||
}
|
||
if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */
|
||
e->k = VK; /* make expression a 'K' expression */
|
||
e->u.info = info;
|
||
return 1;
|
||
}
|
||
}
|
||
/* else, expression doesn't fit; leave it unchanged */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures final expression result is in a valid R/K index
|
||
** (that is, it is either in a register or in 'k' with an index
|
||
** in the range of R/K indices).
|
||
** Returns 1 iff expression is K.
|
||
*/
|
||
static int exp2RK (FuncState *fs, expdesc *e) {
|
||
if (luaK_exp2K(fs, e))
|
||
return 1;
|
||
else { /* not a constant in the right range: put it in a register */
|
||
luaK_exp2anyreg(fs, e);
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
|
||
static void codeABRK (FuncState *fs, OpCode o, int a, int b,
|
||
expdesc *ec) {
|
||
int k = exp2RK(fs, ec);
|
||
luaK_codeABCk(fs, o, a, b, ec->u.info, k);
|
||
}
|
||
|
||
|
||
/*
|
||
** Generate code to store result of expression 'ex' into variable 'var'.
|
||
*/
|
||
void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
|
||
switch (var->k) {
|
||
case VLOCAL: {
|
||
freeexp(fs, ex);
|
||
exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */
|
||
return;
|
||
}
|
||
case VUPVAL: {
|
||
int e = luaK_exp2anyreg(fs, ex);
|
||
luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
|
||
break;
|
||
}
|
||
case VINDEXUP: {
|
||
codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
|
||
break;
|
||
}
|
||
case VINDEXI: {
|
||
codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
|
||
break;
|
||
}
|
||
case VINDEXSTR: {
|
||
codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
|
||
break;
|
||
}
|
||
case VINDEXED: {
|
||
codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
|
||
break;
|
||
}
|
||
default: lua_assert(0); /* invalid var kind to store */
|
||
}
|
||
freeexp(fs, ex);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
|
||
*/
|
||
void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
|
||
int ereg;
|
||
luaK_exp2anyreg(fs, e);
|
||
ereg = e->u.info; /* register where 'e' was placed */
|
||
freeexp(fs, e);
|
||
e->u.info = fs->freereg; /* base register for op_self */
|
||
e->k = VNONRELOC; /* self expression has a fixed register */
|
||
luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */
|
||
codeABRK(fs, OP_SELF, e->u.info, ereg, key);
|
||
freeexp(fs, key);
|
||
}
|
||
|
||
|
||
/*
|
||
** Negate condition 'e' (where 'e' is a comparison).
|
||
*/
|
||
static void negatecondition (FuncState *fs, expdesc *e) {
|
||
Instruction *pc = getjumpcontrol(fs, e->u.info);
|
||
lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
|
||
GET_OPCODE(*pc) != OP_TEST);
|
||
SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
|
||
** is true, code will jump if 'e' is true.) Return jump position.
|
||
** Optimize when 'e' is 'not' something, inverting the condition
|
||
** and removing the 'not'.
|
||
*/
|
||
static int jumponcond (FuncState *fs, expdesc *e, int cond) {
|
||
if (e->k == VRELOC) {
|
||
Instruction ie = getinstruction(fs, e);
|
||
if (GET_OPCODE(ie) == OP_NOT) {
|
||
removelastinstruction(fs); /* remove previous OP_NOT */
|
||
return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
|
||
}
|
||
/* else go through */
|
||
}
|
||
discharge2anyreg(fs, e);
|
||
freeexp(fs, e);
|
||
return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code to go through if 'e' is true, jump otherwise.
|
||
*/
|
||
void luaK_goiftrue (FuncState *fs, expdesc *e) {
|
||
int pc; /* pc of new jump */
|
||
luaK_dischargevars(fs, e);
|
||
switch (e->k) {
|
||
case VJMP: { /* condition? */
|
||
negatecondition(fs, e); /* jump when it is false */
|
||
pc = e->u.info; /* save jump position */
|
||
break;
|
||
}
|
||
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
|
||
pc = NO_JUMP; /* always true; do nothing */
|
||
break;
|
||
}
|
||
default: {
|
||
pc = jumponcond(fs, e, 0); /* jump when false */
|
||
break;
|
||
}
|
||
}
|
||
luaK_concat(fs, &e->f, pc); /* insert new jump in false list */
|
||
luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */
|
||
e->t = NO_JUMP;
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code to go through if 'e' is false, jump otherwise.
|
||
*/
|
||
void luaK_goiffalse (FuncState *fs, expdesc *e) {
|
||
int pc; /* pc of new jump */
|
||
luaK_dischargevars(fs, e);
|
||
switch (e->k) {
|
||
case VJMP: {
|
||
pc = e->u.info; /* already jump if true */
|
||
break;
|
||
}
|
||
case VNIL: case VFALSE: {
|
||
pc = NO_JUMP; /* always false; do nothing */
|
||
break;
|
||
}
|
||
default: {
|
||
pc = jumponcond(fs, e, 1); /* jump if true */
|
||
break;
|
||
}
|
||
}
|
||
luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */
|
||
luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */
|
||
e->f = NO_JUMP;
|
||
}
|
||
|
||
|
||
/*
|
||
** Code 'not e', doing constant folding.
|
||
*/
|
||
static void codenot (FuncState *fs, expdesc *e) {
|
||
switch (e->k) {
|
||
case VNIL: case VFALSE: {
|
||
e->k = VTRUE; /* true == not nil == not false */
|
||
break;
|
||
}
|
||
case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
|
||
e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */
|
||
break;
|
||
}
|
||
case VJMP: {
|
||
negatecondition(fs, e);
|
||
break;
|
||
}
|
||
case VRELOC:
|
||
case VNONRELOC: {
|
||
discharge2anyreg(fs, e);
|
||
freeexp(fs, e);
|
||
e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
|
||
e->k = VRELOC;
|
||
break;
|
||
}
|
||
default: lua_assert(0); /* cannot happen */
|
||
}
|
||
/* interchange true and false lists */
|
||
{ int temp = e->f; e->f = e->t; e->t = temp; }
|
||
removevalues(fs, e->f); /* values are useless when negated */
|
||
removevalues(fs, e->t);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether expression 'e' is a short literal string
|
||
*/
|
||
static int isKstr (FuncState *fs, expdesc *e) {
|
||
return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
|
||
ttisshrstring(&fs->f->k[e->u.info]));
|
||
}
|
||
|
||
/*
|
||
** Check whether expression 'e' is a literal integer.
|
||
*/
|
||
static int isKint (expdesc *e) {
|
||
return (e->k == VKINT && !hasjumps(e));
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether expression 'e' is a literal integer in
|
||
** proper range to fit in register C
|
||
*/
|
||
static int isCint (expdesc *e) {
|
||
return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether expression 'e' is a literal integer in
|
||
** proper range to fit in register sC
|
||
*/
|
||
static int isSCint (expdesc *e) {
|
||
return isKint(e) && fitsC(e->u.ival);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether expression 'e' is a literal integer or float in
|
||
** proper range to fit in a register (sB or sC).
|
||
*/
|
||
static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
|
||
lua_Integer i;
|
||
if (e->k == VKINT)
|
||
i = e->u.ival;
|
||
else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
|
||
*isfloat = 1;
|
||
else
|
||
return 0; /* not a number */
|
||
if (!hasjumps(e) && fitsC(i)) {
|
||
*pi = int2sC(cast_int(i));
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Create expression 't[k]'. 't' must have its final result already in a
|
||
** register or upvalue. Upvalues can only be indexed by literal strings.
|
||
** Keys can be literal strings in the constant table or arbitrary
|
||
** values in registers.
|
||
*/
|
||
void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
|
||
if (k->k == VKSTR)
|
||
str2K(fs, k);
|
||
lua_assert(!hasjumps(t) &&
|
||
(t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
|
||
if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */
|
||
luaK_exp2anyreg(fs, t); /* put it in a register */
|
||
if (t->k == VUPVAL) {
|
||
int temp = t->u.info; /* upvalue index */
|
||
lua_assert(isKstr(fs, k));
|
||
t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */
|
||
t->u.ind.idx = k->u.info; /* literal short string */
|
||
t->k = VINDEXUP;
|
||
}
|
||
else {
|
||
/* register index of the table */
|
||
t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
|
||
if (isKstr(fs, k)) {
|
||
t->u.ind.idx = k->u.info; /* literal short string */
|
||
t->k = VINDEXSTR;
|
||
}
|
||
else if (isCint(k)) {
|
||
t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */
|
||
t->k = VINDEXI;
|
||
}
|
||
else {
|
||
t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */
|
||
t->k = VINDEXED;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Return false if folding can raise an error.
|
||
** Bitwise operations need operands convertible to integers; division
|
||
** operations cannot have 0 as divisor.
|
||
*/
|
||
static int validop (int op, TValue *v1, TValue *v2) {
|
||
switch (op) {
|
||
case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
|
||
case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */
|
||
lua_Integer i;
|
||
return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
|
||
luaV_tointegerns(v2, &i, LUA_FLOORN2I));
|
||
}
|
||
case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */
|
||
return (nvalue(v2) != 0);
|
||
default: return 1; /* everything else is valid */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to "constant-fold" an operation; return 1 iff successful.
|
||
** (In this case, 'e1' has the final result.)
|
||
*/
|
||
static int constfolding (FuncState *fs, int op, expdesc *e1,
|
||
const expdesc *e2) {
|
||
TValue v1, v2, res;
|
||
if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
|
||
return 0; /* non-numeric operands or not safe to fold */
|
||
luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */
|
||
if (ttisinteger(&res)) {
|
||
e1->k = VKINT;
|
||
e1->u.ival = ivalue(&res);
|
||
}
|
||
else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
|
||
lua_Number n = fltvalue(&res);
|
||
if (luai_numisnan(n) || n == 0)
|
||
return 0;
|
||
e1->k = VKFLT;
|
||
e1->u.nval = n;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP)
|
||
*/
|
||
l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) {
|
||
lua_assert(baser <= opr &&
|
||
((baser == OPR_ADD && opr <= OPR_SHR) ||
|
||
(baser == OPR_LT && opr <= OPR_LE)));
|
||
return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base));
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP)
|
||
*/
|
||
l_sinline OpCode unopr2op (UnOpr opr) {
|
||
return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) +
|
||
cast_int(OP_UNM));
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM)
|
||
*/
|
||
l_sinline TMS binopr2TM (BinOpr opr) {
|
||
lua_assert(OPR_ADD <= opr && opr <= OPR_SHR);
|
||
return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD));
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code for unary expressions that "produce values"
|
||
** (everything but 'not').
|
||
** Expression to produce final result will be encoded in 'e'.
|
||
*/
|
||
static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
|
||
int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */
|
||
freeexp(fs, e);
|
||
e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */
|
||
e->k = VRELOC; /* all those operations are relocatable */
|
||
luaK_fixline(fs, line);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code for binary expressions that "produce values"
|
||
** (everything but logical operators 'and'/'or' and comparison
|
||
** operators).
|
||
** Expression to produce final result will be encoded in 'e1'.
|
||
*/
|
||
static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
|
||
OpCode op, int v2, int flip, int line,
|
||
OpCode mmop, TMS event) {
|
||
int v1 = luaK_exp2anyreg(fs, e1);
|
||
int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
|
||
freeexps(fs, e1, e2);
|
||
e1->u.info = pc;
|
||
e1->k = VRELOC; /* all those operations are relocatable */
|
||
luaK_fixline(fs, line);
|
||
luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */
|
||
luaK_fixline(fs, line);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code for binary expressions that "produce values" over
|
||
** two registers.
|
||
*/
|
||
static void codebinexpval (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int line) {
|
||
OpCode op = binopr2op(opr, OPR_ADD, OP_ADD);
|
||
int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */
|
||
/* 'e1' must be already in a register or it is a constant */
|
||
lua_assert((VNIL <= e1->k && e1->k <= VKSTR) ||
|
||
e1->k == VNONRELOC || e1->k == VRELOC);
|
||
lua_assert(OP_ADD <= op && op <= OP_SHR);
|
||
finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr));
|
||
}
|
||
|
||
|
||
/*
|
||
** Code binary operators with immediate operands.
|
||
*/
|
||
static void codebini (FuncState *fs, OpCode op,
|
||
expdesc *e1, expdesc *e2, int flip, int line,
|
||
TMS event) {
|
||
int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */
|
||
lua_assert(e2->k == VKINT);
|
||
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
|
||
}
|
||
|
||
|
||
/*
|
||
** Code binary operators with K operand.
|
||
*/
|
||
static void codebinK (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int flip, int line) {
|
||
TMS event = binopr2TM(opr);
|
||
int v2 = e2->u.info; /* K index */
|
||
OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK);
|
||
finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
|
||
}
|
||
|
||
|
||
/* Try to code a binary operator negating its second operand.
|
||
** For the metamethod, 2nd operand must keep its original value.
|
||
*/
|
||
static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
|
||
OpCode op, int line, TMS event) {
|
||
if (!isKint(e2))
|
||
return 0; /* not an integer constant */
|
||
else {
|
||
lua_Integer i2 = e2->u.ival;
|
||
if (!(fitsC(i2) && fitsC(-i2)))
|
||
return 0; /* not in the proper range */
|
||
else { /* operating a small integer constant */
|
||
int v2 = cast_int(i2);
|
||
finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
|
||
/* correct metamethod argument */
|
||
SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
|
||
return 1; /* successfully coded */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void swapexps (expdesc *e1, expdesc *e2) {
|
||
expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */
|
||
}
|
||
|
||
|
||
/*
|
||
** Code binary operators with no constant operand.
|
||
*/
|
||
static void codebinNoK (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int flip, int line) {
|
||
if (flip)
|
||
swapexps(e1, e2); /* back to original order */
|
||
codebinexpval(fs, opr, e1, e2, line); /* use standard operators */
|
||
}
|
||
|
||
|
||
/*
|
||
** Code arithmetic operators ('+', '-', ...). If second operand is a
|
||
** constant in the proper range, use variant opcodes with K operands.
|
||
*/
|
||
static void codearith (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int flip, int line) {
|
||
if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */
|
||
codebinK(fs, opr, e1, e2, flip, line);
|
||
else /* 'e2' is neither an immediate nor a K operand */
|
||
codebinNoK(fs, opr, e1, e2, flip, line);
|
||
}
|
||
|
||
|
||
/*
|
||
** Code commutative operators ('+', '*'). If first operand is a
|
||
** numeric constant, change order of operands to try to use an
|
||
** immediate or K operator.
|
||
*/
|
||
static void codecommutative (FuncState *fs, BinOpr op,
|
||
expdesc *e1, expdesc *e2, int line) {
|
||
int flip = 0;
|
||
if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */
|
||
swapexps(e1, e2); /* change order */
|
||
flip = 1;
|
||
}
|
||
if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */
|
||
codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD);
|
||
else
|
||
codearith(fs, op, e1, e2, flip, line);
|
||
}
|
||
|
||
|
||
/*
|
||
** Code bitwise operations; they are all commutative, so the function
|
||
** tries to put an integer constant as the 2nd operand (a K operand).
|
||
*/
|
||
static void codebitwise (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int line) {
|
||
int flip = 0;
|
||
if (e1->k == VKINT) {
|
||
swapexps(e1, e2); /* 'e2' will be the constant operand */
|
||
flip = 1;
|
||
}
|
||
if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */
|
||
codebinK(fs, opr, e1, e2, flip, line);
|
||
else /* no constants */
|
||
codebinNoK(fs, opr, e1, e2, flip, line);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code for order comparisons. When using an immediate operand,
|
||
** 'isfloat' tells whether the original value was a float.
|
||
*/
|
||
static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
|
||
int r1, r2;
|
||
int im;
|
||
int isfloat = 0;
|
||
OpCode op;
|
||
if (isSCnumber(e2, &im, &isfloat)) {
|
||
/* use immediate operand */
|
||
r1 = luaK_exp2anyreg(fs, e1);
|
||
r2 = im;
|
||
op = binopr2op(opr, OPR_LT, OP_LTI);
|
||
}
|
||
else if (isSCnumber(e1, &im, &isfloat)) {
|
||
/* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
|
||
r1 = luaK_exp2anyreg(fs, e2);
|
||
r2 = im;
|
||
op = binopr2op(opr, OPR_LT, OP_GTI);
|
||
}
|
||
else { /* regular case, compare two registers */
|
||
r1 = luaK_exp2anyreg(fs, e1);
|
||
r2 = luaK_exp2anyreg(fs, e2);
|
||
op = binopr2op(opr, OPR_LT, OP_LT);
|
||
}
|
||
freeexps(fs, e1, e2);
|
||
e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
|
||
e1->k = VJMP;
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit code for equality comparisons ('==', '~=').
|
||
** 'e1' was already put as RK by 'luaK_infix'.
|
||
*/
|
||
static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
|
||
int r1, r2;
|
||
int im;
|
||
int isfloat = 0; /* not needed here, but kept for symmetry */
|
||
OpCode op;
|
||
if (e1->k != VNONRELOC) {
|
||
lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
|
||
swapexps(e1, e2);
|
||
}
|
||
r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */
|
||
if (isSCnumber(e2, &im, &isfloat)) {
|
||
op = OP_EQI;
|
||
r2 = im; /* immediate operand */
|
||
}
|
||
else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */
|
||
op = OP_EQK;
|
||
r2 = e2->u.info; /* constant index */
|
||
}
|
||
else {
|
||
op = OP_EQ; /* will compare two registers */
|
||
r2 = luaK_exp2anyreg(fs, e2);
|
||
}
|
||
freeexps(fs, e1, e2);
|
||
e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
|
||
e1->k = VJMP;
|
||
}
|
||
|
||
|
||
/*
|
||
** Apply prefix operation 'op' to expression 'e'.
|
||
*/
|
||
void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) {
|
||
static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
|
||
luaK_dischargevars(fs, e);
|
||
switch (opr) {
|
||
case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */
|
||
if (constfolding(fs, opr + LUA_OPUNM, e, &ef))
|
||
break;
|
||
/* else */ /* FALLTHROUGH */
|
||
case OPR_LEN:
|
||
codeunexpval(fs, unopr2op(opr), e, line);
|
||
break;
|
||
case OPR_NOT: codenot(fs, e); break;
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Process 1st operand 'v' of binary operation 'op' before reading
|
||
** 2nd operand.
|
||
*/
|
||
void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
|
||
luaK_dischargevars(fs, v);
|
||
switch (op) {
|
||
case OPR_AND: {
|
||
luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */
|
||
break;
|
||
}
|
||
case OPR_OR: {
|
||
luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */
|
||
break;
|
||
}
|
||
case OPR_CONCAT: {
|
||
luaK_exp2nextreg(fs, v); /* operand must be on the stack */
|
||
break;
|
||
}
|
||
case OPR_ADD: case OPR_SUB:
|
||
case OPR_MUL: case OPR_DIV: case OPR_IDIV:
|
||
case OPR_MOD: case OPR_POW:
|
||
case OPR_BAND: case OPR_BOR: case OPR_BXOR:
|
||
case OPR_SHL: case OPR_SHR: {
|
||
if (!tonumeral(v, NULL))
|
||
luaK_exp2anyreg(fs, v);
|
||
/* else keep numeral, which may be folded or used as an immediate
|
||
operand */
|
||
break;
|
||
}
|
||
case OPR_EQ: case OPR_NE: {
|
||
if (!tonumeral(v, NULL))
|
||
exp2RK(fs, v);
|
||
/* else keep numeral, which may be an immediate operand */
|
||
break;
|
||
}
|
||
case OPR_LT: case OPR_LE:
|
||
case OPR_GT: case OPR_GE: {
|
||
int dummy, dummy2;
|
||
if (!isSCnumber(v, &dummy, &dummy2))
|
||
luaK_exp2anyreg(fs, v);
|
||
/* else keep numeral, which may be an immediate operand */
|
||
break;
|
||
}
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
|
||
/*
|
||
** Create code for '(e1 .. e2)'.
|
||
** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
|
||
** because concatenation is right associative), merge both CONCATs.
|
||
*/
|
||
static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
|
||
Instruction *ie2 = previousinstruction(fs);
|
||
if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */
|
||
int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */
|
||
lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
|
||
freeexp(fs, e2);
|
||
SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */
|
||
SETARG_B(*ie2, n + 1); /* will concatenate one more element */
|
||
}
|
||
else { /* 'e2' is not a concatenation */
|
||
luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */
|
||
freeexp(fs, e2);
|
||
luaK_fixline(fs, line);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Finalize code for binary operation, after reading 2nd operand.
|
||
*/
|
||
void luaK_posfix (FuncState *fs, BinOpr opr,
|
||
expdesc *e1, expdesc *e2, int line) {
|
||
luaK_dischargevars(fs, e2);
|
||
if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
|
||
return; /* done by folding */
|
||
switch (opr) {
|
||
case OPR_AND: {
|
||
lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */
|
||
luaK_concat(fs, &e2->f, e1->f);
|
||
*e1 = *e2;
|
||
break;
|
||
}
|
||
case OPR_OR: {
|
||
lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */
|
||
luaK_concat(fs, &e2->t, e1->t);
|
||
*e1 = *e2;
|
||
break;
|
||
}
|
||
case OPR_CONCAT: { /* e1 .. e2 */
|
||
luaK_exp2nextreg(fs, e2);
|
||
codeconcat(fs, e1, e2, line);
|
||
break;
|
||
}
|
||
case OPR_ADD: case OPR_MUL: {
|
||
codecommutative(fs, opr, e1, e2, line);
|
||
break;
|
||
}
|
||
case OPR_SUB: {
|
||
if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
|
||
break; /* coded as (r1 + -I) */
|
||
/* ELSE */
|
||
} /* FALLTHROUGH */
|
||
case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
|
||
codearith(fs, opr, e1, e2, 0, line);
|
||
break;
|
||
}
|
||
case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
|
||
codebitwise(fs, opr, e1, e2, line);
|
||
break;
|
||
}
|
||
case OPR_SHL: {
|
||
if (isSCint(e1)) {
|
||
swapexps(e1, e2);
|
||
codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */
|
||
}
|
||
else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
|
||
/* coded as (r1 >> -I) */;
|
||
}
|
||
else /* regular case (two registers) */
|
||
codebinexpval(fs, opr, e1, e2, line);
|
||
break;
|
||
}
|
||
case OPR_SHR: {
|
||
if (isSCint(e2))
|
||
codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */
|
||
else /* regular case (two registers) */
|
||
codebinexpval(fs, opr, e1, e2, line);
|
||
break;
|
||
}
|
||
case OPR_EQ: case OPR_NE: {
|
||
codeeq(fs, opr, e1, e2);
|
||
break;
|
||
}
|
||
case OPR_GT: case OPR_GE: {
|
||
/* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */
|
||
swapexps(e1, e2);
|
||
opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT);
|
||
} /* FALLTHROUGH */
|
||
case OPR_LT: case OPR_LE: {
|
||
codeorder(fs, opr, e1, e2);
|
||
break;
|
||
}
|
||
default: lua_assert(0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Change line information associated with current position, by removing
|
||
** previous info and adding it again with new line.
|
||
*/
|
||
void luaK_fixline (FuncState *fs, int line) {
|
||
removelastlineinfo(fs);
|
||
savelineinfo(fs, fs->f, line);
|
||
}
|
||
|
||
|
||
void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
|
||
Instruction *inst = &fs->f->code[pc];
|
||
int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */
|
||
int extra = asize / (MAXARG_C + 1); /* higher bits of array size */
|
||
int rc = asize % (MAXARG_C + 1); /* lower bits of array size */
|
||
int k = (extra > 0); /* true iff needs extra argument */
|
||
*inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
|
||
*(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
|
||
}
|
||
|
||
|
||
/*
|
||
** Emit a SETLIST instruction.
|
||
** 'base' is register that keeps table;
|
||
** 'nelems' is #table plus those to be stored now;
|
||
** 'tostore' is number of values (in registers 'base + 1',...) to add to
|
||
** table (or LUA_MULTRET to add up to stack top).
|
||
*/
|
||
void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
|
||
lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
|
||
if (tostore == LUA_MULTRET)
|
||
tostore = 0;
|
||
if (nelems <= MAXARG_C)
|
||
luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
|
||
else {
|
||
int extra = nelems / (MAXARG_C + 1);
|
||
nelems %= (MAXARG_C + 1);
|
||
luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
|
||
codeextraarg(fs, extra);
|
||
}
|
||
fs->freereg = base + 1; /* free registers with list values */
|
||
}
|
||
|
||
|
||
/*
|
||
** return the final target of a jump (skipping jumps to jumps)
|
||
*/
|
||
static int finaltarget (Instruction *code, int i) {
|
||
int count;
|
||
for (count = 0; count < 100; count++) { /* avoid infinite loops */
|
||
Instruction pc = code[i];
|
||
if (GET_OPCODE(pc) != OP_JMP)
|
||
break;
|
||
else
|
||
i += GETARG_sJ(pc) + 1;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
|
||
/*
|
||
** Do a final pass over the code of a function, doing small peephole
|
||
** optimizations and adjustments.
|
||
*/
|
||
void luaK_finish (FuncState *fs) {
|
||
int i;
|
||
Proto *p = fs->f;
|
||
for (i = 0; i < fs->pc; i++) {
|
||
Instruction *pc = &p->code[i];
|
||
lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
|
||
switch (GET_OPCODE(*pc)) {
|
||
case OP_RETURN0: case OP_RETURN1: {
|
||
if (!(fs->needclose || p->is_vararg))
|
||
break; /* no extra work */
|
||
/* else use OP_RETURN to do the extra work */
|
||
SET_OPCODE(*pc, OP_RETURN);
|
||
} /* FALLTHROUGH */
|
||
case OP_RETURN: case OP_TAILCALL: {
|
||
if (fs->needclose)
|
||
SETARG_k(*pc, 1); /* signal that it needs to close */
|
||
if (p->is_vararg)
|
||
SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */
|
||
break;
|
||
}
|
||
case OP_JMP: {
|
||
int target = finaltarget(p->code, i);
|
||
fixjump(fs, i, target);
|
||
break;
|
||
}
|
||
default: break;
|
||
}
|
||
}
|
||
}
|
||
/*
|
||
** $Id: lparser.c $
|
||
** Lua Parser
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lparser_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <limits.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lcode.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "llex.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lparser.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
|
||
|
||
|
||
/* maximum number of local variables per function (must be smaller
|
||
than 250, due to the bytecode format) */
|
||
#define MAXVARS 200
|
||
|
||
|
||
#define hasmultret(k) ((k) == VCALL || (k) == VVARARG)
|
||
|
||
|
||
/* because all strings are unified by the scanner, the parser
|
||
can use pointer equality for string equality */
|
||
#define eqstr(a,b) ((a) == (b))
|
||
|
||
|
||
/*
|
||
** nodes for block list (list of active blocks)
|
||
*/
|
||
typedef struct BlockCnt {
|
||
struct BlockCnt *previous; /* chain */
|
||
int firstlabel; /* index of first label in this block */
|
||
int firstgoto; /* index of first pending goto in this block */
|
||
lu_byte nactvar; /* # active locals outside the block */
|
||
lu_byte upval; /* true if some variable in the block is an upvalue */
|
||
lu_byte isloop; /* true if 'block' is a loop */
|
||
lu_byte insidetbc; /* true if inside the scope of a to-be-closed var. */
|
||
} BlockCnt;
|
||
|
||
|
||
|
||
/*
|
||
** prototypes for recursive non-terminal functions
|
||
*/
|
||
static void statement (LexState *ls);
|
||
static void expr (LexState *ls, expdesc *v);
|
||
|
||
|
||
static l_noret error_expected (LexState *ls, int token) {
|
||
luaX_syntaxerror(ls,
|
||
luaO_pushfstring(ls->L, "%s expected", luaX_token2str(ls, token)));
|
||
}
|
||
|
||
|
||
static l_noret errorlimit (FuncState *fs, int limit, const char *what) {
|
||
lua_State *L = fs->ls->L;
|
||
const char *msg;
|
||
int line = fs->f->linedefined;
|
||
const char *where = (line == 0)
|
||
? "main function"
|
||
: luaO_pushfstring(L, "function at line %d", line);
|
||
msg = luaO_pushfstring(L, "too many %s (limit is %d) in %s",
|
||
what, limit, where);
|
||
luaX_syntaxerror(fs->ls, msg);
|
||
}
|
||
|
||
|
||
static void checklimit (FuncState *fs, int v, int l, const char *what) {
|
||
if (v > l) errorlimit(fs, l, what);
|
||
}
|
||
|
||
|
||
/*
|
||
** Test whether next token is 'c'; if so, skip it.
|
||
*/
|
||
static int testnext (LexState *ls, int c) {
|
||
if (ls->t.token == c) {
|
||
luaX_next(ls);
|
||
return 1;
|
||
}
|
||
else return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Check that next token is 'c'.
|
||
*/
|
||
static void check (LexState *ls, int c) {
|
||
if (ls->t.token != c)
|
||
error_expected(ls, c);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check that next token is 'c' and skip it.
|
||
*/
|
||
static void checknext (LexState *ls, int c) {
|
||
check(ls, c);
|
||
luaX_next(ls);
|
||
}
|
||
|
||
|
||
#define check_condition(ls,c,msg) { if (!(c)) luaX_syntaxerror(ls, msg); }
|
||
|
||
|
||
/*
|
||
** Check that next token is 'what' and skip it. In case of error,
|
||
** raise an error that the expected 'what' should match a 'who'
|
||
** in line 'where' (if that is not the current line).
|
||
*/
|
||
static void check_match (LexState *ls, int what, int who, int where) {
|
||
if (l_unlikely(!testnext(ls, what))) {
|
||
if (where == ls->linenumber) /* all in the same line? */
|
||
error_expected(ls, what); /* do not need a complex message */
|
||
else {
|
||
luaX_syntaxerror(ls, luaO_pushfstring(ls->L,
|
||
"%s expected (to close %s at line %d)",
|
||
luaX_token2str(ls, what), luaX_token2str(ls, who), where));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static TString *str_checkname (LexState *ls) {
|
||
TString *ts;
|
||
check(ls, TK_NAME);
|
||
ts = ls->t.seminfo.ts;
|
||
luaX_next(ls);
|
||
return ts;
|
||
}
|
||
|
||
|
||
static void init_exp (expdesc *e, expkind k, int i) {
|
||
e->f = e->t = NO_JUMP;
|
||
e->k = k;
|
||
e->u.info = i;
|
||
}
|
||
|
||
|
||
static void codestring (expdesc *e, TString *s) {
|
||
e->f = e->t = NO_JUMP;
|
||
e->k = VKSTR;
|
||
e->u.strval = s;
|
||
}
|
||
|
||
|
||
static void codename (LexState *ls, expdesc *e) {
|
||
codestring(e, str_checkname(ls));
|
||
}
|
||
|
||
|
||
/*
|
||
** Register a new local variable in the active 'Proto' (for debug
|
||
** information).
|
||
*/
|
||
static int registerlocalvar (LexState *ls, FuncState *fs, TString *varname) {
|
||
Proto *f = fs->f;
|
||
int oldsize = f->sizelocvars;
|
||
luaM_growvector(ls->L, f->locvars, fs->ndebugvars, f->sizelocvars,
|
||
LocVar, SHRT_MAX, "local variables");
|
||
while (oldsize < f->sizelocvars)
|
||
f->locvars[oldsize++].varname = NULL;
|
||
f->locvars[fs->ndebugvars].varname = varname;
|
||
f->locvars[fs->ndebugvars].startpc = fs->pc;
|
||
luaC_objbarrier(ls->L, f, varname);
|
||
return fs->ndebugvars++;
|
||
}
|
||
|
||
|
||
/*
|
||
** Create a new local variable with the given 'name'. Return its index
|
||
** in the function.
|
||
*/
|
||
static int new_localvar (LexState *ls, TString *name) {
|
||
lua_State *L = ls->L;
|
||
FuncState *fs = ls->fs;
|
||
Dyndata *dyd = ls->dyd;
|
||
Vardesc *var;
|
||
checklimit(fs, dyd->actvar.n + 1 - fs->firstlocal,
|
||
MAXVARS, "local variables");
|
||
luaM_growvector(L, dyd->actvar.arr, dyd->actvar.n + 1,
|
||
dyd->actvar.size, Vardesc, USHRT_MAX, "local variables");
|
||
var = &dyd->actvar.arr[dyd->actvar.n++];
|
||
var->vd.kind = VDKREG; /* default */
|
||
var->vd.name = name;
|
||
return dyd->actvar.n - 1 - fs->firstlocal;
|
||
}
|
||
|
||
#define new_localvarliteral(ls,v) \
|
||
new_localvar(ls, \
|
||
luaX_newstring(ls, "" v, (sizeof(v)/sizeof(char)) - 1));
|
||
|
||
|
||
|
||
/*
|
||
** Return the "variable description" (Vardesc) of a given variable.
|
||
** (Unless noted otherwise, all variables are referred to by their
|
||
** compiler indices.)
|
||
*/
|
||
static Vardesc *getlocalvardesc (FuncState *fs, int vidx) {
|
||
return &fs->ls->dyd->actvar.arr[fs->firstlocal + vidx];
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert 'nvar', a compiler index level, to its corresponding
|
||
** register. For that, search for the highest variable below that level
|
||
** that is in a register and uses its register index ('ridx') plus one.
|
||
*/
|
||
static int reglevel (FuncState *fs, int nvar) {
|
||
while (nvar-- > 0) {
|
||
Vardesc *vd = getlocalvardesc(fs, nvar); /* get previous variable */
|
||
if (vd->vd.kind != RDKCTC) /* is in a register? */
|
||
return vd->vd.ridx + 1;
|
||
}
|
||
return 0; /* no variables in registers */
|
||
}
|
||
|
||
|
||
/*
|
||
** Return the number of variables in the register stack for the given
|
||
** function.
|
||
*/
|
||
int luaY_nvarstack (FuncState *fs) {
|
||
return reglevel(fs, fs->nactvar);
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the debug-information entry for current variable 'vidx'.
|
||
*/
|
||
static LocVar *localdebuginfo (FuncState *fs, int vidx) {
|
||
Vardesc *vd = getlocalvardesc(fs, vidx);
|
||
if (vd->vd.kind == RDKCTC)
|
||
return NULL; /* no debug info. for constants */
|
||
else {
|
||
int idx = vd->vd.pidx;
|
||
lua_assert(idx < fs->ndebugvars);
|
||
return &fs->f->locvars[idx];
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Create an expression representing variable 'vidx'
|
||
*/
|
||
static void init_var (FuncState *fs, expdesc *e, int vidx) {
|
||
e->f = e->t = NO_JUMP;
|
||
e->k = VLOCAL;
|
||
e->u.var.vidx = vidx;
|
||
e->u.var.ridx = getlocalvardesc(fs, vidx)->vd.ridx;
|
||
}
|
||
|
||
|
||
/*
|
||
** Raises an error if variable described by 'e' is read only
|
||
*/
|
||
static void check_readonly (LexState *ls, expdesc *e) {
|
||
FuncState *fs = ls->fs;
|
||
TString *varname = NULL; /* to be set if variable is const */
|
||
switch (e->k) {
|
||
case VCONST: {
|
||
varname = ls->dyd->actvar.arr[e->u.info].vd.name;
|
||
break;
|
||
}
|
||
case VLOCAL: {
|
||
Vardesc *vardesc = getlocalvardesc(fs, e->u.var.vidx);
|
||
if (vardesc->vd.kind != VDKREG) /* not a regular variable? */
|
||
varname = vardesc->vd.name;
|
||
break;
|
||
}
|
||
case VUPVAL: {
|
||
Upvaldesc *up = &fs->f->upvalues[e->u.info];
|
||
if (up->kind != VDKREG)
|
||
varname = up->name;
|
||
break;
|
||
}
|
||
default:
|
||
return; /* other cases cannot be read-only */
|
||
}
|
||
if (varname) {
|
||
const char *msg = luaO_pushfstring(ls->L,
|
||
"attempt to assign to const variable '%s'", getstr(varname));
|
||
luaK_semerror(ls, msg); /* error */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Start the scope for the last 'nvars' created variables.
|
||
*/
|
||
static void adjustlocalvars (LexState *ls, int nvars) {
|
||
FuncState *fs = ls->fs;
|
||
int reglevel = luaY_nvarstack(fs);
|
||
int i;
|
||
for (i = 0; i < nvars; i++) {
|
||
int vidx = fs->nactvar++;
|
||
Vardesc *var = getlocalvardesc(fs, vidx);
|
||
var->vd.ridx = reglevel++;
|
||
var->vd.pidx = registerlocalvar(ls, fs, var->vd.name);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Close the scope for all variables up to level 'tolevel'.
|
||
** (debug info.)
|
||
*/
|
||
static void removevars (FuncState *fs, int tolevel) {
|
||
fs->ls->dyd->actvar.n -= (fs->nactvar - tolevel);
|
||
while (fs->nactvar > tolevel) {
|
||
LocVar *var = localdebuginfo(fs, --fs->nactvar);
|
||
if (var) /* does it have debug information? */
|
||
var->endpc = fs->pc;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Search the upvalues of the function 'fs' for one
|
||
** with the given 'name'.
|
||
*/
|
||
static int searchupvalue (FuncState *fs, TString *name) {
|
||
int i;
|
||
Upvaldesc *up = fs->f->upvalues;
|
||
for (i = 0; i < fs->nups; i++) {
|
||
if (eqstr(up[i].name, name)) return i;
|
||
}
|
||
return -1; /* not found */
|
||
}
|
||
|
||
|
||
static Upvaldesc *allocupvalue (FuncState *fs) {
|
||
Proto *f = fs->f;
|
||
int oldsize = f->sizeupvalues;
|
||
checklimit(fs, fs->nups + 1, MAXUPVAL, "upvalues");
|
||
luaM_growvector(fs->ls->L, f->upvalues, fs->nups, f->sizeupvalues,
|
||
Upvaldesc, MAXUPVAL, "upvalues");
|
||
while (oldsize < f->sizeupvalues)
|
||
f->upvalues[oldsize++].name = NULL;
|
||
return &f->upvalues[fs->nups++];
|
||
}
|
||
|
||
|
||
static int newupvalue (FuncState *fs, TString *name, expdesc *v) {
|
||
Upvaldesc *up = allocupvalue(fs);
|
||
FuncState *prev = fs->prev;
|
||
if (v->k == VLOCAL) {
|
||
up->instack = 1;
|
||
up->idx = v->u.var.ridx;
|
||
up->kind = getlocalvardesc(prev, v->u.var.vidx)->vd.kind;
|
||
lua_assert(eqstr(name, getlocalvardesc(prev, v->u.var.vidx)->vd.name));
|
||
}
|
||
else {
|
||
up->instack = 0;
|
||
up->idx = cast_byte(v->u.info);
|
||
up->kind = prev->f->upvalues[v->u.info].kind;
|
||
lua_assert(eqstr(name, prev->f->upvalues[v->u.info].name));
|
||
}
|
||
up->name = name;
|
||
luaC_objbarrier(fs->ls->L, fs->f, name);
|
||
return fs->nups - 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Look for an active local variable with the name 'n' in the
|
||
** function 'fs'. If found, initialize 'var' with it and return
|
||
** its expression kind; otherwise return -1.
|
||
*/
|
||
static int searchvar (FuncState *fs, TString *n, expdesc *var) {
|
||
int i;
|
||
for (i = cast_int(fs->nactvar) - 1; i >= 0; i--) {
|
||
Vardesc *vd = getlocalvardesc(fs, i);
|
||
if (eqstr(n, vd->vd.name)) { /* found? */
|
||
if (vd->vd.kind == RDKCTC) /* compile-time constant? */
|
||
init_exp(var, VCONST, fs->firstlocal + i);
|
||
else /* real variable */
|
||
init_var(fs, var, i);
|
||
return var->k;
|
||
}
|
||
}
|
||
return -1; /* not found */
|
||
}
|
||
|
||
|
||
/*
|
||
** Mark block where variable at given level was defined
|
||
** (to emit close instructions later).
|
||
*/
|
||
static void markupval (FuncState *fs, int level) {
|
||
BlockCnt *bl = fs->bl;
|
||
while (bl->nactvar > level)
|
||
bl = bl->previous;
|
||
bl->upval = 1;
|
||
fs->needclose = 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Mark that current block has a to-be-closed variable.
|
||
*/
|
||
static void marktobeclosed (FuncState *fs) {
|
||
BlockCnt *bl = fs->bl;
|
||
bl->upval = 1;
|
||
bl->insidetbc = 1;
|
||
fs->needclose = 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Find a variable with the given name 'n'. If it is an upvalue, add
|
||
** this upvalue into all intermediate functions. If it is a global, set
|
||
** 'var' as 'void' as a flag.
|
||
*/
|
||
static void singlevaraux (FuncState *fs, TString *n, expdesc *var, int base) {
|
||
if (fs == NULL) /* no more levels? */
|
||
init_exp(var, VVOID, 0); /* default is global */
|
||
else {
|
||
int v = searchvar(fs, n, var); /* look up locals at current level */
|
||
if (v >= 0) { /* found? */
|
||
if (v == VLOCAL && !base)
|
||
markupval(fs, var->u.var.vidx); /* local will be used as an upval */
|
||
}
|
||
else { /* not found as local at current level; try upvalues */
|
||
int idx = searchupvalue(fs, n); /* try existing upvalues */
|
||
if (idx < 0) { /* not found? */
|
||
singlevaraux(fs->prev, n, var, 0); /* try upper levels */
|
||
if (var->k == VLOCAL || var->k == VUPVAL) /* local or upvalue? */
|
||
idx = newupvalue(fs, n, var); /* will be a new upvalue */
|
||
else /* it is a global or a constant */
|
||
return; /* don't need to do anything at this level */
|
||
}
|
||
init_exp(var, VUPVAL, idx); /* new or old upvalue */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Find a variable with the given name 'n', handling global variables
|
||
** too.
|
||
*/
|
||
static void singlevar (LexState *ls, expdesc *var) {
|
||
TString *varname = str_checkname(ls);
|
||
FuncState *fs = ls->fs;
|
||
singlevaraux(fs, varname, var, 1);
|
||
if (var->k == VVOID) { /* global name? */
|
||
expdesc key;
|
||
singlevaraux(fs, ls->envn, var, 1); /* get environment variable */
|
||
lua_assert(var->k != VVOID); /* this one must exist */
|
||
luaK_exp2anyregup(fs, var); /* but could be a constant */
|
||
codestring(&key, varname); /* key is variable name */
|
||
luaK_indexed(fs, var, &key); /* env[varname] */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Adjust the number of results from an expression list 'e' with 'nexps'
|
||
** expressions to 'nvars' values.
|
||
*/
|
||
static void adjust_assign (LexState *ls, int nvars, int nexps, expdesc *e) {
|
||
FuncState *fs = ls->fs;
|
||
int needed = nvars - nexps; /* extra values needed */
|
||
if (hasmultret(e->k)) { /* last expression has multiple returns? */
|
||
int extra = needed + 1; /* discount last expression itself */
|
||
if (extra < 0)
|
||
extra = 0;
|
||
luaK_setreturns(fs, e, extra); /* last exp. provides the difference */
|
||
}
|
||
else {
|
||
if (e->k != VVOID) /* at least one expression? */
|
||
luaK_exp2nextreg(fs, e); /* close last expression */
|
||
if (needed > 0) /* missing values? */
|
||
luaK_nil(fs, fs->freereg, needed); /* complete with nils */
|
||
}
|
||
if (needed > 0)
|
||
luaK_reserveregs(fs, needed); /* registers for extra values */
|
||
else /* adding 'needed' is actually a subtraction */
|
||
fs->freereg += needed; /* remove extra values */
|
||
}
|
||
|
||
|
||
#define enterlevel(ls) luaE_incCstack(ls->L)
|
||
|
||
|
||
#define leavelevel(ls) ((ls)->L->nCcalls--)
|
||
|
||
|
||
/*
|
||
** Generates an error that a goto jumps into the scope of some
|
||
** local variable.
|
||
*/
|
||
static l_noret jumpscopeerror (LexState *ls, Labeldesc *gt) {
|
||
const char *varname = getstr(getlocalvardesc(ls->fs, gt->nactvar)->vd.name);
|
||
const char *msg = "<goto %s> at line %d jumps into the scope of local '%s'";
|
||
msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line, varname);
|
||
luaK_semerror(ls, msg); /* raise the error */
|
||
}
|
||
|
||
|
||
/*
|
||
** Solves the goto at index 'g' to given 'label' and removes it
|
||
** from the list of pending gotos.
|
||
** If it jumps into the scope of some variable, raises an error.
|
||
*/
|
||
static void solvegoto (LexState *ls, int g, Labeldesc *label) {
|
||
int i;
|
||
Labellist *gl = &ls->dyd->gt; /* list of gotos */
|
||
Labeldesc *gt = &gl->arr[g]; /* goto to be resolved */
|
||
lua_assert(eqstr(gt->name, label->name));
|
||
if (l_unlikely(gt->nactvar < label->nactvar)) /* enter some scope? */
|
||
jumpscopeerror(ls, gt);
|
||
luaK_patchlist(ls->fs, gt->pc, label->pc);
|
||
for (i = g; i < gl->n - 1; i++) /* remove goto from pending list */
|
||
gl->arr[i] = gl->arr[i + 1];
|
||
gl->n--;
|
||
}
|
||
|
||
|
||
/*
|
||
** Search for an active label with the given name.
|
||
*/
|
||
static Labeldesc *findlabel (LexState *ls, TString *name) {
|
||
int i;
|
||
Dyndata *dyd = ls->dyd;
|
||
/* check labels in current function for a match */
|
||
for (i = ls->fs->firstlabel; i < dyd->label.n; i++) {
|
||
Labeldesc *lb = &dyd->label.arr[i];
|
||
if (eqstr(lb->name, name)) /* correct label? */
|
||
return lb;
|
||
}
|
||
return NULL; /* label not found */
|
||
}
|
||
|
||
|
||
/*
|
||
** Adds a new label/goto in the corresponding list.
|
||
*/
|
||
static int newlabelentry (LexState *ls, Labellist *l, TString *name,
|
||
int line, int pc) {
|
||
int n = l->n;
|
||
luaM_growvector(ls->L, l->arr, n, l->size,
|
||
Labeldesc, SHRT_MAX, "labels/gotos");
|
||
l->arr[n].name = name;
|
||
l->arr[n].line = line;
|
||
l->arr[n].nactvar = ls->fs->nactvar;
|
||
l->arr[n].close = 0;
|
||
l->arr[n].pc = pc;
|
||
l->n = n + 1;
|
||
return n;
|
||
}
|
||
|
||
|
||
static int newgotoentry (LexState *ls, TString *name, int line, int pc) {
|
||
return newlabelentry(ls, &ls->dyd->gt, name, line, pc);
|
||
}
|
||
|
||
|
||
/*
|
||
** Solves forward jumps. Check whether new label 'lb' matches any
|
||
** pending gotos in current block and solves them. Return true
|
||
** if any of the gotos need to close upvalues.
|
||
*/
|
||
static int solvegotos (LexState *ls, Labeldesc *lb) {
|
||
Labellist *gl = &ls->dyd->gt;
|
||
int i = ls->fs->bl->firstgoto;
|
||
int needsclose = 0;
|
||
while (i < gl->n) {
|
||
if (eqstr(gl->arr[i].name, lb->name)) {
|
||
needsclose |= gl->arr[i].close;
|
||
solvegoto(ls, i, lb); /* will remove 'i' from the list */
|
||
}
|
||
else
|
||
i++;
|
||
}
|
||
return needsclose;
|
||
}
|
||
|
||
|
||
/*
|
||
** Create a new label with the given 'name' at the given 'line'.
|
||
** 'last' tells whether label is the last non-op statement in its
|
||
** block. Solves all pending gotos to this new label and adds
|
||
** a close instruction if necessary.
|
||
** Returns true iff it added a close instruction.
|
||
*/
|
||
static int createlabel (LexState *ls, TString *name, int line,
|
||
int last) {
|
||
FuncState *fs = ls->fs;
|
||
Labellist *ll = &ls->dyd->label;
|
||
int l = newlabelentry(ls, ll, name, line, luaK_getlabel(fs));
|
||
if (last) { /* label is last no-op statement in the block? */
|
||
/* assume that locals are already out of scope */
|
||
ll->arr[l].nactvar = fs->bl->nactvar;
|
||
}
|
||
if (solvegotos(ls, &ll->arr[l])) { /* need close? */
|
||
luaK_codeABC(fs, OP_CLOSE, luaY_nvarstack(fs), 0, 0);
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Adjust pending gotos to outer level of a block.
|
||
*/
|
||
static void movegotosout (FuncState *fs, BlockCnt *bl) {
|
||
int i;
|
||
Labellist *gl = &fs->ls->dyd->gt;
|
||
/* correct pending gotos to current block */
|
||
for (i = bl->firstgoto; i < gl->n; i++) { /* for each pending goto */
|
||
Labeldesc *gt = &gl->arr[i];
|
||
/* leaving a variable scope? */
|
||
if (reglevel(fs, gt->nactvar) > reglevel(fs, bl->nactvar))
|
||
gt->close |= bl->upval; /* jump may need a close */
|
||
gt->nactvar = bl->nactvar; /* update goto level */
|
||
}
|
||
}
|
||
|
||
|
||
static void enterblock (FuncState *fs, BlockCnt *bl, lu_byte isloop) {
|
||
bl->isloop = isloop;
|
||
bl->nactvar = fs->nactvar;
|
||
bl->firstlabel = fs->ls->dyd->label.n;
|
||
bl->firstgoto = fs->ls->dyd->gt.n;
|
||
bl->upval = 0;
|
||
bl->insidetbc = (fs->bl != NULL && fs->bl->insidetbc);
|
||
bl->previous = fs->bl;
|
||
fs->bl = bl;
|
||
lua_assert(fs->freereg == luaY_nvarstack(fs));
|
||
}
|
||
|
||
|
||
/*
|
||
** generates an error for an undefined 'goto'.
|
||
*/
|
||
static l_noret undefgoto (LexState *ls, Labeldesc *gt) {
|
||
const char *msg;
|
||
if (eqstr(gt->name, luaS_newliteral(ls->L, "break"))) {
|
||
msg = "break outside loop at line %d";
|
||
msg = luaO_pushfstring(ls->L, msg, gt->line);
|
||
}
|
||
else {
|
||
msg = "no visible label '%s' for <goto> at line %d";
|
||
msg = luaO_pushfstring(ls->L, msg, getstr(gt->name), gt->line);
|
||
}
|
||
luaK_semerror(ls, msg);
|
||
}
|
||
|
||
|
||
static void leaveblock (FuncState *fs) {
|
||
BlockCnt *bl = fs->bl;
|
||
LexState *ls = fs->ls;
|
||
int hasclose = 0;
|
||
int stklevel = reglevel(fs, bl->nactvar); /* level outside the block */
|
||
removevars(fs, bl->nactvar); /* remove block locals */
|
||
lua_assert(bl->nactvar == fs->nactvar); /* back to level on entry */
|
||
if (bl->isloop) /* has to fix pending breaks? */
|
||
hasclose = createlabel(ls, luaS_newliteral(ls->L, "break"), 0, 0);
|
||
if (!hasclose && bl->previous && bl->upval) /* still need a 'close'? */
|
||
luaK_codeABC(fs, OP_CLOSE, stklevel, 0, 0);
|
||
fs->freereg = stklevel; /* free registers */
|
||
ls->dyd->label.n = bl->firstlabel; /* remove local labels */
|
||
fs->bl = bl->previous; /* current block now is previous one */
|
||
if (bl->previous) /* was it a nested block? */
|
||
movegotosout(fs, bl); /* update pending gotos to enclosing block */
|
||
else {
|
||
if (bl->firstgoto < ls->dyd->gt.n) /* still pending gotos? */
|
||
undefgoto(ls, &ls->dyd->gt.arr[bl->firstgoto]); /* error */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** adds a new prototype into list of prototypes
|
||
*/
|
||
static Proto *addprototype (LexState *ls) {
|
||
Proto *clp;
|
||
lua_State *L = ls->L;
|
||
FuncState *fs = ls->fs;
|
||
Proto *f = fs->f; /* prototype of current function */
|
||
if (fs->np >= f->sizep) {
|
||
int oldsize = f->sizep;
|
||
luaM_growvector(L, f->p, fs->np, f->sizep, Proto *, MAXARG_Bx, "functions");
|
||
while (oldsize < f->sizep)
|
||
f->p[oldsize++] = NULL;
|
||
}
|
||
f->p[fs->np++] = clp = luaF_newproto(L);
|
||
luaC_objbarrier(L, f, clp);
|
||
return clp;
|
||
}
|
||
|
||
|
||
/*
|
||
** codes instruction to create new closure in parent function.
|
||
** The OP_CLOSURE instruction uses the last available register,
|
||
** so that, if it invokes the GC, the GC knows which registers
|
||
** are in use at that time.
|
||
|
||
*/
|
||
static void codeclosure (LexState *ls, expdesc *v) {
|
||
FuncState *fs = ls->fs->prev;
|
||
init_exp(v, VRELOC, luaK_codeABx(fs, OP_CLOSURE, 0, fs->np - 1));
|
||
luaK_exp2nextreg(fs, v); /* fix it at the last register */
|
||
}
|
||
|
||
|
||
static void open_func (LexState *ls, FuncState *fs, BlockCnt *bl) {
|
||
Proto *f = fs->f;
|
||
fs->prev = ls->fs; /* linked list of funcstates */
|
||
fs->ls = ls;
|
||
ls->fs = fs;
|
||
fs->pc = 0;
|
||
fs->previousline = f->linedefined;
|
||
fs->iwthabs = 0;
|
||
fs->lasttarget = 0;
|
||
fs->freereg = 0;
|
||
fs->nk = 0;
|
||
fs->nabslineinfo = 0;
|
||
fs->np = 0;
|
||
fs->nups = 0;
|
||
fs->ndebugvars = 0;
|
||
fs->nactvar = 0;
|
||
fs->needclose = 0;
|
||
fs->firstlocal = ls->dyd->actvar.n;
|
||
fs->firstlabel = ls->dyd->label.n;
|
||
fs->bl = NULL;
|
||
f->source = ls->source;
|
||
luaC_objbarrier(ls->L, f, f->source);
|
||
f->maxstacksize = 2; /* registers 0/1 are always valid */
|
||
enterblock(fs, bl, 0);
|
||
}
|
||
|
||
|
||
static void close_func (LexState *ls) {
|
||
lua_State *L = ls->L;
|
||
FuncState *fs = ls->fs;
|
||
Proto *f = fs->f;
|
||
luaK_ret(fs, luaY_nvarstack(fs), 0); /* final return */
|
||
leaveblock(fs);
|
||
lua_assert(fs->bl == NULL);
|
||
luaK_finish(fs);
|
||
luaM_shrinkvector(L, f->code, f->sizecode, fs->pc, Instruction);
|
||
luaM_shrinkvector(L, f->lineinfo, f->sizelineinfo, fs->pc, ls_byte);
|
||
luaM_shrinkvector(L, f->abslineinfo, f->sizeabslineinfo,
|
||
fs->nabslineinfo, AbsLineInfo);
|
||
luaM_shrinkvector(L, f->k, f->sizek, fs->nk, TValue);
|
||
luaM_shrinkvector(L, f->p, f->sizep, fs->np, Proto *);
|
||
luaM_shrinkvector(L, f->locvars, f->sizelocvars, fs->ndebugvars, LocVar);
|
||
luaM_shrinkvector(L, f->upvalues, f->sizeupvalues, fs->nups, Upvaldesc);
|
||
ls->fs = fs->prev;
|
||
luaC_checkGC(L);
|
||
}
|
||
|
||
|
||
|
||
/*============================================================*/
|
||
/* GRAMMAR RULES */
|
||
/*============================================================*/
|
||
|
||
|
||
/*
|
||
** check whether current token is in the follow set of a block.
|
||
** 'until' closes syntactical blocks, but do not close scope,
|
||
** so it is handled in separate.
|
||
*/
|
||
static int block_follow (LexState *ls, int withuntil) {
|
||
switch (ls->t.token) {
|
||
case TK_ELSE: case TK_ELSEIF:
|
||
case TK_END: case TK_EOS:
|
||
return 1;
|
||
case TK_UNTIL: return withuntil;
|
||
default: return 0;
|
||
}
|
||
}
|
||
|
||
|
||
static void statlist (LexState *ls) {
|
||
/* statlist -> { stat [';'] } */
|
||
while (!block_follow(ls, 1)) {
|
||
if (ls->t.token == TK_RETURN) {
|
||
statement(ls);
|
||
return; /* 'return' must be last statement */
|
||
}
|
||
statement(ls);
|
||
}
|
||
}
|
||
|
||
|
||
static void fieldsel (LexState *ls, expdesc *v) {
|
||
/* fieldsel -> ['.' | ':'] NAME */
|
||
FuncState *fs = ls->fs;
|
||
expdesc key;
|
||
luaK_exp2anyregup(fs, v);
|
||
luaX_next(ls); /* skip the dot or colon */
|
||
codename(ls, &key);
|
||
luaK_indexed(fs, v, &key);
|
||
}
|
||
|
||
|
||
static void yindex (LexState *ls, expdesc *v) {
|
||
/* index -> '[' expr ']' */
|
||
luaX_next(ls); /* skip the '[' */
|
||
expr(ls, v);
|
||
luaK_exp2val(ls->fs, v);
|
||
checknext(ls, ']');
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================================
|
||
** Rules for Constructors
|
||
** =======================================================================
|
||
*/
|
||
|
||
|
||
typedef struct ConsControl {
|
||
expdesc v; /* last list item read */
|
||
expdesc *t; /* table descriptor */
|
||
int nh; /* total number of 'record' elements */
|
||
int na; /* number of array elements already stored */
|
||
int tostore; /* number of array elements pending to be stored */
|
||
} ConsControl;
|
||
|
||
|
||
static void recfield (LexState *ls, ConsControl *cc) {
|
||
/* recfield -> (NAME | '['exp']') = exp */
|
||
FuncState *fs = ls->fs;
|
||
int reg = ls->fs->freereg;
|
||
expdesc tab, key, val;
|
||
if (ls->t.token == TK_NAME) {
|
||
checklimit(fs, cc->nh, MAX_INT, "items in a constructor");
|
||
codename(ls, &key);
|
||
}
|
||
else /* ls->t.token == '[' */
|
||
yindex(ls, &key);
|
||
cc->nh++;
|
||
checknext(ls, '=');
|
||
tab = *cc->t;
|
||
luaK_indexed(fs, &tab, &key);
|
||
expr(ls, &val);
|
||
luaK_storevar(fs, &tab, &val);
|
||
fs->freereg = reg; /* free registers */
|
||
}
|
||
|
||
|
||
static void closelistfield (FuncState *fs, ConsControl *cc) {
|
||
if (cc->v.k == VVOID) return; /* there is no list item */
|
||
luaK_exp2nextreg(fs, &cc->v);
|
||
cc->v.k = VVOID;
|
||
if (cc->tostore == LFIELDS_PER_FLUSH) {
|
||
luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore); /* flush */
|
||
cc->na += cc->tostore;
|
||
cc->tostore = 0; /* no more items pending */
|
||
}
|
||
}
|
||
|
||
|
||
static void lastlistfield (FuncState *fs, ConsControl *cc) {
|
||
if (cc->tostore == 0) return;
|
||
if (hasmultret(cc->v.k)) {
|
||
luaK_setmultret(fs, &cc->v);
|
||
luaK_setlist(fs, cc->t->u.info, cc->na, LUA_MULTRET);
|
||
cc->na--; /* do not count last expression (unknown number of elements) */
|
||
}
|
||
else {
|
||
if (cc->v.k != VVOID)
|
||
luaK_exp2nextreg(fs, &cc->v);
|
||
luaK_setlist(fs, cc->t->u.info, cc->na, cc->tostore);
|
||
}
|
||
cc->na += cc->tostore;
|
||
}
|
||
|
||
|
||
static void listfield (LexState *ls, ConsControl *cc) {
|
||
/* listfield -> exp */
|
||
expr(ls, &cc->v);
|
||
cc->tostore++;
|
||
}
|
||
|
||
|
||
static void field (LexState *ls, ConsControl *cc) {
|
||
/* field -> listfield | recfield */
|
||
switch(ls->t.token) {
|
||
case TK_NAME: { /* may be 'listfield' or 'recfield' */
|
||
if (luaX_lookahead(ls) != '=') /* expression? */
|
||
listfield(ls, cc);
|
||
else
|
||
recfield(ls, cc);
|
||
break;
|
||
}
|
||
case '[': {
|
||
recfield(ls, cc);
|
||
break;
|
||
}
|
||
default: {
|
||
listfield(ls, cc);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void constructor (LexState *ls, expdesc *t) {
|
||
/* constructor -> '{' [ field { sep field } [sep] ] '}'
|
||
sep -> ',' | ';' */
|
||
FuncState *fs = ls->fs;
|
||
int line = ls->linenumber;
|
||
int pc = luaK_codeABC(fs, OP_NEWTABLE, 0, 0, 0);
|
||
ConsControl cc;
|
||
luaK_code(fs, 0); /* space for extra arg. */
|
||
cc.na = cc.nh = cc.tostore = 0;
|
||
cc.t = t;
|
||
init_exp(t, VNONRELOC, fs->freereg); /* table will be at stack top */
|
||
luaK_reserveregs(fs, 1);
|
||
init_exp(&cc.v, VVOID, 0); /* no value (yet) */
|
||
checknext(ls, '{');
|
||
do {
|
||
lua_assert(cc.v.k == VVOID || cc.tostore > 0);
|
||
if (ls->t.token == '}') break;
|
||
closelistfield(fs, &cc);
|
||
field(ls, &cc);
|
||
} while (testnext(ls, ',') || testnext(ls, ';'));
|
||
check_match(ls, '}', '{', line);
|
||
lastlistfield(fs, &cc);
|
||
luaK_settablesize(fs, pc, t->u.info, cc.na, cc.nh);
|
||
}
|
||
|
||
/* }====================================================================== */
|
||
|
||
|
||
static void setvararg (FuncState *fs, int nparams) {
|
||
fs->f->is_vararg = 1;
|
||
luaK_codeABC(fs, OP_VARARGPREP, nparams, 0, 0);
|
||
}
|
||
|
||
|
||
static void parlist (LexState *ls) {
|
||
/* parlist -> [ {NAME ','} (NAME | '...') ] */
|
||
FuncState *fs = ls->fs;
|
||
Proto *f = fs->f;
|
||
int nparams = 0;
|
||
int isvararg = 0;
|
||
if (ls->t.token != ')') { /* is 'parlist' not empty? */
|
||
do {
|
||
switch (ls->t.token) {
|
||
case TK_NAME: {
|
||
new_localvar(ls, str_checkname(ls));
|
||
nparams++;
|
||
break;
|
||
}
|
||
case TK_DOTS: {
|
||
luaX_next(ls);
|
||
isvararg = 1;
|
||
break;
|
||
}
|
||
default: luaX_syntaxerror(ls, "<name> or '...' expected");
|
||
}
|
||
} while (!isvararg && testnext(ls, ','));
|
||
}
|
||
adjustlocalvars(ls, nparams);
|
||
f->numparams = cast_byte(fs->nactvar);
|
||
if (isvararg)
|
||
setvararg(fs, f->numparams); /* declared vararg */
|
||
luaK_reserveregs(fs, fs->nactvar); /* reserve registers for parameters */
|
||
}
|
||
|
||
|
||
static void body (LexState *ls, expdesc *e, int ismethod, int line) {
|
||
/* body -> '(' parlist ')' block END */
|
||
FuncState new_fs;
|
||
BlockCnt bl;
|
||
new_fs.f = addprototype(ls);
|
||
new_fs.f->linedefined = line;
|
||
open_func(ls, &new_fs, &bl);
|
||
checknext(ls, '(');
|
||
if (ismethod) {
|
||
new_localvarliteral(ls, "self"); /* create 'self' parameter */
|
||
adjustlocalvars(ls, 1);
|
||
}
|
||
parlist(ls);
|
||
checknext(ls, ')');
|
||
statlist(ls);
|
||
new_fs.f->lastlinedefined = ls->linenumber;
|
||
check_match(ls, TK_END, TK_FUNCTION, line);
|
||
codeclosure(ls, e);
|
||
close_func(ls);
|
||
}
|
||
|
||
|
||
static int explist (LexState *ls, expdesc *v) {
|
||
/* explist -> expr { ',' expr } */
|
||
int n = 1; /* at least one expression */
|
||
expr(ls, v);
|
||
while (testnext(ls, ',')) {
|
||
luaK_exp2nextreg(ls->fs, v);
|
||
expr(ls, v);
|
||
n++;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
static void funcargs (LexState *ls, expdesc *f) {
|
||
FuncState *fs = ls->fs;
|
||
expdesc args;
|
||
int base, nparams;
|
||
int line = ls->linenumber;
|
||
switch (ls->t.token) {
|
||
case '(': { /* funcargs -> '(' [ explist ] ')' */
|
||
luaX_next(ls);
|
||
if (ls->t.token == ')') /* arg list is empty? */
|
||
args.k = VVOID;
|
||
else {
|
||
explist(ls, &args);
|
||
if (hasmultret(args.k))
|
||
luaK_setmultret(fs, &args);
|
||
}
|
||
check_match(ls, ')', '(', line);
|
||
break;
|
||
}
|
||
case '{': { /* funcargs -> constructor */
|
||
constructor(ls, &args);
|
||
break;
|
||
}
|
||
case TK_STRING: { /* funcargs -> STRING */
|
||
codestring(&args, ls->t.seminfo.ts);
|
||
luaX_next(ls); /* must use 'seminfo' before 'next' */
|
||
break;
|
||
}
|
||
default: {
|
||
luaX_syntaxerror(ls, "function arguments expected");
|
||
}
|
||
}
|
||
lua_assert(f->k == VNONRELOC);
|
||
base = f->u.info; /* base register for call */
|
||
if (hasmultret(args.k))
|
||
nparams = LUA_MULTRET; /* open call */
|
||
else {
|
||
if (args.k != VVOID)
|
||
luaK_exp2nextreg(fs, &args); /* close last argument */
|
||
nparams = fs->freereg - (base+1);
|
||
}
|
||
init_exp(f, VCALL, luaK_codeABC(fs, OP_CALL, base, nparams+1, 2));
|
||
luaK_fixline(fs, line);
|
||
fs->freereg = base+1; /* call removes function and arguments and leaves
|
||
one result (unless changed later) */
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================================
|
||
** Expression parsing
|
||
** =======================================================================
|
||
*/
|
||
|
||
|
||
static void primaryexp (LexState *ls, expdesc *v) {
|
||
/* primaryexp -> NAME | '(' expr ')' */
|
||
switch (ls->t.token) {
|
||
case '(': {
|
||
int line = ls->linenumber;
|
||
luaX_next(ls);
|
||
expr(ls, v);
|
||
check_match(ls, ')', '(', line);
|
||
luaK_dischargevars(ls->fs, v);
|
||
return;
|
||
}
|
||
case TK_NAME: {
|
||
singlevar(ls, v);
|
||
return;
|
||
}
|
||
default: {
|
||
luaX_syntaxerror(ls, "unexpected symbol");
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void suffixedexp (LexState *ls, expdesc *v) {
|
||
/* suffixedexp ->
|
||
primaryexp { '.' NAME | '[' exp ']' | ':' NAME funcargs | funcargs } */
|
||
FuncState *fs = ls->fs;
|
||
primaryexp(ls, v);
|
||
for (;;) {
|
||
switch (ls->t.token) {
|
||
case '.': { /* fieldsel */
|
||
fieldsel(ls, v);
|
||
break;
|
||
}
|
||
case '[': { /* '[' exp ']' */
|
||
expdesc key;
|
||
luaK_exp2anyregup(fs, v);
|
||
yindex(ls, &key);
|
||
luaK_indexed(fs, v, &key);
|
||
break;
|
||
}
|
||
case ':': { /* ':' NAME funcargs */
|
||
expdesc key;
|
||
luaX_next(ls);
|
||
codename(ls, &key);
|
||
luaK_self(fs, v, &key);
|
||
funcargs(ls, v);
|
||
break;
|
||
}
|
||
case '(': case TK_STRING: case '{': { /* funcargs */
|
||
luaK_exp2nextreg(fs, v);
|
||
funcargs(ls, v);
|
||
break;
|
||
}
|
||
default: return;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static void simpleexp (LexState *ls, expdesc *v) {
|
||
/* simpleexp -> FLT | INT | STRING | NIL | TRUE | FALSE | ... |
|
||
constructor | FUNCTION body | suffixedexp */
|
||
switch (ls->t.token) {
|
||
case TK_FLT: {
|
||
init_exp(v, VKFLT, 0);
|
||
v->u.nval = ls->t.seminfo.r;
|
||
break;
|
||
}
|
||
case TK_INT: {
|
||
init_exp(v, VKINT, 0);
|
||
v->u.ival = ls->t.seminfo.i;
|
||
break;
|
||
}
|
||
case TK_STRING: {
|
||
codestring(v, ls->t.seminfo.ts);
|
||
break;
|
||
}
|
||
case TK_NIL: {
|
||
init_exp(v, VNIL, 0);
|
||
break;
|
||
}
|
||
case TK_TRUE: {
|
||
init_exp(v, VTRUE, 0);
|
||
break;
|
||
}
|
||
case TK_FALSE: {
|
||
init_exp(v, VFALSE, 0);
|
||
break;
|
||
}
|
||
case TK_DOTS: { /* vararg */
|
||
FuncState *fs = ls->fs;
|
||
check_condition(ls, fs->f->is_vararg,
|
||
"cannot use '...' outside a vararg function");
|
||
init_exp(v, VVARARG, luaK_codeABC(fs, OP_VARARG, 0, 0, 1));
|
||
break;
|
||
}
|
||
case '{': { /* constructor */
|
||
constructor(ls, v);
|
||
return;
|
||
}
|
||
case TK_FUNCTION: {
|
||
luaX_next(ls);
|
||
body(ls, v, 0, ls->linenumber);
|
||
return;
|
||
}
|
||
default: {
|
||
suffixedexp(ls, v);
|
||
return;
|
||
}
|
||
}
|
||
luaX_next(ls);
|
||
}
|
||
|
||
|
||
static UnOpr getunopr (int op) {
|
||
switch (op) {
|
||
case TK_NOT: return OPR_NOT;
|
||
case '-': return OPR_MINUS;
|
||
case '~': return OPR_BNOT;
|
||
case '#': return OPR_LEN;
|
||
default: return OPR_NOUNOPR;
|
||
}
|
||
}
|
||
|
||
|
||
static BinOpr getbinopr (int op) {
|
||
switch (op) {
|
||
case '+': return OPR_ADD;
|
||
case '-': return OPR_SUB;
|
||
case '*': return OPR_MUL;
|
||
case '%': return OPR_MOD;
|
||
case '^': return OPR_POW;
|
||
case '/': return OPR_DIV;
|
||
case TK_IDIV: return OPR_IDIV;
|
||
case '&': return OPR_BAND;
|
||
case '|': return OPR_BOR;
|
||
case '~': return OPR_BXOR;
|
||
case TK_SHL: return OPR_SHL;
|
||
case TK_SHR: return OPR_SHR;
|
||
case TK_CONCAT: return OPR_CONCAT;
|
||
case TK_NE: return OPR_NE;
|
||
case TK_EQ: return OPR_EQ;
|
||
case '<': return OPR_LT;
|
||
case TK_LE: return OPR_LE;
|
||
case '>': return OPR_GT;
|
||
case TK_GE: return OPR_GE;
|
||
case TK_AND: return OPR_AND;
|
||
case TK_OR: return OPR_OR;
|
||
default: return OPR_NOBINOPR;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Priority table for binary operators.
|
||
*/
|
||
static const struct {
|
||
lu_byte left; /* left priority for each binary operator */
|
||
lu_byte right; /* right priority */
|
||
} priority[] = { /* ORDER OPR */
|
||
{10, 10}, {10, 10}, /* '+' '-' */
|
||
{11, 11}, {11, 11}, /* '*' '%' */
|
||
{14, 13}, /* '^' (right associative) */
|
||
{11, 11}, {11, 11}, /* '/' '//' */
|
||
{6, 6}, {4, 4}, {5, 5}, /* '&' '|' '~' */
|
||
{7, 7}, {7, 7}, /* '<<' '>>' */
|
||
{9, 8}, /* '..' (right associative) */
|
||
{3, 3}, {3, 3}, {3, 3}, /* ==, <, <= */
|
||
{3, 3}, {3, 3}, {3, 3}, /* ~=, >, >= */
|
||
{2, 2}, {1, 1} /* and, or */
|
||
};
|
||
|
||
#define UNARY_PRIORITY 12 /* priority for unary operators */
|
||
|
||
|
||
/*
|
||
** subexpr -> (simpleexp | unop subexpr) { binop subexpr }
|
||
** where 'binop' is any binary operator with a priority higher than 'limit'
|
||
*/
|
||
static BinOpr subexpr (LexState *ls, expdesc *v, int limit) {
|
||
BinOpr op;
|
||
UnOpr uop;
|
||
enterlevel(ls);
|
||
uop = getunopr(ls->t.token);
|
||
if (uop != OPR_NOUNOPR) { /* prefix (unary) operator? */
|
||
int line = ls->linenumber;
|
||
luaX_next(ls); /* skip operator */
|
||
subexpr(ls, v, UNARY_PRIORITY);
|
||
luaK_prefix(ls->fs, uop, v, line);
|
||
}
|
||
else simpleexp(ls, v);
|
||
/* expand while operators have priorities higher than 'limit' */
|
||
op = getbinopr(ls->t.token);
|
||
while (op != OPR_NOBINOPR && priority[op].left > limit) {
|
||
expdesc v2;
|
||
BinOpr nextop;
|
||
int line = ls->linenumber;
|
||
luaX_next(ls); /* skip operator */
|
||
luaK_infix(ls->fs, op, v);
|
||
/* read sub-expression with higher priority */
|
||
nextop = subexpr(ls, &v2, priority[op].right);
|
||
luaK_posfix(ls->fs, op, v, &v2, line);
|
||
op = nextop;
|
||
}
|
||
leavelevel(ls);
|
||
return op; /* return first untreated operator */
|
||
}
|
||
|
||
|
||
static void expr (LexState *ls, expdesc *v) {
|
||
subexpr(ls, v, 0);
|
||
}
|
||
|
||
/* }==================================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================================
|
||
** Rules for Statements
|
||
** =======================================================================
|
||
*/
|
||
|
||
|
||
static void block (LexState *ls) {
|
||
/* block -> statlist */
|
||
FuncState *fs = ls->fs;
|
||
BlockCnt bl;
|
||
enterblock(fs, &bl, 0);
|
||
statlist(ls);
|
||
leaveblock(fs);
|
||
}
|
||
|
||
|
||
/*
|
||
** structure to chain all variables in the left-hand side of an
|
||
** assignment
|
||
*/
|
||
struct LHS_assign {
|
||
struct LHS_assign *prev;
|
||
expdesc v; /* variable (global, local, upvalue, or indexed) */
|
||
};
|
||
|
||
|
||
/*
|
||
** check whether, in an assignment to an upvalue/local variable, the
|
||
** upvalue/local variable is begin used in a previous assignment to a
|
||
** table. If so, save original upvalue/local value in a safe place and
|
||
** use this safe copy in the previous assignment.
|
||
*/
|
||
static void check_conflict (LexState *ls, struct LHS_assign *lh, expdesc *v) {
|
||
FuncState *fs = ls->fs;
|
||
int extra = fs->freereg; /* eventual position to save local variable */
|
||
int conflict = 0;
|
||
for (; lh; lh = lh->prev) { /* check all previous assignments */
|
||
if (vkisindexed(lh->v.k)) { /* assignment to table field? */
|
||
if (lh->v.k == VINDEXUP) { /* is table an upvalue? */
|
||
if (v->k == VUPVAL && lh->v.u.ind.t == v->u.info) {
|
||
conflict = 1; /* table is the upvalue being assigned now */
|
||
lh->v.k = VINDEXSTR;
|
||
lh->v.u.ind.t = extra; /* assignment will use safe copy */
|
||
}
|
||
}
|
||
else { /* table is a register */
|
||
if (v->k == VLOCAL && lh->v.u.ind.t == v->u.var.ridx) {
|
||
conflict = 1; /* table is the local being assigned now */
|
||
lh->v.u.ind.t = extra; /* assignment will use safe copy */
|
||
}
|
||
/* is index the local being assigned? */
|
||
if (lh->v.k == VINDEXED && v->k == VLOCAL &&
|
||
lh->v.u.ind.idx == v->u.var.ridx) {
|
||
conflict = 1;
|
||
lh->v.u.ind.idx = extra; /* previous assignment will use safe copy */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (conflict) {
|
||
/* copy upvalue/local value to a temporary (in position 'extra') */
|
||
if (v->k == VLOCAL)
|
||
luaK_codeABC(fs, OP_MOVE, extra, v->u.var.ridx, 0);
|
||
else
|
||
luaK_codeABC(fs, OP_GETUPVAL, extra, v->u.info, 0);
|
||
luaK_reserveregs(fs, 1);
|
||
}
|
||
}
|
||
|
||
/*
|
||
** Parse and compile a multiple assignment. The first "variable"
|
||
** (a 'suffixedexp') was already read by the caller.
|
||
**
|
||
** assignment -> suffixedexp restassign
|
||
** restassign -> ',' suffixedexp restassign | '=' explist
|
||
*/
|
||
static void restassign (LexState *ls, struct LHS_assign *lh, int nvars) {
|
||
expdesc e;
|
||
check_condition(ls, vkisvar(lh->v.k), "syntax error");
|
||
check_readonly(ls, &lh->v);
|
||
if (testnext(ls, ',')) { /* restassign -> ',' suffixedexp restassign */
|
||
struct LHS_assign nv;
|
||
nv.prev = lh;
|
||
suffixedexp(ls, &nv.v);
|
||
if (!vkisindexed(nv.v.k))
|
||
check_conflict(ls, lh, &nv.v);
|
||
enterlevel(ls); /* control recursion depth */
|
||
restassign(ls, &nv, nvars+1);
|
||
leavelevel(ls);
|
||
}
|
||
else { /* restassign -> '=' explist */
|
||
int nexps;
|
||
checknext(ls, '=');
|
||
nexps = explist(ls, &e);
|
||
if (nexps != nvars)
|
||
adjust_assign(ls, nvars, nexps, &e);
|
||
else {
|
||
luaK_setoneret(ls->fs, &e); /* close last expression */
|
||
luaK_storevar(ls->fs, &lh->v, &e);
|
||
return; /* avoid default */
|
||
}
|
||
}
|
||
init_exp(&e, VNONRELOC, ls->fs->freereg-1); /* default assignment */
|
||
luaK_storevar(ls->fs, &lh->v, &e);
|
||
}
|
||
|
||
|
||
static int cond (LexState *ls) {
|
||
/* cond -> exp */
|
||
expdesc v;
|
||
expr(ls, &v); /* read condition */
|
||
if (v.k == VNIL) v.k = VFALSE; /* 'falses' are all equal here */
|
||
luaK_goiftrue(ls->fs, &v);
|
||
return v.f;
|
||
}
|
||
|
||
|
||
static void gotostat (LexState *ls) {
|
||
FuncState *fs = ls->fs;
|
||
int line = ls->linenumber;
|
||
TString *name = str_checkname(ls); /* label's name */
|
||
Labeldesc *lb = findlabel(ls, name);
|
||
if (lb == NULL) /* no label? */
|
||
/* forward jump; will be resolved when the label is declared */
|
||
newgotoentry(ls, name, line, luaK_jump(fs));
|
||
else { /* found a label */
|
||
/* backward jump; will be resolved here */
|
||
int lblevel = reglevel(fs, lb->nactvar); /* label level */
|
||
if (luaY_nvarstack(fs) > lblevel) /* leaving the scope of a variable? */
|
||
luaK_codeABC(fs, OP_CLOSE, lblevel, 0, 0);
|
||
/* create jump and link it to the label */
|
||
luaK_patchlist(fs, luaK_jump(fs), lb->pc);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Break statement. Semantically equivalent to "goto break".
|
||
*/
|
||
static void breakstat (LexState *ls) {
|
||
int line = ls->linenumber;
|
||
luaX_next(ls); /* skip break */
|
||
newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, luaK_jump(ls->fs));
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether there is already a label with the given 'name'.
|
||
*/
|
||
static void checkrepeated (LexState *ls, TString *name) {
|
||
Labeldesc *lb = findlabel(ls, name);
|
||
if (l_unlikely(lb != NULL)) { /* already defined? */
|
||
const char *msg = "label '%s' already defined on line %d";
|
||
msg = luaO_pushfstring(ls->L, msg, getstr(name), lb->line);
|
||
luaK_semerror(ls, msg); /* error */
|
||
}
|
||
}
|
||
|
||
|
||
static void labelstat (LexState *ls, TString *name, int line) {
|
||
/* label -> '::' NAME '::' */
|
||
checknext(ls, TK_DBCOLON); /* skip double colon */
|
||
while (ls->t.token == ';' || ls->t.token == TK_DBCOLON)
|
||
statement(ls); /* skip other no-op statements */
|
||
checkrepeated(ls, name); /* check for repeated labels */
|
||
createlabel(ls, name, line, block_follow(ls, 0));
|
||
}
|
||
|
||
|
||
static void whilestat (LexState *ls, int line) {
|
||
/* whilestat -> WHILE cond DO block END */
|
||
FuncState *fs = ls->fs;
|
||
int whileinit;
|
||
int condexit;
|
||
BlockCnt bl;
|
||
luaX_next(ls); /* skip WHILE */
|
||
whileinit = luaK_getlabel(fs);
|
||
condexit = cond(ls);
|
||
enterblock(fs, &bl, 1);
|
||
checknext(ls, TK_DO);
|
||
block(ls);
|
||
luaK_jumpto(fs, whileinit);
|
||
check_match(ls, TK_END, TK_WHILE, line);
|
||
leaveblock(fs);
|
||
luaK_patchtohere(fs, condexit); /* false conditions finish the loop */
|
||
}
|
||
|
||
|
||
static void repeatstat (LexState *ls, int line) {
|
||
/* repeatstat -> REPEAT block UNTIL cond */
|
||
int condexit;
|
||
FuncState *fs = ls->fs;
|
||
int repeat_init = luaK_getlabel(fs);
|
||
BlockCnt bl1, bl2;
|
||
enterblock(fs, &bl1, 1); /* loop block */
|
||
enterblock(fs, &bl2, 0); /* scope block */
|
||
luaX_next(ls); /* skip REPEAT */
|
||
statlist(ls);
|
||
check_match(ls, TK_UNTIL, TK_REPEAT, line);
|
||
condexit = cond(ls); /* read condition (inside scope block) */
|
||
leaveblock(fs); /* finish scope */
|
||
if (bl2.upval) { /* upvalues? */
|
||
int exit = luaK_jump(fs); /* normal exit must jump over fix */
|
||
luaK_patchtohere(fs, condexit); /* repetition must close upvalues */
|
||
luaK_codeABC(fs, OP_CLOSE, reglevel(fs, bl2.nactvar), 0, 0);
|
||
condexit = luaK_jump(fs); /* repeat after closing upvalues */
|
||
luaK_patchtohere(fs, exit); /* normal exit comes to here */
|
||
}
|
||
luaK_patchlist(fs, condexit, repeat_init); /* close the loop */
|
||
leaveblock(fs); /* finish loop */
|
||
}
|
||
|
||
|
||
/*
|
||
** Read an expression and generate code to put its results in next
|
||
** stack slot.
|
||
**
|
||
*/
|
||
static void exp1 (LexState *ls) {
|
||
expdesc e;
|
||
expr(ls, &e);
|
||
luaK_exp2nextreg(ls->fs, &e);
|
||
lua_assert(e.k == VNONRELOC);
|
||
}
|
||
|
||
|
||
/*
|
||
** Fix for instruction at position 'pc' to jump to 'dest'.
|
||
** (Jump addresses are relative in Lua). 'back' true means
|
||
** a back jump.
|
||
*/
|
||
static void fixforjump (FuncState *fs, int pc, int dest, int back) {
|
||
Instruction *jmp = &fs->f->code[pc];
|
||
int offset = dest - (pc + 1);
|
||
if (back)
|
||
offset = -offset;
|
||
if (l_unlikely(offset > MAXARG_Bx))
|
||
luaX_syntaxerror(fs->ls, "control structure too long");
|
||
SETARG_Bx(*jmp, offset);
|
||
}
|
||
|
||
|
||
/*
|
||
** Generate code for a 'for' loop.
|
||
*/
|
||
static void forbody (LexState *ls, int base, int line, int nvars, int isgen) {
|
||
/* forbody -> DO block */
|
||
static const OpCode forprep[2] = {OP_FORPREP, OP_TFORPREP};
|
||
static const OpCode forloop[2] = {OP_FORLOOP, OP_TFORLOOP};
|
||
BlockCnt bl;
|
||
FuncState *fs = ls->fs;
|
||
int prep, endfor;
|
||
checknext(ls, TK_DO);
|
||
prep = luaK_codeABx(fs, forprep[isgen], base, 0);
|
||
enterblock(fs, &bl, 0); /* scope for declared variables */
|
||
adjustlocalvars(ls, nvars);
|
||
luaK_reserveregs(fs, nvars);
|
||
block(ls);
|
||
leaveblock(fs); /* end of scope for declared variables */
|
||
fixforjump(fs, prep, luaK_getlabel(fs), 0);
|
||
if (isgen) { /* generic for? */
|
||
luaK_codeABC(fs, OP_TFORCALL, base, 0, nvars);
|
||
luaK_fixline(fs, line);
|
||
}
|
||
endfor = luaK_codeABx(fs, forloop[isgen], base, 0);
|
||
fixforjump(fs, endfor, prep + 1, 1);
|
||
luaK_fixline(fs, line);
|
||
}
|
||
|
||
|
||
static void fornum (LexState *ls, TString *varname, int line) {
|
||
/* fornum -> NAME = exp,exp[,exp] forbody */
|
||
FuncState *fs = ls->fs;
|
||
int base = fs->freereg;
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvar(ls, varname);
|
||
checknext(ls, '=');
|
||
exp1(ls); /* initial value */
|
||
checknext(ls, ',');
|
||
exp1(ls); /* limit */
|
||
if (testnext(ls, ','))
|
||
exp1(ls); /* optional step */
|
||
else { /* default step = 1 */
|
||
luaK_int(fs, fs->freereg, 1);
|
||
luaK_reserveregs(fs, 1);
|
||
}
|
||
adjustlocalvars(ls, 3); /* control variables */
|
||
forbody(ls, base, line, 1, 0);
|
||
}
|
||
|
||
|
||
static void forlist (LexState *ls, TString *indexname) {
|
||
/* forlist -> NAME {,NAME} IN explist forbody */
|
||
FuncState *fs = ls->fs;
|
||
expdesc e;
|
||
int nvars = 5; /* gen, state, control, toclose, 'indexname' */
|
||
int line;
|
||
int base = fs->freereg;
|
||
/* create control variables */
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvarliteral(ls, "(for state)");
|
||
new_localvarliteral(ls, "(for state)");
|
||
/* create declared variables */
|
||
new_localvar(ls, indexname);
|
||
while (testnext(ls, ',')) {
|
||
new_localvar(ls, str_checkname(ls));
|
||
nvars++;
|
||
}
|
||
checknext(ls, TK_IN);
|
||
line = ls->linenumber;
|
||
adjust_assign(ls, 4, explist(ls, &e), &e);
|
||
adjustlocalvars(ls, 4); /* control variables */
|
||
marktobeclosed(fs); /* last control var. must be closed */
|
||
luaK_checkstack(fs, 3); /* extra space to call generator */
|
||
forbody(ls, base, line, nvars - 4, 1);
|
||
}
|
||
|
||
|
||
static void forstat (LexState *ls, int line) {
|
||
/* forstat -> FOR (fornum | forlist) END */
|
||
FuncState *fs = ls->fs;
|
||
TString *varname;
|
||
BlockCnt bl;
|
||
enterblock(fs, &bl, 1); /* scope for loop and control variables */
|
||
luaX_next(ls); /* skip 'for' */
|
||
varname = str_checkname(ls); /* first variable name */
|
||
switch (ls->t.token) {
|
||
case '=': fornum(ls, varname, line); break;
|
||
case ',': case TK_IN: forlist(ls, varname); break;
|
||
default: luaX_syntaxerror(ls, "'=' or 'in' expected");
|
||
}
|
||
check_match(ls, TK_END, TK_FOR, line);
|
||
leaveblock(fs); /* loop scope ('break' jumps to this point) */
|
||
}
|
||
|
||
|
||
static void test_then_block (LexState *ls, int *escapelist) {
|
||
/* test_then_block -> [IF | ELSEIF] cond THEN block */
|
||
BlockCnt bl;
|
||
FuncState *fs = ls->fs;
|
||
expdesc v;
|
||
int jf; /* instruction to skip 'then' code (if condition is false) */
|
||
luaX_next(ls); /* skip IF or ELSEIF */
|
||
expr(ls, &v); /* read condition */
|
||
checknext(ls, TK_THEN);
|
||
if (ls->t.token == TK_BREAK) { /* 'if x then break' ? */
|
||
int line = ls->linenumber;
|
||
luaK_goiffalse(ls->fs, &v); /* will jump if condition is true */
|
||
luaX_next(ls); /* skip 'break' */
|
||
enterblock(fs, &bl, 0); /* must enter block before 'goto' */
|
||
newgotoentry(ls, luaS_newliteral(ls->L, "break"), line, v.t);
|
||
while (testnext(ls, ';')) {} /* skip semicolons */
|
||
if (block_follow(ls, 0)) { /* jump is the entire block? */
|
||
leaveblock(fs);
|
||
return; /* and that is it */
|
||
}
|
||
else /* must skip over 'then' part if condition is false */
|
||
jf = luaK_jump(fs);
|
||
}
|
||
else { /* regular case (not a break) */
|
||
luaK_goiftrue(ls->fs, &v); /* skip over block if condition is false */
|
||
enterblock(fs, &bl, 0);
|
||
jf = v.f;
|
||
}
|
||
statlist(ls); /* 'then' part */
|
||
leaveblock(fs);
|
||
if (ls->t.token == TK_ELSE ||
|
||
ls->t.token == TK_ELSEIF) /* followed by 'else'/'elseif'? */
|
||
luaK_concat(fs, escapelist, luaK_jump(fs)); /* must jump over it */
|
||
luaK_patchtohere(fs, jf);
|
||
}
|
||
|
||
|
||
static void ifstat (LexState *ls, int line) {
|
||
/* ifstat -> IF cond THEN block {ELSEIF cond THEN block} [ELSE block] END */
|
||
FuncState *fs = ls->fs;
|
||
int escapelist = NO_JUMP; /* exit list for finished parts */
|
||
test_then_block(ls, &escapelist); /* IF cond THEN block */
|
||
while (ls->t.token == TK_ELSEIF)
|
||
test_then_block(ls, &escapelist); /* ELSEIF cond THEN block */
|
||
if (testnext(ls, TK_ELSE))
|
||
block(ls); /* 'else' part */
|
||
check_match(ls, TK_END, TK_IF, line);
|
||
luaK_patchtohere(fs, escapelist); /* patch escape list to 'if' end */
|
||
}
|
||
|
||
|
||
static void localfunc (LexState *ls) {
|
||
expdesc b;
|
||
FuncState *fs = ls->fs;
|
||
int fvar = fs->nactvar; /* function's variable index */
|
||
new_localvar(ls, str_checkname(ls)); /* new local variable */
|
||
adjustlocalvars(ls, 1); /* enter its scope */
|
||
body(ls, &b, 0, ls->linenumber); /* function created in next register */
|
||
/* debug information will only see the variable after this point! */
|
||
localdebuginfo(fs, fvar)->startpc = fs->pc;
|
||
}
|
||
|
||
|
||
static int getlocalattribute (LexState *ls) {
|
||
/* ATTRIB -> ['<' Name '>'] */
|
||
if (testnext(ls, '<')) {
|
||
const char *attr = getstr(str_checkname(ls));
|
||
checknext(ls, '>');
|
||
if (strcmp(attr, "const") == 0)
|
||
return RDKCONST; /* read-only variable */
|
||
else if (strcmp(attr, "close") == 0)
|
||
return RDKTOCLOSE; /* to-be-closed variable */
|
||
else
|
||
luaK_semerror(ls,
|
||
luaO_pushfstring(ls->L, "unknown attribute '%s'", attr));
|
||
}
|
||
return VDKREG; /* regular variable */
|
||
}
|
||
|
||
|
||
static void checktoclose (FuncState *fs, int level) {
|
||
if (level != -1) { /* is there a to-be-closed variable? */
|
||
marktobeclosed(fs);
|
||
luaK_codeABC(fs, OP_TBC, reglevel(fs, level), 0, 0);
|
||
}
|
||
}
|
||
|
||
|
||
static void localstat (LexState *ls) {
|
||
/* stat -> LOCAL NAME ATTRIB { ',' NAME ATTRIB } ['=' explist] */
|
||
FuncState *fs = ls->fs;
|
||
int toclose = -1; /* index of to-be-closed variable (if any) */
|
||
Vardesc *var; /* last variable */
|
||
int vidx, kind; /* index and kind of last variable */
|
||
int nvars = 0;
|
||
int nexps;
|
||
expdesc e;
|
||
do {
|
||
vidx = new_localvar(ls, str_checkname(ls));
|
||
kind = getlocalattribute(ls);
|
||
getlocalvardesc(fs, vidx)->vd.kind = kind;
|
||
if (kind == RDKTOCLOSE) { /* to-be-closed? */
|
||
if (toclose != -1) /* one already present? */
|
||
luaK_semerror(ls, "multiple to-be-closed variables in local list");
|
||
toclose = fs->nactvar + nvars;
|
||
}
|
||
nvars++;
|
||
} while (testnext(ls, ','));
|
||
if (testnext(ls, '='))
|
||
nexps = explist(ls, &e);
|
||
else {
|
||
e.k = VVOID;
|
||
nexps = 0;
|
||
}
|
||
var = getlocalvardesc(fs, vidx); /* get last variable */
|
||
if (nvars == nexps && /* no adjustments? */
|
||
var->vd.kind == RDKCONST && /* last variable is const? */
|
||
luaK_exp2const(fs, &e, &var->k)) { /* compile-time constant? */
|
||
var->vd.kind = RDKCTC; /* variable is a compile-time constant */
|
||
adjustlocalvars(ls, nvars - 1); /* exclude last variable */
|
||
fs->nactvar++; /* but count it */
|
||
}
|
||
else {
|
||
adjust_assign(ls, nvars, nexps, &e);
|
||
adjustlocalvars(ls, nvars);
|
||
}
|
||
checktoclose(fs, toclose);
|
||
}
|
||
|
||
|
||
static int funcname (LexState *ls, expdesc *v) {
|
||
/* funcname -> NAME {fieldsel} [':' NAME] */
|
||
int ismethod = 0;
|
||
singlevar(ls, v);
|
||
while (ls->t.token == '.')
|
||
fieldsel(ls, v);
|
||
if (ls->t.token == ':') {
|
||
ismethod = 1;
|
||
fieldsel(ls, v);
|
||
}
|
||
return ismethod;
|
||
}
|
||
|
||
|
||
static void funcstat (LexState *ls, int line) {
|
||
/* funcstat -> FUNCTION funcname body */
|
||
int ismethod;
|
||
expdesc v, b;
|
||
luaX_next(ls); /* skip FUNCTION */
|
||
ismethod = funcname(ls, &v);
|
||
body(ls, &b, ismethod, line);
|
||
check_readonly(ls, &v);
|
||
luaK_storevar(ls->fs, &v, &b);
|
||
luaK_fixline(ls->fs, line); /* definition "happens" in the first line */
|
||
}
|
||
|
||
|
||
static void exprstat (LexState *ls) {
|
||
/* stat -> func | assignment */
|
||
FuncState *fs = ls->fs;
|
||
struct LHS_assign v;
|
||
suffixedexp(ls, &v.v);
|
||
if (ls->t.token == '=' || ls->t.token == ',') { /* stat -> assignment ? */
|
||
v.prev = NULL;
|
||
restassign(ls, &v, 1);
|
||
}
|
||
else { /* stat -> func */
|
||
Instruction *inst;
|
||
check_condition(ls, v.v.k == VCALL, "syntax error");
|
||
inst = &getinstruction(fs, &v.v);
|
||
SETARG_C(*inst, 1); /* call statement uses no results */
|
||
}
|
||
}
|
||
|
||
|
||
static void retstat (LexState *ls) {
|
||
/* stat -> RETURN [explist] [';'] */
|
||
FuncState *fs = ls->fs;
|
||
expdesc e;
|
||
int nret; /* number of values being returned */
|
||
int first = luaY_nvarstack(fs); /* first slot to be returned */
|
||
if (block_follow(ls, 1) || ls->t.token == ';')
|
||
nret = 0; /* return no values */
|
||
else {
|
||
nret = explist(ls, &e); /* optional return values */
|
||
if (hasmultret(e.k)) {
|
||
luaK_setmultret(fs, &e);
|
||
if (e.k == VCALL && nret == 1 && !fs->bl->insidetbc) { /* tail call? */
|
||
SET_OPCODE(getinstruction(fs,&e), OP_TAILCALL);
|
||
lua_assert(GETARG_A(getinstruction(fs,&e)) == luaY_nvarstack(fs));
|
||
}
|
||
nret = LUA_MULTRET; /* return all values */
|
||
}
|
||
else {
|
||
if (nret == 1) /* only one single value? */
|
||
first = luaK_exp2anyreg(fs, &e); /* can use original slot */
|
||
else { /* values must go to the top of the stack */
|
||
luaK_exp2nextreg(fs, &e);
|
||
lua_assert(nret == fs->freereg - first);
|
||
}
|
||
}
|
||
}
|
||
luaK_ret(fs, first, nret);
|
||
testnext(ls, ';'); /* skip optional semicolon */
|
||
}
|
||
|
||
|
||
static void statement (LexState *ls) {
|
||
int line = ls->linenumber; /* may be needed for error messages */
|
||
enterlevel(ls);
|
||
switch (ls->t.token) {
|
||
case ';': { /* stat -> ';' (empty statement) */
|
||
luaX_next(ls); /* skip ';' */
|
||
break;
|
||
}
|
||
case TK_IF: { /* stat -> ifstat */
|
||
ifstat(ls, line);
|
||
break;
|
||
}
|
||
case TK_WHILE: { /* stat -> whilestat */
|
||
whilestat(ls, line);
|
||
break;
|
||
}
|
||
case TK_DO: { /* stat -> DO block END */
|
||
luaX_next(ls); /* skip DO */
|
||
block(ls);
|
||
check_match(ls, TK_END, TK_DO, line);
|
||
break;
|
||
}
|
||
case TK_FOR: { /* stat -> forstat */
|
||
forstat(ls, line);
|
||
break;
|
||
}
|
||
case TK_REPEAT: { /* stat -> repeatstat */
|
||
repeatstat(ls, line);
|
||
break;
|
||
}
|
||
case TK_FUNCTION: { /* stat -> funcstat */
|
||
funcstat(ls, line);
|
||
break;
|
||
}
|
||
case TK_LOCAL: { /* stat -> localstat */
|
||
luaX_next(ls); /* skip LOCAL */
|
||
if (testnext(ls, TK_FUNCTION)) /* local function? */
|
||
localfunc(ls);
|
||
else
|
||
localstat(ls);
|
||
break;
|
||
}
|
||
case TK_DBCOLON: { /* stat -> label */
|
||
luaX_next(ls); /* skip double colon */
|
||
labelstat(ls, str_checkname(ls), line);
|
||
break;
|
||
}
|
||
case TK_RETURN: { /* stat -> retstat */
|
||
luaX_next(ls); /* skip RETURN */
|
||
retstat(ls);
|
||
break;
|
||
}
|
||
case TK_BREAK: { /* stat -> breakstat */
|
||
breakstat(ls);
|
||
break;
|
||
}
|
||
case TK_GOTO: { /* stat -> 'goto' NAME */
|
||
luaX_next(ls); /* skip 'goto' */
|
||
gotostat(ls);
|
||
break;
|
||
}
|
||
default: { /* stat -> func | assignment */
|
||
exprstat(ls);
|
||
break;
|
||
}
|
||
}
|
||
lua_assert(ls->fs->f->maxstacksize >= ls->fs->freereg &&
|
||
ls->fs->freereg >= luaY_nvarstack(ls->fs));
|
||
ls->fs->freereg = luaY_nvarstack(ls->fs); /* free registers */
|
||
leavelevel(ls);
|
||
}
|
||
|
||
/* }====================================================================== */
|
||
|
||
|
||
/*
|
||
** compiles the main function, which is a regular vararg function with an
|
||
** upvalue named LUA_ENV
|
||
*/
|
||
static void mainfunc (LexState *ls, FuncState *fs) {
|
||
BlockCnt bl;
|
||
Upvaldesc *env;
|
||
open_func(ls, fs, &bl);
|
||
setvararg(fs, 0); /* main function is always declared vararg */
|
||
env = allocupvalue(fs); /* ...set environment upvalue */
|
||
env->instack = 1;
|
||
env->idx = 0;
|
||
env->kind = VDKREG;
|
||
env->name = ls->envn;
|
||
luaC_objbarrier(ls->L, fs->f, env->name);
|
||
luaX_next(ls); /* read first token */
|
||
statlist(ls); /* parse main body */
|
||
check(ls, TK_EOS);
|
||
close_func(ls);
|
||
}
|
||
|
||
|
||
LClosure *luaY_parser (lua_State *L, ZIO *z, Mbuffer *buff,
|
||
Dyndata *dyd, const char *name, int firstchar) {
|
||
LexState lexstate;
|
||
FuncState funcstate;
|
||
LClosure *cl = luaF_newLclosure(L, 1); /* create main closure */
|
||
setclLvalue2s(L, L->top.p, cl); /* anchor it (to avoid being collected) */
|
||
luaD_inctop(L);
|
||
lexstate.h = luaH_new(L); /* create table for scanner */
|
||
sethvalue2s(L, L->top.p, lexstate.h); /* anchor it */
|
||
luaD_inctop(L);
|
||
funcstate.f = cl->p = luaF_newproto(L);
|
||
luaC_objbarrier(L, cl, cl->p);
|
||
funcstate.f->source = luaS_new(L, name); /* create and anchor TString */
|
||
luaC_objbarrier(L, funcstate.f, funcstate.f->source);
|
||
lexstate.buff = buff;
|
||
lexstate.dyd = dyd;
|
||
dyd->actvar.n = dyd->gt.n = dyd->label.n = 0;
|
||
luaX_setinput(L, &lexstate, z, funcstate.f->source, firstchar);
|
||
mainfunc(&lexstate, &funcstate);
|
||
lua_assert(!funcstate.prev && funcstate.nups == 1 && !lexstate.fs);
|
||
/* all scopes should be correctly finished */
|
||
lua_assert(dyd->actvar.n == 0 && dyd->gt.n == 0 && dyd->label.n == 0);
|
||
L->top.p--; /* remove scanner's table */
|
||
return cl; /* closure is on the stack, too */
|
||
}
|
||
|
||
/*
|
||
** $Id: ldebug.c $
|
||
** Debug Interface
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ldebug_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stdarg.h>
|
||
#include <stddef.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lapi.h"*/
|
||
/*#include "lcode.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
|
||
#define LuaClosure(f) ((f) != NULL && (f)->c.tt == LUA_VLCL)
|
||
|
||
|
||
static const char *funcnamefromcall (lua_State *L, CallInfo *ci,
|
||
const char **name);
|
||
|
||
|
||
static int currentpc (CallInfo *ci) {
|
||
lua_assert(isLua(ci));
|
||
return pcRel(ci->u.l.savedpc, ci_func(ci)->p);
|
||
}
|
||
|
||
|
||
/*
|
||
** Get a "base line" to find the line corresponding to an instruction.
|
||
** Base lines are regularly placed at MAXIWTHABS intervals, so usually
|
||
** an integer division gets the right place. When the source file has
|
||
** large sequences of empty/comment lines, it may need extra entries,
|
||
** so the original estimate needs a correction.
|
||
** If the original estimate is -1, the initial 'if' ensures that the
|
||
** 'while' will run at least once.
|
||
** The assertion that the estimate is a lower bound for the correct base
|
||
** is valid as long as the debug info has been generated with the same
|
||
** value for MAXIWTHABS or smaller. (Previous releases use a little
|
||
** smaller value.)
|
||
*/
|
||
static int getbaseline (const Proto *f, int pc, int *basepc) {
|
||
if (f->sizeabslineinfo == 0 || pc < f->abslineinfo[0].pc) {
|
||
*basepc = -1; /* start from the beginning */
|
||
return f->linedefined;
|
||
}
|
||
else {
|
||
int i = cast_uint(pc) / MAXIWTHABS - 1; /* get an estimate */
|
||
/* estimate must be a lower bound of the correct base */
|
||
lua_assert(i < 0 ||
|
||
(i < f->sizeabslineinfo && f->abslineinfo[i].pc <= pc));
|
||
while (i + 1 < f->sizeabslineinfo && pc >= f->abslineinfo[i + 1].pc)
|
||
i++; /* low estimate; adjust it */
|
||
*basepc = f->abslineinfo[i].pc;
|
||
return f->abslineinfo[i].line;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the line corresponding to instruction 'pc' in function 'f';
|
||
** first gets a base line and from there does the increments until
|
||
** the desired instruction.
|
||
*/
|
||
int luaG_getfuncline (const Proto *f, int pc) {
|
||
if (f->lineinfo == NULL) /* no debug information? */
|
||
return -1;
|
||
else {
|
||
int basepc;
|
||
int baseline = getbaseline(f, pc, &basepc);
|
||
while (basepc++ < pc) { /* walk until given instruction */
|
||
lua_assert(f->lineinfo[basepc] != ABSLINEINFO);
|
||
baseline += f->lineinfo[basepc]; /* correct line */
|
||
}
|
||
return baseline;
|
||
}
|
||
}
|
||
|
||
|
||
static int getcurrentline (CallInfo *ci) {
|
||
return luaG_getfuncline(ci_func(ci)->p, currentpc(ci));
|
||
}
|
||
|
||
|
||
/*
|
||
** Set 'trap' for all active Lua frames.
|
||
** This function can be called during a signal, under "reasonable"
|
||
** assumptions. A new 'ci' is completely linked in the list before it
|
||
** becomes part of the "active" list, and we assume that pointers are
|
||
** atomic; see comment in next function.
|
||
** (A compiler doing interprocedural optimizations could, theoretically,
|
||
** reorder memory writes in such a way that the list could be
|
||
** temporarily broken while inserting a new element. We simply assume it
|
||
** has no good reasons to do that.)
|
||
*/
|
||
static void settraps (CallInfo *ci) {
|
||
for (; ci != NULL; ci = ci->previous)
|
||
if (isLua(ci))
|
||
ci->u.l.trap = 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** This function can be called during a signal, under "reasonable"
|
||
** assumptions.
|
||
** Fields 'basehookcount' and 'hookcount' (set by 'resethookcount')
|
||
** are for debug only, and it is no problem if they get arbitrary
|
||
** values (causes at most one wrong hook call). 'hookmask' is an atomic
|
||
** value. We assume that pointers are atomic too (e.g., gcc ensures that
|
||
** for all platforms where it runs). Moreover, 'hook' is always checked
|
||
** before being called (see 'luaD_hook').
|
||
*/
|
||
LUA_API void lua_sethook (lua_State *L, lua_Hook func, int mask, int count) {
|
||
if (func == NULL || mask == 0) { /* turn off hooks? */
|
||
mask = 0;
|
||
func = NULL;
|
||
}
|
||
L->hook = func;
|
||
L->basehookcount = count;
|
||
resethookcount(L);
|
||
L->hookmask = cast_byte(mask);
|
||
if (mask)
|
||
settraps(L->ci); /* to trace inside 'luaV_execute' */
|
||
}
|
||
|
||
|
||
LUA_API lua_Hook lua_gethook (lua_State *L) {
|
||
return L->hook;
|
||
}
|
||
|
||
|
||
LUA_API int lua_gethookmask (lua_State *L) {
|
||
return L->hookmask;
|
||
}
|
||
|
||
|
||
LUA_API int lua_gethookcount (lua_State *L) {
|
||
return L->basehookcount;
|
||
}
|
||
|
||
|
||
LUA_API int lua_getstack (lua_State *L, int level, lua_Debug *ar) {
|
||
int status;
|
||
CallInfo *ci;
|
||
if (level < 0) return 0; /* invalid (negative) level */
|
||
lua_lock(L);
|
||
for (ci = L->ci; level > 0 && ci != &L->base_ci; ci = ci->previous)
|
||
level--;
|
||
if (level == 0 && ci != &L->base_ci) { /* level found? */
|
||
status = 1;
|
||
ar->i_ci = ci;
|
||
}
|
||
else status = 0; /* no such level */
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
static const char *upvalname (const Proto *p, int uv) {
|
||
TString *s = check_exp(uv < p->sizeupvalues, p->upvalues[uv].name);
|
||
if (s == NULL) return "?";
|
||
else return getstr(s);
|
||
}
|
||
|
||
|
||
static const char *findvararg (CallInfo *ci, int n, StkId *pos) {
|
||
if (clLvalue(s2v(ci->func.p))->p->is_vararg) {
|
||
int nextra = ci->u.l.nextraargs;
|
||
if (n >= -nextra) { /* 'n' is negative */
|
||
*pos = ci->func.p - nextra - (n + 1);
|
||
return "(vararg)"; /* generic name for any vararg */
|
||
}
|
||
}
|
||
return NULL; /* no such vararg */
|
||
}
|
||
|
||
|
||
const char *luaG_findlocal (lua_State *L, CallInfo *ci, int n, StkId *pos) {
|
||
StkId base = ci->func.p + 1;
|
||
const char *name = NULL;
|
||
if (isLua(ci)) {
|
||
if (n < 0) /* access to vararg values? */
|
||
return findvararg(ci, n, pos);
|
||
else
|
||
name = luaF_getlocalname(ci_func(ci)->p, n, currentpc(ci));
|
||
}
|
||
if (name == NULL) { /* no 'standard' name? */
|
||
StkId limit = (ci == L->ci) ? L->top.p : ci->next->func.p;
|
||
if (limit - base >= n && n > 0) { /* is 'n' inside 'ci' stack? */
|
||
/* generic name for any valid slot */
|
||
name = isLua(ci) ? "(temporary)" : "(C temporary)";
|
||
}
|
||
else
|
||
return NULL; /* no name */
|
||
}
|
||
if (pos)
|
||
*pos = base + (n - 1);
|
||
return name;
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_getlocal (lua_State *L, const lua_Debug *ar, int n) {
|
||
const char *name;
|
||
lua_lock(L);
|
||
if (ar == NULL) { /* information about non-active function? */
|
||
if (!isLfunction(s2v(L->top.p - 1))) /* not a Lua function? */
|
||
name = NULL;
|
||
else /* consider live variables at function start (parameters) */
|
||
name = luaF_getlocalname(clLvalue(s2v(L->top.p - 1))->p, n, 0);
|
||
}
|
||
else { /* active function; get information through 'ar' */
|
||
StkId pos = NULL; /* to avoid warnings */
|
||
name = luaG_findlocal(L, ar->i_ci, n, &pos);
|
||
if (name) {
|
||
setobjs2s(L, L->top.p, pos);
|
||
api_incr_top(L);
|
||
}
|
||
}
|
||
lua_unlock(L);
|
||
return name;
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_setlocal (lua_State *L, const lua_Debug *ar, int n) {
|
||
StkId pos = NULL; /* to avoid warnings */
|
||
const char *name;
|
||
lua_lock(L);
|
||
name = luaG_findlocal(L, ar->i_ci, n, &pos);
|
||
if (name) {
|
||
setobjs2s(L, pos, L->top.p - 1);
|
||
L->top.p--; /* pop value */
|
||
}
|
||
lua_unlock(L);
|
||
return name;
|
||
}
|
||
|
||
|
||
static void funcinfo (lua_Debug *ar, Closure *cl) {
|
||
if (!LuaClosure(cl)) {
|
||
ar->source = "=[C]";
|
||
ar->srclen = LL("=[C]");
|
||
ar->linedefined = -1;
|
||
ar->lastlinedefined = -1;
|
||
ar->what = "C";
|
||
}
|
||
else {
|
||
const Proto *p = cl->l.p;
|
||
if (p->source) {
|
||
ar->source = getstr(p->source);
|
||
ar->srclen = tsslen(p->source);
|
||
}
|
||
else {
|
||
ar->source = "=?";
|
||
ar->srclen = LL("=?");
|
||
}
|
||
ar->linedefined = p->linedefined;
|
||
ar->lastlinedefined = p->lastlinedefined;
|
||
ar->what = (ar->linedefined == 0) ? "main" : "Lua";
|
||
}
|
||
luaO_chunkid(ar->short_src, ar->source, ar->srclen);
|
||
}
|
||
|
||
|
||
static int nextline (const Proto *p, int currentline, int pc) {
|
||
if (p->lineinfo[pc] != ABSLINEINFO)
|
||
return currentline + p->lineinfo[pc];
|
||
else
|
||
return luaG_getfuncline(p, pc);
|
||
}
|
||
|
||
|
||
static void collectvalidlines (lua_State *L, Closure *f) {
|
||
if (!LuaClosure(f)) {
|
||
setnilvalue(s2v(L->top.p));
|
||
api_incr_top(L);
|
||
}
|
||
else {
|
||
const Proto *p = f->l.p;
|
||
int currentline = p->linedefined;
|
||
Table *t = luaH_new(L); /* new table to store active lines */
|
||
sethvalue2s(L, L->top.p, t); /* push it on stack */
|
||
api_incr_top(L);
|
||
if (p->lineinfo != NULL) { /* proto with debug information? */
|
||
int i;
|
||
TValue v;
|
||
setbtvalue(&v); /* boolean 'true' to be the value of all indices */
|
||
if (!p->is_vararg) /* regular function? */
|
||
i = 0; /* consider all instructions */
|
||
else { /* vararg function */
|
||
lua_assert(GET_OPCODE(p->code[0]) == OP_VARARGPREP);
|
||
currentline = nextline(p, currentline, 0);
|
||
i = 1; /* skip first instruction (OP_VARARGPREP) */
|
||
}
|
||
for (; i < p->sizelineinfo; i++) { /* for each instruction */
|
||
currentline = nextline(p, currentline, i); /* get its line */
|
||
luaH_setint(L, t, currentline, &v); /* table[line] = true */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static const char *getfuncname (lua_State *L, CallInfo *ci, const char **name) {
|
||
/* calling function is a known function? */
|
||
if (ci != NULL && !(ci->callstatus & CIST_TAIL))
|
||
return funcnamefromcall(L, ci->previous, name);
|
||
else return NULL; /* no way to find a name */
|
||
}
|
||
|
||
|
||
static int auxgetinfo (lua_State *L, const char *what, lua_Debug *ar,
|
||
Closure *f, CallInfo *ci) {
|
||
int status = 1;
|
||
for (; *what; what++) {
|
||
switch (*what) {
|
||
case 'S': {
|
||
funcinfo(ar, f);
|
||
break;
|
||
}
|
||
case 'l': {
|
||
ar->currentline = (ci && isLua(ci)) ? getcurrentline(ci) : -1;
|
||
break;
|
||
}
|
||
case 'u': {
|
||
ar->nups = (f == NULL) ? 0 : f->c.nupvalues;
|
||
if (!LuaClosure(f)) {
|
||
ar->isvararg = 1;
|
||
ar->nparams = 0;
|
||
}
|
||
else {
|
||
ar->isvararg = f->l.p->is_vararg;
|
||
ar->nparams = f->l.p->numparams;
|
||
}
|
||
break;
|
||
}
|
||
case 't': {
|
||
ar->istailcall = (ci) ? ci->callstatus & CIST_TAIL : 0;
|
||
break;
|
||
}
|
||
case 'n': {
|
||
ar->namewhat = getfuncname(L, ci, &ar->name);
|
||
if (ar->namewhat == NULL) {
|
||
ar->namewhat = ""; /* not found */
|
||
ar->name = NULL;
|
||
}
|
||
break;
|
||
}
|
||
case 'r': {
|
||
if (ci == NULL || !(ci->callstatus & CIST_TRAN))
|
||
ar->ftransfer = ar->ntransfer = 0;
|
||
else {
|
||
ar->ftransfer = ci->u2.transferinfo.ftransfer;
|
||
ar->ntransfer = ci->u2.transferinfo.ntransfer;
|
||
}
|
||
break;
|
||
}
|
||
case 'L':
|
||
case 'f': /* handled by lua_getinfo */
|
||
break;
|
||
default: status = 0; /* invalid option */
|
||
}
|
||
}
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_getinfo (lua_State *L, const char *what, lua_Debug *ar) {
|
||
int status;
|
||
Closure *cl;
|
||
CallInfo *ci;
|
||
TValue *func;
|
||
lua_lock(L);
|
||
if (*what == '>') {
|
||
ci = NULL;
|
||
func = s2v(L->top.p - 1);
|
||
api_check(L, ttisfunction(func), "function expected");
|
||
what++; /* skip the '>' */
|
||
L->top.p--; /* pop function */
|
||
}
|
||
else {
|
||
ci = ar->i_ci;
|
||
func = s2v(ci->func.p);
|
||
lua_assert(ttisfunction(func));
|
||
}
|
||
cl = ttisclosure(func) ? clvalue(func) : NULL;
|
||
status = auxgetinfo(L, what, ar, cl, ci);
|
||
if (strchr(what, 'f')) {
|
||
setobj2s(L, L->top.p, func);
|
||
api_incr_top(L);
|
||
}
|
||
if (strchr(what, 'L'))
|
||
collectvalidlines(L, cl);
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Symbolic Execution
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
static int filterpc (int pc, int jmptarget) {
|
||
if (pc < jmptarget) /* is code conditional (inside a jump)? */
|
||
return -1; /* cannot know who sets that register */
|
||
else return pc; /* current position sets that register */
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find last instruction before 'lastpc' that modified register 'reg'.
|
||
*/
|
||
static int findsetreg (const Proto *p, int lastpc, int reg) {
|
||
int pc;
|
||
int setreg = -1; /* keep last instruction that changed 'reg' */
|
||
int jmptarget = 0; /* any code before this address is conditional */
|
||
if (testMMMode(GET_OPCODE(p->code[lastpc])))
|
||
lastpc--; /* previous instruction was not actually executed */
|
||
for (pc = 0; pc < lastpc; pc++) {
|
||
Instruction i = p->code[pc];
|
||
OpCode op = GET_OPCODE(i);
|
||
int a = GETARG_A(i);
|
||
int change; /* true if current instruction changed 'reg' */
|
||
switch (op) {
|
||
case OP_LOADNIL: { /* set registers from 'a' to 'a+b' */
|
||
int b = GETARG_B(i);
|
||
change = (a <= reg && reg <= a + b);
|
||
break;
|
||
}
|
||
case OP_TFORCALL: { /* affect all regs above its base */
|
||
change = (reg >= a + 2);
|
||
break;
|
||
}
|
||
case OP_CALL:
|
||
case OP_TAILCALL: { /* affect all registers above base */
|
||
change = (reg >= a);
|
||
break;
|
||
}
|
||
case OP_JMP: { /* doesn't change registers, but changes 'jmptarget' */
|
||
int b = GETARG_sJ(i);
|
||
int dest = pc + 1 + b;
|
||
/* jump does not skip 'lastpc' and is larger than current one? */
|
||
if (dest <= lastpc && dest > jmptarget)
|
||
jmptarget = dest; /* update 'jmptarget' */
|
||
change = 0;
|
||
break;
|
||
}
|
||
default: /* any instruction that sets A */
|
||
change = (testAMode(op) && reg == a);
|
||
break;
|
||
}
|
||
if (change)
|
||
setreg = filterpc(pc, jmptarget);
|
||
}
|
||
return setreg;
|
||
}
|
||
|
||
|
||
/*
|
||
** Find a "name" for the constant 'c'.
|
||
*/
|
||
static const char *kname (const Proto *p, int index, const char **name) {
|
||
TValue *kvalue = &p->k[index];
|
||
if (ttisstring(kvalue)) {
|
||
*name = getstr(tsvalue(kvalue));
|
||
return "constant";
|
||
}
|
||
else {
|
||
*name = "?";
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
static const char *basicgetobjname (const Proto *p, int *ppc, int reg,
|
||
const char **name) {
|
||
int pc = *ppc;
|
||
*name = luaF_getlocalname(p, reg + 1, pc);
|
||
if (*name) /* is a local? */
|
||
return "local";
|
||
/* else try symbolic execution */
|
||
*ppc = pc = findsetreg(p, pc, reg);
|
||
if (pc != -1) { /* could find instruction? */
|
||
Instruction i = p->code[pc];
|
||
OpCode op = GET_OPCODE(i);
|
||
switch (op) {
|
||
case OP_MOVE: {
|
||
int b = GETARG_B(i); /* move from 'b' to 'a' */
|
||
if (b < GETARG_A(i))
|
||
return basicgetobjname(p, ppc, b, name); /* get name for 'b' */
|
||
break;
|
||
}
|
||
case OP_GETUPVAL: {
|
||
*name = upvalname(p, GETARG_B(i));
|
||
return "upvalue";
|
||
}
|
||
case OP_LOADK: return kname(p, GETARG_Bx(i), name);
|
||
case OP_LOADKX: return kname(p, GETARG_Ax(p->code[pc + 1]), name);
|
||
default: break;
|
||
}
|
||
}
|
||
return NULL; /* could not find reasonable name */
|
||
}
|
||
|
||
|
||
/*
|
||
** Find a "name" for the register 'c'.
|
||
*/
|
||
static void rname (const Proto *p, int pc, int c, const char **name) {
|
||
const char *what = basicgetobjname(p, &pc, c, name); /* search for 'c' */
|
||
if (!(what && *what == 'c')) /* did not find a constant name? */
|
||
*name = "?";
|
||
}
|
||
|
||
|
||
/*
|
||
** Find a "name" for a 'C' value in an RK instruction.
|
||
*/
|
||
static void rkname (const Proto *p, int pc, Instruction i, const char **name) {
|
||
int c = GETARG_C(i); /* key index */
|
||
if (GETARG_k(i)) /* is 'c' a constant? */
|
||
kname(p, c, name);
|
||
else /* 'c' is a register */
|
||
rname(p, pc, c, name);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether table being indexed by instruction 'i' is the
|
||
** environment '_ENV'
|
||
*/
|
||
static const char *isEnv (const Proto *p, int pc, Instruction i, int isup) {
|
||
int t = GETARG_B(i); /* table index */
|
||
const char *name; /* name of indexed variable */
|
||
if (isup) /* is 't' an upvalue? */
|
||
name = upvalname(p, t);
|
||
else /* 't' is a register */
|
||
basicgetobjname(p, &pc, t, &name);
|
||
return (name && strcmp(name, LUA_ENV) == 0) ? "global" : "field";
|
||
}
|
||
|
||
|
||
/*
|
||
** Extend 'basicgetobjname' to handle table accesses
|
||
*/
|
||
static const char *getobjname (const Proto *p, int lastpc, int reg,
|
||
const char **name) {
|
||
const char *kind = basicgetobjname(p, &lastpc, reg, name);
|
||
if (kind != NULL)
|
||
return kind;
|
||
else if (lastpc != -1) { /* could find instruction? */
|
||
Instruction i = p->code[lastpc];
|
||
OpCode op = GET_OPCODE(i);
|
||
switch (op) {
|
||
case OP_GETTABUP: {
|
||
int k = GETARG_C(i); /* key index */
|
||
kname(p, k, name);
|
||
return isEnv(p, lastpc, i, 1);
|
||
}
|
||
case OP_GETTABLE: {
|
||
int k = GETARG_C(i); /* key index */
|
||
rname(p, lastpc, k, name);
|
||
return isEnv(p, lastpc, i, 0);
|
||
}
|
||
case OP_GETI: {
|
||
*name = "integer index";
|
||
return "field";
|
||
}
|
||
case OP_GETFIELD: {
|
||
int k = GETARG_C(i); /* key index */
|
||
kname(p, k, name);
|
||
return isEnv(p, lastpc, i, 0);
|
||
}
|
||
case OP_SELF: {
|
||
rkname(p, lastpc, i, name);
|
||
return "method";
|
||
}
|
||
default: break; /* go through to return NULL */
|
||
}
|
||
}
|
||
return NULL; /* could not find reasonable name */
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a name for a function based on the code that called it.
|
||
** (Only works when function was called by a Lua function.)
|
||
** Returns what the name is (e.g., "for iterator", "method",
|
||
** "metamethod") and sets '*name' to point to the name.
|
||
*/
|
||
static const char *funcnamefromcode (lua_State *L, const Proto *p,
|
||
int pc, const char **name) {
|
||
TMS tm = (TMS)0; /* (initial value avoids warnings) */
|
||
Instruction i = p->code[pc]; /* calling instruction */
|
||
switch (GET_OPCODE(i)) {
|
||
case OP_CALL:
|
||
case OP_TAILCALL:
|
||
return getobjname(p, pc, GETARG_A(i), name); /* get function name */
|
||
case OP_TFORCALL: { /* for iterator */
|
||
*name = "for iterator";
|
||
return "for iterator";
|
||
}
|
||
/* other instructions can do calls through metamethods */
|
||
case OP_SELF: case OP_GETTABUP: case OP_GETTABLE:
|
||
case OP_GETI: case OP_GETFIELD:
|
||
tm = TM_INDEX;
|
||
break;
|
||
case OP_SETTABUP: case OP_SETTABLE: case OP_SETI: case OP_SETFIELD:
|
||
tm = TM_NEWINDEX;
|
||
break;
|
||
case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: {
|
||
tm = cast(TMS, GETARG_C(i));
|
||
break;
|
||
}
|
||
case OP_UNM: tm = TM_UNM; break;
|
||
case OP_BNOT: tm = TM_BNOT; break;
|
||
case OP_LEN: tm = TM_LEN; break;
|
||
case OP_CONCAT: tm = TM_CONCAT; break;
|
||
case OP_EQ: tm = TM_EQ; break;
|
||
/* no cases for OP_EQI and OP_EQK, as they don't call metamethods */
|
||
case OP_LT: case OP_LTI: case OP_GTI: tm = TM_LT; break;
|
||
case OP_LE: case OP_LEI: case OP_GEI: tm = TM_LE; break;
|
||
case OP_CLOSE: case OP_RETURN: tm = TM_CLOSE; break;
|
||
default:
|
||
return NULL; /* cannot find a reasonable name */
|
||
}
|
||
*name = getshrstr(G(L)->tmname[tm]) + 2;
|
||
return "metamethod";
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a name for a function based on how it was called.
|
||
*/
|
||
static const char *funcnamefromcall (lua_State *L, CallInfo *ci,
|
||
const char **name) {
|
||
if (ci->callstatus & CIST_HOOKED) { /* was it called inside a hook? */
|
||
*name = "?";
|
||
return "hook";
|
||
}
|
||
else if (ci->callstatus & CIST_FIN) { /* was it called as a finalizer? */
|
||
*name = "__gc";
|
||
return "metamethod"; /* report it as such */
|
||
}
|
||
else if (isLua(ci))
|
||
return funcnamefromcode(L, ci_func(ci)->p, currentpc(ci), name);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** Check whether pointer 'o' points to some value in the stack frame of
|
||
** the current function and, if so, returns its index. Because 'o' may
|
||
** not point to a value in this stack, we cannot compare it with the
|
||
** region boundaries (undefined behavior in ISO C).
|
||
*/
|
||
static int instack (CallInfo *ci, const TValue *o) {
|
||
int pos;
|
||
StkId base = ci->func.p + 1;
|
||
for (pos = 0; base + pos < ci->top.p; pos++) {
|
||
if (o == s2v(base + pos))
|
||
return pos;
|
||
}
|
||
return -1; /* not found */
|
||
}
|
||
|
||
|
||
/*
|
||
** Checks whether value 'o' came from an upvalue. (That can only happen
|
||
** with instructions OP_GETTABUP/OP_SETTABUP, which operate directly on
|
||
** upvalues.)
|
||
*/
|
||
static const char *getupvalname (CallInfo *ci, const TValue *o,
|
||
const char **name) {
|
||
LClosure *c = ci_func(ci);
|
||
int i;
|
||
for (i = 0; i < c->nupvalues; i++) {
|
||
if (c->upvals[i]->v.p == o) {
|
||
*name = upvalname(c->p, i);
|
||
return "upvalue";
|
||
}
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static const char *formatvarinfo (lua_State *L, const char *kind,
|
||
const char *name) {
|
||
if (kind == NULL)
|
||
return ""; /* no information */
|
||
else
|
||
return luaO_pushfstring(L, " (%s '%s')", kind, name);
|
||
}
|
||
|
||
/*
|
||
** Build a string with a "description" for the value 'o', such as
|
||
** "variable 'x'" or "upvalue 'y'".
|
||
*/
|
||
static const char *varinfo (lua_State *L, const TValue *o) {
|
||
CallInfo *ci = L->ci;
|
||
const char *name = NULL; /* to avoid warnings */
|
||
const char *kind = NULL;
|
||
if (isLua(ci)) {
|
||
kind = getupvalname(ci, o, &name); /* check whether 'o' is an upvalue */
|
||
if (!kind) { /* not an upvalue? */
|
||
int reg = instack(ci, o); /* try a register */
|
||
if (reg >= 0) /* is 'o' a register? */
|
||
kind = getobjname(ci_func(ci)->p, currentpc(ci), reg, &name);
|
||
}
|
||
}
|
||
return formatvarinfo(L, kind, name);
|
||
}
|
||
|
||
|
||
/*
|
||
** Raise a type error
|
||
*/
|
||
static l_noret typeerror (lua_State *L, const TValue *o, const char *op,
|
||
const char *extra) {
|
||
const char *t = luaT_objtypename(L, o);
|
||
luaG_runerror(L, "attempt to %s a %s value%s", op, t, extra);
|
||
}
|
||
|
||
|
||
/*
|
||
** Raise a type error with "standard" information about the faulty
|
||
** object 'o' (using 'varinfo').
|
||
*/
|
||
l_noret luaG_typeerror (lua_State *L, const TValue *o, const char *op) {
|
||
typeerror(L, o, op, varinfo(L, o));
|
||
}
|
||
|
||
|
||
/*
|
||
** Raise an error for calling a non-callable object. Try to find a name
|
||
** for the object based on how it was called ('funcnamefromcall'); if it
|
||
** cannot get a name there, try 'varinfo'.
|
||
*/
|
||
l_noret luaG_callerror (lua_State *L, const TValue *o) {
|
||
CallInfo *ci = L->ci;
|
||
const char *name = NULL; /* to avoid warnings */
|
||
const char *kind = funcnamefromcall(L, ci, &name);
|
||
const char *extra = kind ? formatvarinfo(L, kind, name) : varinfo(L, o);
|
||
typeerror(L, o, "call", extra);
|
||
}
|
||
|
||
|
||
l_noret luaG_forerror (lua_State *L, const TValue *o, const char *what) {
|
||
luaG_runerror(L, "bad 'for' %s (number expected, got %s)",
|
||
what, luaT_objtypename(L, o));
|
||
}
|
||
|
||
|
||
l_noret luaG_concaterror (lua_State *L, const TValue *p1, const TValue *p2) {
|
||
if (ttisstring(p1) || cvt2str(p1)) p1 = p2;
|
||
luaG_typeerror(L, p1, "concatenate");
|
||
}
|
||
|
||
|
||
l_noret luaG_opinterror (lua_State *L, const TValue *p1,
|
||
const TValue *p2, const char *msg) {
|
||
if (!ttisnumber(p1)) /* first operand is wrong? */
|
||
p2 = p1; /* now second is wrong */
|
||
luaG_typeerror(L, p2, msg);
|
||
}
|
||
|
||
|
||
/*
|
||
** Error when both values are convertible to numbers, but not to integers
|
||
*/
|
||
l_noret luaG_tointerror (lua_State *L, const TValue *p1, const TValue *p2) {
|
||
lua_Integer temp;
|
||
if (!luaV_tointegerns(p1, &temp, LUA_FLOORN2I))
|
||
p2 = p1;
|
||
luaG_runerror(L, "number%s has no integer representation", varinfo(L, p2));
|
||
}
|
||
|
||
|
||
l_noret luaG_ordererror (lua_State *L, const TValue *p1, const TValue *p2) {
|
||
const char *t1 = luaT_objtypename(L, p1);
|
||
const char *t2 = luaT_objtypename(L, p2);
|
||
if (strcmp(t1, t2) == 0)
|
||
luaG_runerror(L, "attempt to compare two %s values", t1);
|
||
else
|
||
luaG_runerror(L, "attempt to compare %s with %s", t1, t2);
|
||
}
|
||
|
||
|
||
/* add src:line information to 'msg' */
|
||
const char *luaG_addinfo (lua_State *L, const char *msg, TString *src,
|
||
int line) {
|
||
char buff[LUA_IDSIZE];
|
||
if (src)
|
||
luaO_chunkid(buff, getstr(src), tsslen(src));
|
||
else { /* no source available; use "?" instead */
|
||
buff[0] = '?'; buff[1] = '\0';
|
||
}
|
||
return luaO_pushfstring(L, "%s:%d: %s", buff, line, msg);
|
||
}
|
||
|
||
|
||
l_noret luaG_errormsg (lua_State *L) {
|
||
if (L->errfunc != 0) { /* is there an error handling function? */
|
||
StkId errfunc = restorestack(L, L->errfunc);
|
||
lua_assert(ttisfunction(s2v(errfunc)));
|
||
setobjs2s(L, L->top.p, L->top.p - 1); /* move argument */
|
||
setobjs2s(L, L->top.p - 1, errfunc); /* push function */
|
||
L->top.p++; /* assume EXTRA_STACK */
|
||
luaD_callnoyield(L, L->top.p - 2, 1); /* call it */
|
||
}
|
||
luaD_throw(L, LUA_ERRRUN);
|
||
}
|
||
|
||
|
||
l_noret luaG_runerror (lua_State *L, const char *fmt, ...) {
|
||
CallInfo *ci = L->ci;
|
||
const char *msg;
|
||
va_list argp;
|
||
luaC_checkGC(L); /* error message uses memory */
|
||
va_start(argp, fmt);
|
||
msg = luaO_pushvfstring(L, fmt, argp); /* format message */
|
||
va_end(argp);
|
||
if (isLua(ci)) { /* if Lua function, add source:line information */
|
||
luaG_addinfo(L, msg, ci_func(ci)->p->source, getcurrentline(ci));
|
||
setobjs2s(L, L->top.p - 2, L->top.p - 1); /* remove 'msg' */
|
||
L->top.p--;
|
||
}
|
||
luaG_errormsg(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether new instruction 'newpc' is in a different line from
|
||
** previous instruction 'oldpc'. More often than not, 'newpc' is only
|
||
** one or a few instructions after 'oldpc' (it must be after, see
|
||
** caller), so try to avoid calling 'luaG_getfuncline'. If they are
|
||
** too far apart, there is a good chance of a ABSLINEINFO in the way,
|
||
** so it goes directly to 'luaG_getfuncline'.
|
||
*/
|
||
static int changedline (const Proto *p, int oldpc, int newpc) {
|
||
if (p->lineinfo == NULL) /* no debug information? */
|
||
return 0;
|
||
if (newpc - oldpc < MAXIWTHABS / 2) { /* not too far apart? */
|
||
int delta = 0; /* line difference */
|
||
int pc = oldpc;
|
||
for (;;) {
|
||
int lineinfo = p->lineinfo[++pc];
|
||
if (lineinfo == ABSLINEINFO)
|
||
break; /* cannot compute delta; fall through */
|
||
delta += lineinfo;
|
||
if (pc == newpc)
|
||
return (delta != 0); /* delta computed successfully */
|
||
}
|
||
}
|
||
/* either instructions are too far apart or there is an absolute line
|
||
info in the way; compute line difference explicitly */
|
||
return (luaG_getfuncline(p, oldpc) != luaG_getfuncline(p, newpc));
|
||
}
|
||
|
||
|
||
/*
|
||
** Traces Lua calls. If code is running the first instruction of a function,
|
||
** and function is not vararg, and it is not coming from an yield,
|
||
** calls 'luaD_hookcall'. (Vararg functions will call 'luaD_hookcall'
|
||
** after adjusting its variable arguments; otherwise, they could call
|
||
** a line/count hook before the call hook. Functions coming from
|
||
** an yield already called 'luaD_hookcall' before yielding.)
|
||
*/
|
||
int luaG_tracecall (lua_State *L) {
|
||
CallInfo *ci = L->ci;
|
||
Proto *p = ci_func(ci)->p;
|
||
ci->u.l.trap = 1; /* ensure hooks will be checked */
|
||
if (ci->u.l.savedpc == p->code) { /* first instruction (not resuming)? */
|
||
if (p->is_vararg)
|
||
return 0; /* hooks will start at VARARGPREP instruction */
|
||
else if (!(ci->callstatus & CIST_HOOKYIELD)) /* not yieded? */
|
||
luaD_hookcall(L, ci); /* check 'call' hook */
|
||
}
|
||
return 1; /* keep 'trap' on */
|
||
}
|
||
|
||
|
||
/*
|
||
** Traces the execution of a Lua function. Called before the execution
|
||
** of each opcode, when debug is on. 'L->oldpc' stores the last
|
||
** instruction traced, to detect line changes. When entering a new
|
||
** function, 'npci' will be zero and will test as a new line whatever
|
||
** the value of 'oldpc'. Some exceptional conditions may return to
|
||
** a function without setting 'oldpc'. In that case, 'oldpc' may be
|
||
** invalid; if so, use zero as a valid value. (A wrong but valid 'oldpc'
|
||
** at most causes an extra call to a line hook.)
|
||
** This function is not "Protected" when called, so it should correct
|
||
** 'L->top.p' before calling anything that can run the GC.
|
||
*/
|
||
int luaG_traceexec (lua_State *L, const Instruction *pc) {
|
||
CallInfo *ci = L->ci;
|
||
lu_byte mask = L->hookmask;
|
||
const Proto *p = ci_func(ci)->p;
|
||
int counthook;
|
||
if (!(mask & (LUA_MASKLINE | LUA_MASKCOUNT))) { /* no hooks? */
|
||
ci->u.l.trap = 0; /* don't need to stop again */
|
||
return 0; /* turn off 'trap' */
|
||
}
|
||
pc++; /* reference is always next instruction */
|
||
ci->u.l.savedpc = pc; /* save 'pc' */
|
||
counthook = (mask & LUA_MASKCOUNT) && (--L->hookcount == 0);
|
||
if (counthook)
|
||
resethookcount(L); /* reset count */
|
||
else if (!(mask & LUA_MASKLINE))
|
||
return 1; /* no line hook and count != 0; nothing to be done now */
|
||
if (ci->callstatus & CIST_HOOKYIELD) { /* hook yielded last time? */
|
||
ci->callstatus &= ~CIST_HOOKYIELD; /* erase mark */
|
||
return 1; /* do not call hook again (VM yielded, so it did not move) */
|
||
}
|
||
if (!isIT(*(ci->u.l.savedpc - 1))) /* top not being used? */
|
||
L->top.p = ci->top.p; /* correct top */
|
||
if (counthook)
|
||
luaD_hook(L, LUA_HOOKCOUNT, -1, 0, 0); /* call count hook */
|
||
if (mask & LUA_MASKLINE) {
|
||
/* 'L->oldpc' may be invalid; use zero in this case */
|
||
int oldpc = (L->oldpc < p->sizecode) ? L->oldpc : 0;
|
||
int npci = pcRel(pc, p);
|
||
if (npci <= oldpc || /* call hook when jump back (loop), */
|
||
changedline(p, oldpc, npci)) { /* or when enter new line */
|
||
int newline = luaG_getfuncline(p, npci);
|
||
luaD_hook(L, LUA_HOOKLINE, newline, 0, 0); /* call line hook */
|
||
}
|
||
L->oldpc = npci; /* 'pc' of last call to line hook */
|
||
}
|
||
if (L->status == LUA_YIELD) { /* did hook yield? */
|
||
if (counthook)
|
||
L->hookcount = 1; /* undo decrement to zero */
|
||
ci->callstatus |= CIST_HOOKYIELD; /* mark that it yielded */
|
||
luaD_throw(L, LUA_YIELD);
|
||
}
|
||
return 1; /* keep 'trap' on */
|
||
}
|
||
|
||
/*
|
||
** $Id: lfunc.c $
|
||
** Auxiliary functions to manipulate prototypes and closures
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lfunc_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stddef.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
|
||
|
||
|
||
CClosure *luaF_newCclosure (lua_State *L, int nupvals) {
|
||
GCObject *o = luaC_newobj(L, LUA_VCCL, sizeCclosure(nupvals));
|
||
CClosure *c = gco2ccl(o);
|
||
c->nupvalues = cast_byte(nupvals);
|
||
return c;
|
||
}
|
||
|
||
|
||
LClosure *luaF_newLclosure (lua_State *L, int nupvals) {
|
||
GCObject *o = luaC_newobj(L, LUA_VLCL, sizeLclosure(nupvals));
|
||
LClosure *c = gco2lcl(o);
|
||
c->p = NULL;
|
||
c->nupvalues = cast_byte(nupvals);
|
||
while (nupvals--) c->upvals[nupvals] = NULL;
|
||
return c;
|
||
}
|
||
|
||
|
||
/*
|
||
** fill a closure with new closed upvalues
|
||
*/
|
||
void luaF_initupvals (lua_State *L, LClosure *cl) {
|
||
int i;
|
||
for (i = 0; i < cl->nupvalues; i++) {
|
||
GCObject *o = luaC_newobj(L, LUA_VUPVAL, sizeof(UpVal));
|
||
UpVal *uv = gco2upv(o);
|
||
uv->v.p = &uv->u.value; /* make it closed */
|
||
setnilvalue(uv->v.p);
|
||
cl->upvals[i] = uv;
|
||
luaC_objbarrier(L, cl, uv);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Create a new upvalue at the given level, and link it to the list of
|
||
** open upvalues of 'L' after entry 'prev'.
|
||
**/
|
||
static UpVal *newupval (lua_State *L, StkId level, UpVal **prev) {
|
||
GCObject *o = luaC_newobj(L, LUA_VUPVAL, sizeof(UpVal));
|
||
UpVal *uv = gco2upv(o);
|
||
UpVal *next = *prev;
|
||
uv->v.p = s2v(level); /* current value lives in the stack */
|
||
uv->u.open.next = next; /* link it to list of open upvalues */
|
||
uv->u.open.previous = prev;
|
||
if (next)
|
||
next->u.open.previous = &uv->u.open.next;
|
||
*prev = uv;
|
||
if (!isintwups(L)) { /* thread not in list of threads with upvalues? */
|
||
L->twups = G(L)->twups; /* link it to the list */
|
||
G(L)->twups = L;
|
||
}
|
||
return uv;
|
||
}
|
||
|
||
|
||
/*
|
||
** Find and reuse, or create if it does not exist, an upvalue
|
||
** at the given level.
|
||
*/
|
||
UpVal *luaF_findupval (lua_State *L, StkId level) {
|
||
UpVal **pp = &L->openupval;
|
||
UpVal *p;
|
||
lua_assert(isintwups(L) || L->openupval == NULL);
|
||
while ((p = *pp) != NULL && uplevel(p) >= level) { /* search for it */
|
||
lua_assert(!isdead(G(L), p));
|
||
if (uplevel(p) == level) /* corresponding upvalue? */
|
||
return p; /* return it */
|
||
pp = &p->u.open.next;
|
||
}
|
||
/* not found: create a new upvalue after 'pp' */
|
||
return newupval(L, level, pp);
|
||
}
|
||
|
||
|
||
/*
|
||
** Call closing method for object 'obj' with error message 'err'. The
|
||
** boolean 'yy' controls whether the call is yieldable.
|
||
** (This function assumes EXTRA_STACK.)
|
||
*/
|
||
static void callclosemethod (lua_State *L, TValue *obj, TValue *err, int yy) {
|
||
StkId top = L->top.p;
|
||
const TValue *tm = luaT_gettmbyobj(L, obj, TM_CLOSE);
|
||
setobj2s(L, top, tm); /* will call metamethod... */
|
||
setobj2s(L, top + 1, obj); /* with 'self' as the 1st argument */
|
||
setobj2s(L, top + 2, err); /* and error msg. as 2nd argument */
|
||
L->top.p = top + 3; /* add function and arguments */
|
||
if (yy)
|
||
luaD_call(L, top, 0);
|
||
else
|
||
luaD_callnoyield(L, top, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether object at given level has a close metamethod and raise
|
||
** an error if not.
|
||
*/
|
||
static void checkclosemth (lua_State *L, StkId level) {
|
||
const TValue *tm = luaT_gettmbyobj(L, s2v(level), TM_CLOSE);
|
||
if (ttisnil(tm)) { /* no metamethod? */
|
||
int idx = cast_int(level - L->ci->func.p); /* variable index */
|
||
const char *vname = luaG_findlocal(L, L->ci, idx, NULL);
|
||
if (vname == NULL) vname = "?";
|
||
luaG_runerror(L, "variable '%s' got a non-closable value", vname);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Prepare and call a closing method.
|
||
** If status is CLOSEKTOP, the call to the closing method will be pushed
|
||
** at the top of the stack. Otherwise, values can be pushed right after
|
||
** the 'level' of the upvalue being closed, as everything after that
|
||
** won't be used again.
|
||
*/
|
||
static void prepcallclosemth (lua_State *L, StkId level, int status, int yy) {
|
||
TValue *uv = s2v(level); /* value being closed */
|
||
TValue *errobj;
|
||
if (status == CLOSEKTOP)
|
||
errobj = &G(L)->nilvalue; /* error object is nil */
|
||
else { /* 'luaD_seterrorobj' will set top to level + 2 */
|
||
errobj = s2v(level + 1); /* error object goes after 'uv' */
|
||
luaD_seterrorobj(L, status, level + 1); /* set error object */
|
||
}
|
||
callclosemethod(L, uv, errobj, yy);
|
||
}
|
||
|
||
|
||
/*
|
||
** Maximum value for deltas in 'tbclist', dependent on the type
|
||
** of delta. (This macro assumes that an 'L' is in scope where it
|
||
** is used.)
|
||
*/
|
||
#define MAXDELTA \
|
||
((256ul << ((sizeof(L->stack.p->tbclist.delta) - 1) * 8)) - 1)
|
||
|
||
|
||
/*
|
||
** Insert a variable in the list of to-be-closed variables.
|
||
*/
|
||
void luaF_newtbcupval (lua_State *L, StkId level) {
|
||
lua_assert(level > L->tbclist.p);
|
||
if (l_isfalse(s2v(level)))
|
||
return; /* false doesn't need to be closed */
|
||
checkclosemth(L, level); /* value must have a close method */
|
||
while (cast_uint(level - L->tbclist.p) > MAXDELTA) {
|
||
L->tbclist.p += MAXDELTA; /* create a dummy node at maximum delta */
|
||
L->tbclist.p->tbclist.delta = 0;
|
||
}
|
||
level->tbclist.delta = cast(unsigned short, level - L->tbclist.p);
|
||
L->tbclist.p = level;
|
||
}
|
||
|
||
|
||
void luaF_unlinkupval (UpVal *uv) {
|
||
lua_assert(upisopen(uv));
|
||
*uv->u.open.previous = uv->u.open.next;
|
||
if (uv->u.open.next)
|
||
uv->u.open.next->u.open.previous = uv->u.open.previous;
|
||
}
|
||
|
||
|
||
/*
|
||
** Close all upvalues up to the given stack level.
|
||
*/
|
||
void luaF_closeupval (lua_State *L, StkId level) {
|
||
UpVal *uv;
|
||
StkId upl; /* stack index pointed by 'uv' */
|
||
while ((uv = L->openupval) != NULL && (upl = uplevel(uv)) >= level) {
|
||
TValue *slot = &uv->u.value; /* new position for value */
|
||
lua_assert(uplevel(uv) < L->top.p);
|
||
luaF_unlinkupval(uv); /* remove upvalue from 'openupval' list */
|
||
setobj(L, slot, uv->v.p); /* move value to upvalue slot */
|
||
uv->v.p = slot; /* now current value lives here */
|
||
if (!iswhite(uv)) { /* neither white nor dead? */
|
||
nw2black(uv); /* closed upvalues cannot be gray */
|
||
luaC_barrier(L, uv, slot);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Remove first element from the tbclist plus its dummy nodes.
|
||
*/
|
||
static void poptbclist (lua_State *L) {
|
||
StkId tbc = L->tbclist.p;
|
||
lua_assert(tbc->tbclist.delta > 0); /* first element cannot be dummy */
|
||
tbc -= tbc->tbclist.delta;
|
||
while (tbc > L->stack.p && tbc->tbclist.delta == 0)
|
||
tbc -= MAXDELTA; /* remove dummy nodes */
|
||
L->tbclist.p = tbc;
|
||
}
|
||
|
||
|
||
/*
|
||
** Close all upvalues and to-be-closed variables up to the given stack
|
||
** level. Return restored 'level'.
|
||
*/
|
||
StkId luaF_close (lua_State *L, StkId level, int status, int yy) {
|
||
ptrdiff_t levelrel = savestack(L, level);
|
||
luaF_closeupval(L, level); /* first, close the upvalues */
|
||
while (L->tbclist.p >= level) { /* traverse tbc's down to that level */
|
||
StkId tbc = L->tbclist.p; /* get variable index */
|
||
poptbclist(L); /* remove it from list */
|
||
prepcallclosemth(L, tbc, status, yy); /* close variable */
|
||
level = restorestack(L, levelrel);
|
||
}
|
||
return level;
|
||
}
|
||
|
||
|
||
Proto *luaF_newproto (lua_State *L) {
|
||
GCObject *o = luaC_newobj(L, LUA_VPROTO, sizeof(Proto));
|
||
Proto *f = gco2p(o);
|
||
f->k = NULL;
|
||
f->sizek = 0;
|
||
f->p = NULL;
|
||
f->sizep = 0;
|
||
f->code = NULL;
|
||
f->sizecode = 0;
|
||
f->lineinfo = NULL;
|
||
f->sizelineinfo = 0;
|
||
f->abslineinfo = NULL;
|
||
f->sizeabslineinfo = 0;
|
||
f->upvalues = NULL;
|
||
f->sizeupvalues = 0;
|
||
f->numparams = 0;
|
||
f->is_vararg = 0;
|
||
f->maxstacksize = 0;
|
||
f->locvars = NULL;
|
||
f->sizelocvars = 0;
|
||
f->linedefined = 0;
|
||
f->lastlinedefined = 0;
|
||
f->source = NULL;
|
||
return f;
|
||
}
|
||
|
||
|
||
void luaF_freeproto (lua_State *L, Proto *f) {
|
||
luaM_freearray(L, f->code, f->sizecode);
|
||
luaM_freearray(L, f->p, f->sizep);
|
||
luaM_freearray(L, f->k, f->sizek);
|
||
luaM_freearray(L, f->lineinfo, f->sizelineinfo);
|
||
luaM_freearray(L, f->abslineinfo, f->sizeabslineinfo);
|
||
luaM_freearray(L, f->locvars, f->sizelocvars);
|
||
luaM_freearray(L, f->upvalues, f->sizeupvalues);
|
||
luaM_free(L, f);
|
||
}
|
||
|
||
|
||
/*
|
||
** Look for n-th local variable at line 'line' in function 'func'.
|
||
** Returns NULL if not found.
|
||
*/
|
||
const char *luaF_getlocalname (const Proto *f, int local_number, int pc) {
|
||
int i;
|
||
for (i = 0; i<f->sizelocvars && f->locvars[i].startpc <= pc; i++) {
|
||
if (pc < f->locvars[i].endpc) { /* is variable active? */
|
||
local_number--;
|
||
if (local_number == 0)
|
||
return getstr(f->locvars[i].varname);
|
||
}
|
||
}
|
||
return NULL; /* not found */
|
||
}
|
||
|
||
/*
|
||
** $Id: lobject.c $
|
||
** Some generic functions over Lua objects
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lobject_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <locale.h>
|
||
#include <math.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lctype.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
/*
|
||
** Computes ceil(log2(x))
|
||
*/
|
||
int luaO_ceillog2 (unsigned int x) {
|
||
static const lu_byte log_2[256] = { /* log_2[i] = ceil(log2(i - 1)) */
|
||
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
|
||
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
||
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
||
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
|
||
};
|
||
int l = 0;
|
||
x--;
|
||
while (x >= 256) { l += 8; x >>= 8; }
|
||
return l + log_2[x];
|
||
}
|
||
|
||
|
||
static lua_Integer intarith (lua_State *L, int op, lua_Integer v1,
|
||
lua_Integer v2) {
|
||
switch (op) {
|
||
case LUA_OPADD: return intop(+, v1, v2);
|
||
case LUA_OPSUB:return intop(-, v1, v2);
|
||
case LUA_OPMUL:return intop(*, v1, v2);
|
||
case LUA_OPMOD: return luaV_mod(L, v1, v2);
|
||
case LUA_OPIDIV: return luaV_idiv(L, v1, v2);
|
||
case LUA_OPBAND: return intop(&, v1, v2);
|
||
case LUA_OPBOR: return intop(|, v1, v2);
|
||
case LUA_OPBXOR: return intop(^, v1, v2);
|
||
case LUA_OPSHL: return luaV_shiftl(v1, v2);
|
||
case LUA_OPSHR: return luaV_shiftr(v1, v2);
|
||
case LUA_OPUNM: return intop(-, 0, v1);
|
||
case LUA_OPBNOT: return intop(^, ~l_castS2U(0), v1);
|
||
default: lua_assert(0); return 0;
|
||
}
|
||
}
|
||
|
||
|
||
static lua_Number numarith (lua_State *L, int op, lua_Number v1,
|
||
lua_Number v2) {
|
||
switch (op) {
|
||
case LUA_OPADD: return luai_numadd(L, v1, v2);
|
||
case LUA_OPSUB: return luai_numsub(L, v1, v2);
|
||
case LUA_OPMUL: return luai_nummul(L, v1, v2);
|
||
case LUA_OPDIV: return luai_numdiv(L, v1, v2);
|
||
case LUA_OPPOW: return luai_numpow(L, v1, v2);
|
||
case LUA_OPIDIV: return luai_numidiv(L, v1, v2);
|
||
case LUA_OPUNM: return luai_numunm(L, v1);
|
||
case LUA_OPMOD: return luaV_modf(L, v1, v2);
|
||
default: lua_assert(0); return 0;
|
||
}
|
||
}
|
||
|
||
|
||
int luaO_rawarith (lua_State *L, int op, const TValue *p1, const TValue *p2,
|
||
TValue *res) {
|
||
switch (op) {
|
||
case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
|
||
case LUA_OPSHL: case LUA_OPSHR:
|
||
case LUA_OPBNOT: { /* operate only on integers */
|
||
lua_Integer i1; lua_Integer i2;
|
||
if (tointegerns(p1, &i1) && tointegerns(p2, &i2)) {
|
||
setivalue(res, intarith(L, op, i1, i2));
|
||
return 1;
|
||
}
|
||
else return 0; /* fail */
|
||
}
|
||
case LUA_OPDIV: case LUA_OPPOW: { /* operate only on floats */
|
||
lua_Number n1; lua_Number n2;
|
||
if (tonumberns(p1, n1) && tonumberns(p2, n2)) {
|
||
setfltvalue(res, numarith(L, op, n1, n2));
|
||
return 1;
|
||
}
|
||
else return 0; /* fail */
|
||
}
|
||
default: { /* other operations */
|
||
lua_Number n1; lua_Number n2;
|
||
if (ttisinteger(p1) && ttisinteger(p2)) {
|
||
setivalue(res, intarith(L, op, ivalue(p1), ivalue(p2)));
|
||
return 1;
|
||
}
|
||
else if (tonumberns(p1, n1) && tonumberns(p2, n2)) {
|
||
setfltvalue(res, numarith(L, op, n1, n2));
|
||
return 1;
|
||
}
|
||
else return 0; /* fail */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void luaO_arith (lua_State *L, int op, const TValue *p1, const TValue *p2,
|
||
StkId res) {
|
||
if (!luaO_rawarith(L, op, p1, p2, s2v(res))) {
|
||
/* could not perform raw operation; try metamethod */
|
||
luaT_trybinTM(L, p1, p2, res, cast(TMS, (op - LUA_OPADD) + TM_ADD));
|
||
}
|
||
}
|
||
|
||
|
||
int luaO_hexavalue (int c) {
|
||
if (lisdigit(c)) return c - '0';
|
||
else return (ltolower(c) - 'a') + 10;
|
||
}
|
||
|
||
|
||
static int isneg (const char **s) {
|
||
if (**s == '-') { (*s)++; return 1; }
|
||
else if (**s == '+') (*s)++;
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Lua's implementation for 'lua_strx2number'
|
||
** ===================================================================
|
||
*/
|
||
|
||
#if !defined(lua_strx2number)
|
||
|
||
/* maximum number of significant digits to read (to avoid overflows
|
||
even with single floats) */
|
||
#define MAXSIGDIG 30
|
||
|
||
/*
|
||
** convert a hexadecimal numeric string to a number, following
|
||
** C99 specification for 'strtod'
|
||
*/
|
||
static lua_Number lua_strx2number (const char *s, char **endptr) {
|
||
int dot = lua_getlocaledecpoint();
|
||
lua_Number r = l_mathop(0.0); /* result (accumulator) */
|
||
int sigdig = 0; /* number of significant digits */
|
||
int nosigdig = 0; /* number of non-significant digits */
|
||
int e = 0; /* exponent correction */
|
||
int neg; /* 1 if number is negative */
|
||
int hasdot = 0; /* true after seen a dot */
|
||
*endptr = cast_charp(s); /* nothing is valid yet */
|
||
while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */
|
||
neg = isneg(&s); /* check sign */
|
||
if (!(*s == '0' && (*(s + 1) == 'x' || *(s + 1) == 'X'))) /* check '0x' */
|
||
return l_mathop(0.0); /* invalid format (no '0x') */
|
||
for (s += 2; ; s++) { /* skip '0x' and read numeral */
|
||
if (*s == dot) {
|
||
if (hasdot) break; /* second dot? stop loop */
|
||
else hasdot = 1;
|
||
}
|
||
else if (lisxdigit(cast_uchar(*s))) {
|
||
if (sigdig == 0 && *s == '0') /* non-significant digit (zero)? */
|
||
nosigdig++;
|
||
else if (++sigdig <= MAXSIGDIG) /* can read it without overflow? */
|
||
r = (r * l_mathop(16.0)) + luaO_hexavalue(*s);
|
||
else e++; /* too many digits; ignore, but still count for exponent */
|
||
if (hasdot) e--; /* decimal digit? correct exponent */
|
||
}
|
||
else break; /* neither a dot nor a digit */
|
||
}
|
||
if (nosigdig + sigdig == 0) /* no digits? */
|
||
return l_mathop(0.0); /* invalid format */
|
||
*endptr = cast_charp(s); /* valid up to here */
|
||
e *= 4; /* each digit multiplies/divides value by 2^4 */
|
||
if (*s == 'p' || *s == 'P') { /* exponent part? */
|
||
int exp1 = 0; /* exponent value */
|
||
int neg1; /* exponent sign */
|
||
s++; /* skip 'p' */
|
||
neg1 = isneg(&s); /* sign */
|
||
if (!lisdigit(cast_uchar(*s)))
|
||
return l_mathop(0.0); /* invalid; must have at least one digit */
|
||
while (lisdigit(cast_uchar(*s))) /* read exponent */
|
||
exp1 = exp1 * 10 + *(s++) - '0';
|
||
if (neg1) exp1 = -exp1;
|
||
e += exp1;
|
||
*endptr = cast_charp(s); /* valid up to here */
|
||
}
|
||
if (neg) r = -r;
|
||
return l_mathop(ldexp)(r, e);
|
||
}
|
||
|
||
#endif
|
||
/* }====================================================== */
|
||
|
||
|
||
/* maximum length of a numeral to be converted to a number */
|
||
#if !defined (L_MAXLENNUM)
|
||
#define L_MAXLENNUM 200
|
||
#endif
|
||
|
||
/*
|
||
** Convert string 's' to a Lua number (put in 'result'). Return NULL on
|
||
** fail or the address of the ending '\0' on success. ('mode' == 'x')
|
||
** means a hexadecimal numeral.
|
||
*/
|
||
static const char *l_str2dloc (const char *s, lua_Number *result, int mode) {
|
||
char *endptr;
|
||
*result = (mode == 'x') ? lua_strx2number(s, &endptr) /* try to convert */
|
||
: lua_str2number(s, &endptr);
|
||
if (endptr == s) return NULL; /* nothing recognized? */
|
||
while (lisspace(cast_uchar(*endptr))) endptr++; /* skip trailing spaces */
|
||
return (*endptr == '\0') ? endptr : NULL; /* OK iff no trailing chars */
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert string 's' to a Lua number (put in 'result') handling the
|
||
** current locale.
|
||
** This function accepts both the current locale or a dot as the radix
|
||
** mark. If the conversion fails, it may mean number has a dot but
|
||
** locale accepts something else. In that case, the code copies 's'
|
||
** to a buffer (because 's' is read-only), changes the dot to the
|
||
** current locale radix mark, and tries to convert again.
|
||
** The variable 'mode' checks for special characters in the string:
|
||
** - 'n' means 'inf' or 'nan' (which should be rejected)
|
||
** - 'x' means a hexadecimal numeral
|
||
** - '.' just optimizes the search for the common case (no special chars)
|
||
*/
|
||
static const char *l_str2d (const char *s, lua_Number *result) {
|
||
const char *endptr;
|
||
const char *pmode = strpbrk(s, ".xXnN"); /* look for special chars */
|
||
int mode = pmode ? ltolower(cast_uchar(*pmode)) : 0;
|
||
if (mode == 'n') /* reject 'inf' and 'nan' */
|
||
return NULL;
|
||
endptr = l_str2dloc(s, result, mode); /* try to convert */
|
||
if (endptr == NULL) { /* failed? may be a different locale */
|
||
char buff[L_MAXLENNUM + 1];
|
||
const char *pdot = strchr(s, '.');
|
||
if (pdot == NULL || strlen(s) > L_MAXLENNUM)
|
||
return NULL; /* string too long or no dot; fail */
|
||
strcpy(buff, s); /* copy string to buffer */
|
||
buff[pdot - s] = lua_getlocaledecpoint(); /* correct decimal point */
|
||
endptr = l_str2dloc(buff, result, mode); /* try again */
|
||
if (endptr != NULL)
|
||
endptr = s + (endptr - buff); /* make relative to 's' */
|
||
}
|
||
return endptr;
|
||
}
|
||
|
||
|
||
#define MAXBY10 cast(lua_Unsigned, LUA_MAXINTEGER / 10)
|
||
#define MAXLASTD cast_int(LUA_MAXINTEGER % 10)
|
||
|
||
static const char *l_str2int (const char *s, lua_Integer *result) {
|
||
lua_Unsigned a = 0;
|
||
int empty = 1;
|
||
int neg;
|
||
while (lisspace(cast_uchar(*s))) s++; /* skip initial spaces */
|
||
neg = isneg(&s);
|
||
if (s[0] == '0' &&
|
||
(s[1] == 'x' || s[1] == 'X')) { /* hex? */
|
||
s += 2; /* skip '0x' */
|
||
for (; lisxdigit(cast_uchar(*s)); s++) {
|
||
a = a * 16 + luaO_hexavalue(*s);
|
||
empty = 0;
|
||
}
|
||
}
|
||
else { /* decimal */
|
||
for (; lisdigit(cast_uchar(*s)); s++) {
|
||
int d = *s - '0';
|
||
if (a >= MAXBY10 && (a > MAXBY10 || d > MAXLASTD + neg)) /* overflow? */
|
||
return NULL; /* do not accept it (as integer) */
|
||
a = a * 10 + d;
|
||
empty = 0;
|
||
}
|
||
}
|
||
while (lisspace(cast_uchar(*s))) s++; /* skip trailing spaces */
|
||
if (empty || *s != '\0') return NULL; /* something wrong in the numeral */
|
||
else {
|
||
*result = l_castU2S((neg) ? 0u - a : a);
|
||
return s;
|
||
}
|
||
}
|
||
|
||
|
||
size_t luaO_str2num (const char *s, TValue *o) {
|
||
lua_Integer i; lua_Number n;
|
||
const char *e;
|
||
if ((e = l_str2int(s, &i)) != NULL) { /* try as an integer */
|
||
setivalue(o, i);
|
||
}
|
||
else if ((e = l_str2d(s, &n)) != NULL) { /* else try as a float */
|
||
setfltvalue(o, n);
|
||
}
|
||
else
|
||
return 0; /* conversion failed */
|
||
return (e - s) + 1; /* success; return string size */
|
||
}
|
||
|
||
|
||
int luaO_utf8esc (char *buff, unsigned long x) {
|
||
int n = 1; /* number of bytes put in buffer (backwards) */
|
||
lua_assert(x <= 0x7FFFFFFFu);
|
||
if (x < 0x80) /* ascii? */
|
||
buff[UTF8BUFFSZ - 1] = cast_char(x);
|
||
else { /* need continuation bytes */
|
||
unsigned int mfb = 0x3f; /* maximum that fits in first byte */
|
||
do { /* add continuation bytes */
|
||
buff[UTF8BUFFSZ - (n++)] = cast_char(0x80 | (x & 0x3f));
|
||
x >>= 6; /* remove added bits */
|
||
mfb >>= 1; /* now there is one less bit available in first byte */
|
||
} while (x > mfb); /* still needs continuation byte? */
|
||
buff[UTF8BUFFSZ - n] = cast_char((~mfb << 1) | x); /* add first byte */
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
/*
|
||
** Maximum length of the conversion of a number to a string. Must be
|
||
** enough to accommodate both LUA_INTEGER_FMT and LUA_NUMBER_FMT.
|
||
** (For a long long int, this is 19 digits plus a sign and a final '\0',
|
||
** adding to 21. For a long double, it can go to a sign, 33 digits,
|
||
** the dot, an exponent letter, an exponent sign, 5 exponent digits,
|
||
** and a final '\0', adding to 43.)
|
||
*/
|
||
#define MAXNUMBER2STR 44
|
||
|
||
|
||
/*
|
||
** Convert a number object to a string, adding it to a buffer
|
||
*/
|
||
static int tostringbuff (TValue *obj, char *buff) {
|
||
int len;
|
||
lua_assert(ttisnumber(obj));
|
||
if (ttisinteger(obj))
|
||
len = lua_integer2str(buff, MAXNUMBER2STR, ivalue(obj));
|
||
else {
|
||
len = lua_number2str(buff, MAXNUMBER2STR, fltvalue(obj));
|
||
if (buff[strspn(buff, "-0123456789")] == '\0') { /* looks like an int? */
|
||
buff[len++] = lua_getlocaledecpoint();
|
||
buff[len++] = '0'; /* adds '.0' to result */
|
||
}
|
||
}
|
||
return len;
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a number object to a Lua string, replacing the value at 'obj'
|
||
*/
|
||
void luaO_tostring (lua_State *L, TValue *obj) {
|
||
char buff[MAXNUMBER2STR];
|
||
int len = tostringbuff(obj, buff);
|
||
setsvalue(L, obj, luaS_newlstr(L, buff, len));
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** 'luaO_pushvfstring'
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** Size for buffer space used by 'luaO_pushvfstring'. It should be
|
||
** (LUA_IDSIZE + MAXNUMBER2STR) + a minimal space for basic messages,
|
||
** so that 'luaG_addinfo' can work directly on the buffer.
|
||
*/
|
||
#define BUFVFS (LUA_IDSIZE + MAXNUMBER2STR + 95)
|
||
|
||
/* buffer used by 'luaO_pushvfstring' */
|
||
typedef struct BuffFS {
|
||
lua_State *L;
|
||
int pushed; /* true if there is a part of the result on the stack */
|
||
int blen; /* length of partial string in 'space' */
|
||
char space[BUFVFS]; /* holds last part of the result */
|
||
} BuffFS;
|
||
|
||
|
||
/*
|
||
** Push given string to the stack, as part of the result, and
|
||
** join it to previous partial result if there is one.
|
||
** It may call 'luaV_concat' while using one slot from EXTRA_STACK.
|
||
** This call cannot invoke metamethods, as both operands must be
|
||
** strings. It can, however, raise an error if the result is too
|
||
** long. In that case, 'luaV_concat' frees the extra slot before
|
||
** raising the error.
|
||
*/
|
||
static void pushstr (BuffFS *buff, const char *str, size_t lstr) {
|
||
lua_State *L = buff->L;
|
||
setsvalue2s(L, L->top.p, luaS_newlstr(L, str, lstr));
|
||
L->top.p++; /* may use one slot from EXTRA_STACK */
|
||
if (!buff->pushed) /* no previous string on the stack? */
|
||
buff->pushed = 1; /* now there is one */
|
||
else /* join previous string with new one */
|
||
luaV_concat(L, 2);
|
||
}
|
||
|
||
|
||
/*
|
||
** empty the buffer space into the stack
|
||
*/
|
||
static void clearbuff (BuffFS *buff) {
|
||
pushstr(buff, buff->space, buff->blen); /* push buffer contents */
|
||
buff->blen = 0; /* space now is empty */
|
||
}
|
||
|
||
|
||
/*
|
||
** Get a space of size 'sz' in the buffer. If buffer has not enough
|
||
** space, empty it. 'sz' must fit in an empty buffer.
|
||
*/
|
||
static char *getbuff (BuffFS *buff, int sz) {
|
||
lua_assert(buff->blen <= BUFVFS); lua_assert(sz <= BUFVFS);
|
||
if (sz > BUFVFS - buff->blen) /* not enough space? */
|
||
clearbuff(buff);
|
||
return buff->space + buff->blen;
|
||
}
|
||
|
||
|
||
#define addsize(b,sz) ((b)->blen += (sz))
|
||
|
||
|
||
/*
|
||
** Add 'str' to the buffer. If string is larger than the buffer space,
|
||
** push the string directly to the stack.
|
||
*/
|
||
static void addstr2buff (BuffFS *buff, const char *str, size_t slen) {
|
||
if (slen <= BUFVFS) { /* does string fit into buffer? */
|
||
char *bf = getbuff(buff, cast_int(slen));
|
||
memcpy(bf, str, slen); /* add string to buffer */
|
||
addsize(buff, cast_int(slen));
|
||
}
|
||
else { /* string larger than buffer */
|
||
clearbuff(buff); /* string comes after buffer's content */
|
||
pushstr(buff, str, slen); /* push string */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Add a numeral to the buffer.
|
||
*/
|
||
static void addnum2buff (BuffFS *buff, TValue *num) {
|
||
char *numbuff = getbuff(buff, MAXNUMBER2STR);
|
||
int len = tostringbuff(num, numbuff); /* format number into 'numbuff' */
|
||
addsize(buff, len);
|
||
}
|
||
|
||
|
||
/*
|
||
** this function handles only '%d', '%c', '%f', '%p', '%s', and '%%'
|
||
conventional formats, plus Lua-specific '%I' and '%U'
|
||
*/
|
||
const char *luaO_pushvfstring (lua_State *L, const char *fmt, va_list argp) {
|
||
BuffFS buff; /* holds last part of the result */
|
||
const char *e; /* points to next '%' */
|
||
buff.pushed = buff.blen = 0;
|
||
buff.L = L;
|
||
while ((e = strchr(fmt, '%')) != NULL) {
|
||
addstr2buff(&buff, fmt, e - fmt); /* add 'fmt' up to '%' */
|
||
switch (*(e + 1)) { /* conversion specifier */
|
||
case 's': { /* zero-terminated string */
|
||
const char *s = va_arg(argp, char *);
|
||
if (s == NULL) s = "(null)";
|
||
addstr2buff(&buff, s, strlen(s));
|
||
break;
|
||
}
|
||
case 'c': { /* an 'int' as a character */
|
||
char c = cast_uchar(va_arg(argp, int));
|
||
addstr2buff(&buff, &c, sizeof(char));
|
||
break;
|
||
}
|
||
case 'd': { /* an 'int' */
|
||
TValue num;
|
||
setivalue(&num, va_arg(argp, int));
|
||
addnum2buff(&buff, &num);
|
||
break;
|
||
}
|
||
case 'I': { /* a 'lua_Integer' */
|
||
TValue num;
|
||
setivalue(&num, cast(lua_Integer, va_arg(argp, l_uacInt)));
|
||
addnum2buff(&buff, &num);
|
||
break;
|
||
}
|
||
case 'f': { /* a 'lua_Number' */
|
||
TValue num;
|
||
setfltvalue(&num, cast_num(va_arg(argp, l_uacNumber)));
|
||
addnum2buff(&buff, &num);
|
||
break;
|
||
}
|
||
case 'p': { /* a pointer */
|
||
const int sz = 3 * sizeof(void*) + 8; /* enough space for '%p' */
|
||
char *bf = getbuff(&buff, sz);
|
||
void *p = va_arg(argp, void *);
|
||
int len = lua_pointer2str(bf, sz, p);
|
||
addsize(&buff, len);
|
||
break;
|
||
}
|
||
case 'U': { /* a 'long' as a UTF-8 sequence */
|
||
char bf[UTF8BUFFSZ];
|
||
int len = luaO_utf8esc(bf, va_arg(argp, long));
|
||
addstr2buff(&buff, bf + UTF8BUFFSZ - len, len);
|
||
break;
|
||
}
|
||
case '%': {
|
||
addstr2buff(&buff, "%", 1);
|
||
break;
|
||
}
|
||
default: {
|
||
luaG_runerror(L, "invalid option '%%%c' to 'lua_pushfstring'",
|
||
*(e + 1));
|
||
}
|
||
}
|
||
fmt = e + 2; /* skip '%' and the specifier */
|
||
}
|
||
addstr2buff(&buff, fmt, strlen(fmt)); /* rest of 'fmt' */
|
||
clearbuff(&buff); /* empty buffer into the stack */
|
||
lua_assert(buff.pushed == 1);
|
||
return getstr(tsvalue(s2v(L->top.p - 1)));
|
||
}
|
||
|
||
|
||
const char *luaO_pushfstring (lua_State *L, const char *fmt, ...) {
|
||
const char *msg;
|
||
va_list argp;
|
||
va_start(argp, fmt);
|
||
msg = luaO_pushvfstring(L, fmt, argp);
|
||
va_end(argp);
|
||
return msg;
|
||
}
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
#define RETS "..."
|
||
#define PRE "[string \""
|
||
#define POS "\"]"
|
||
|
||
#define addstr(a,b,l) ( memcpy(a,b,(l) * sizeof(char)), a += (l) )
|
||
|
||
void luaO_chunkid (char *out, const char *source, size_t srclen) {
|
||
size_t bufflen = LUA_IDSIZE; /* free space in buffer */
|
||
if (*source == '=') { /* 'literal' source */
|
||
if (srclen <= bufflen) /* small enough? */
|
||
memcpy(out, source + 1, srclen * sizeof(char));
|
||
else { /* truncate it */
|
||
addstr(out, source + 1, bufflen - 1);
|
||
*out = '\0';
|
||
}
|
||
}
|
||
else if (*source == '@') { /* file name */
|
||
if (srclen <= bufflen) /* small enough? */
|
||
memcpy(out, source + 1, srclen * sizeof(char));
|
||
else { /* add '...' before rest of name */
|
||
addstr(out, RETS, LL(RETS));
|
||
bufflen -= LL(RETS);
|
||
memcpy(out, source + 1 + srclen - bufflen, bufflen * sizeof(char));
|
||
}
|
||
}
|
||
else { /* string; format as [string "source"] */
|
||
const char *nl = strchr(source, '\n'); /* find first new line (if any) */
|
||
addstr(out, PRE, LL(PRE)); /* add prefix */
|
||
bufflen -= LL(PRE RETS POS) + 1; /* save space for prefix+suffix+'\0' */
|
||
if (srclen < bufflen && nl == NULL) { /* small one-line source? */
|
||
addstr(out, source, srclen); /* keep it */
|
||
}
|
||
else {
|
||
if (nl != NULL) srclen = nl - source; /* stop at first newline */
|
||
if (srclen > bufflen) srclen = bufflen;
|
||
addstr(out, source, srclen);
|
||
addstr(out, RETS, LL(RETS));
|
||
}
|
||
memcpy(out, POS, (LL(POS) + 1) * sizeof(char));
|
||
}
|
||
}
|
||
|
||
/*
|
||
** $Id: ltm.c $
|
||
** Tag methods
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ltm_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
static const char udatatypename[] = "userdata";
|
||
|
||
LUAI_DDEF const char *const luaT_typenames_[LUA_TOTALTYPES] = {
|
||
"no value",
|
||
"nil", "boolean", udatatypename, "number",
|
||
"string", "table", "function", udatatypename, "thread",
|
||
"upvalue", "proto" /* these last cases are used for tests only */
|
||
};
|
||
|
||
|
||
void luaT_init (lua_State *L) {
|
||
static const char *const luaT_eventname[] = { /* ORDER TM */
|
||
"__index", "__newindex",
|
||
"__gc", "__mode", "__len", "__eq",
|
||
"__add", "__sub", "__mul", "__mod", "__pow",
|
||
"__div", "__idiv",
|
||
"__band", "__bor", "__bxor", "__shl", "__shr",
|
||
"__unm", "__bnot", "__lt", "__le",
|
||
"__concat", "__call", "__close"
|
||
};
|
||
int i;
|
||
for (i=0; i<TM_N; i++) {
|
||
G(L)->tmname[i] = luaS_new(L, luaT_eventname[i]);
|
||
luaC_fix(L, obj2gco(G(L)->tmname[i])); /* never collect these names */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** function to be used with macro "fasttm": optimized for absence of
|
||
** tag methods
|
||
*/
|
||
const TValue *luaT_gettm (Table *events, TMS event, TString *ename) {
|
||
const TValue *tm = luaH_getshortstr(events, ename);
|
||
lua_assert(event <= TM_EQ);
|
||
if (notm(tm)) { /* no tag method? */
|
||
events->flags |= cast_byte(1u<<event); /* cache this fact */
|
||
return NULL;
|
||
}
|
||
else return tm;
|
||
}
|
||
|
||
|
||
const TValue *luaT_gettmbyobj (lua_State *L, const TValue *o, TMS event) {
|
||
Table *mt;
|
||
switch (ttype(o)) {
|
||
case LUA_TTABLE:
|
||
mt = hvalue(o)->metatable;
|
||
break;
|
||
case LUA_TUSERDATA:
|
||
mt = uvalue(o)->metatable;
|
||
break;
|
||
default:
|
||
mt = G(L)->mt[ttype(o)];
|
||
}
|
||
return (mt ? luaH_getshortstr(mt, G(L)->tmname[event]) : &G(L)->nilvalue);
|
||
}
|
||
|
||
|
||
/*
|
||
** Return the name of the type of an object. For tables and userdata
|
||
** with metatable, use their '__name' metafield, if present.
|
||
*/
|
||
const char *luaT_objtypename (lua_State *L, const TValue *o) {
|
||
Table *mt;
|
||
if ((ttistable(o) && (mt = hvalue(o)->metatable) != NULL) ||
|
||
(ttisfulluserdata(o) && (mt = uvalue(o)->metatable) != NULL)) {
|
||
const TValue *name = luaH_getshortstr(mt, luaS_new(L, "__name"));
|
||
if (ttisstring(name)) /* is '__name' a string? */
|
||
return getstr(tsvalue(name)); /* use it as type name */
|
||
}
|
||
return ttypename(ttype(o)); /* else use standard type name */
|
||
}
|
||
|
||
|
||
void luaT_callTM (lua_State *L, const TValue *f, const TValue *p1,
|
||
const TValue *p2, const TValue *p3) {
|
||
StkId func = L->top.p;
|
||
setobj2s(L, func, f); /* push function (assume EXTRA_STACK) */
|
||
setobj2s(L, func + 1, p1); /* 1st argument */
|
||
setobj2s(L, func + 2, p2); /* 2nd argument */
|
||
setobj2s(L, func + 3, p3); /* 3rd argument */
|
||
L->top.p = func + 4;
|
||
/* metamethod may yield only when called from Lua code */
|
||
if (isLuacode(L->ci))
|
||
luaD_call(L, func, 0);
|
||
else
|
||
luaD_callnoyield(L, func, 0);
|
||
}
|
||
|
||
|
||
void luaT_callTMres (lua_State *L, const TValue *f, const TValue *p1,
|
||
const TValue *p2, StkId res) {
|
||
ptrdiff_t result = savestack(L, res);
|
||
StkId func = L->top.p;
|
||
setobj2s(L, func, f); /* push function (assume EXTRA_STACK) */
|
||
setobj2s(L, func + 1, p1); /* 1st argument */
|
||
setobj2s(L, func + 2, p2); /* 2nd argument */
|
||
L->top.p += 3;
|
||
/* metamethod may yield only when called from Lua code */
|
||
if (isLuacode(L->ci))
|
||
luaD_call(L, func, 1);
|
||
else
|
||
luaD_callnoyield(L, func, 1);
|
||
res = restorestack(L, result);
|
||
setobjs2s(L, res, --L->top.p); /* move result to its place */
|
||
}
|
||
|
||
|
||
static int callbinTM (lua_State *L, const TValue *p1, const TValue *p2,
|
||
StkId res, TMS event) {
|
||
const TValue *tm = luaT_gettmbyobj(L, p1, event); /* try first operand */
|
||
if (notm(tm))
|
||
tm = luaT_gettmbyobj(L, p2, event); /* try second operand */
|
||
if (notm(tm)) return 0;
|
||
luaT_callTMres(L, tm, p1, p2, res);
|
||
return 1;
|
||
}
|
||
|
||
|
||
void luaT_trybinTM (lua_State *L, const TValue *p1, const TValue *p2,
|
||
StkId res, TMS event) {
|
||
if (l_unlikely(!callbinTM(L, p1, p2, res, event))) {
|
||
switch (event) {
|
||
case TM_BAND: case TM_BOR: case TM_BXOR:
|
||
case TM_SHL: case TM_SHR: case TM_BNOT: {
|
||
if (ttisnumber(p1) && ttisnumber(p2))
|
||
luaG_tointerror(L, p1, p2);
|
||
else
|
||
luaG_opinterror(L, p1, p2, "perform bitwise operation on");
|
||
}
|
||
/* calls never return, but to avoid warnings: *//* FALLTHROUGH */
|
||
default:
|
||
luaG_opinterror(L, p1, p2, "perform arithmetic on");
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
void luaT_tryconcatTM (lua_State *L) {
|
||
StkId top = L->top.p;
|
||
if (l_unlikely(!callbinTM(L, s2v(top - 2), s2v(top - 1), top - 2,
|
||
TM_CONCAT)))
|
||
luaG_concaterror(L, s2v(top - 2), s2v(top - 1));
|
||
}
|
||
|
||
|
||
void luaT_trybinassocTM (lua_State *L, const TValue *p1, const TValue *p2,
|
||
int flip, StkId res, TMS event) {
|
||
if (flip)
|
||
luaT_trybinTM(L, p2, p1, res, event);
|
||
else
|
||
luaT_trybinTM(L, p1, p2, res, event);
|
||
}
|
||
|
||
|
||
void luaT_trybiniTM (lua_State *L, const TValue *p1, lua_Integer i2,
|
||
int flip, StkId res, TMS event) {
|
||
TValue aux;
|
||
setivalue(&aux, i2);
|
||
luaT_trybinassocTM(L, p1, &aux, flip, res, event);
|
||
}
|
||
|
||
|
||
/*
|
||
** Calls an order tag method.
|
||
** For lessequal, LUA_COMPAT_LT_LE keeps compatibility with old
|
||
** behavior: if there is no '__le', try '__lt', based on l <= r iff
|
||
** !(r < l) (assuming a total order). If the metamethod yields during
|
||
** this substitution, the continuation has to know about it (to negate
|
||
** the result of r<l); bit CIST_LEQ in the call status keeps that
|
||
** information.
|
||
*/
|
||
int luaT_callorderTM (lua_State *L, const TValue *p1, const TValue *p2,
|
||
TMS event) {
|
||
if (callbinTM(L, p1, p2, L->top.p, event)) /* try original event */
|
||
return !l_isfalse(s2v(L->top.p));
|
||
#if defined(LUA_COMPAT_LT_LE)
|
||
else if (event == TM_LE) {
|
||
/* try '!(p2 < p1)' for '(p1 <= p2)' */
|
||
L->ci->callstatus |= CIST_LEQ; /* mark it is doing 'lt' for 'le' */
|
||
if (callbinTM(L, p2, p1, L->top.p, TM_LT)) {
|
||
L->ci->callstatus ^= CIST_LEQ; /* clear mark */
|
||
return l_isfalse(s2v(L->top.p));
|
||
}
|
||
/* else error will remove this 'ci'; no need to clear mark */
|
||
}
|
||
#endif
|
||
luaG_ordererror(L, p1, p2); /* no metamethod found */
|
||
return 0; /* to avoid warnings */
|
||
}
|
||
|
||
|
||
int luaT_callorderiTM (lua_State *L, const TValue *p1, int v2,
|
||
int flip, int isfloat, TMS event) {
|
||
TValue aux; const TValue *p2;
|
||
if (isfloat) {
|
||
setfltvalue(&aux, cast_num(v2));
|
||
}
|
||
else
|
||
setivalue(&aux, v2);
|
||
if (flip) { /* arguments were exchanged? */
|
||
p2 = p1; p1 = &aux; /* correct them */
|
||
}
|
||
else
|
||
p2 = &aux;
|
||
return luaT_callorderTM(L, p1, p2, event);
|
||
}
|
||
|
||
|
||
void luaT_adjustvarargs (lua_State *L, int nfixparams, CallInfo *ci,
|
||
const Proto *p) {
|
||
int i;
|
||
int actual = cast_int(L->top.p - ci->func.p) - 1; /* number of arguments */
|
||
int nextra = actual - nfixparams; /* number of extra arguments */
|
||
ci->u.l.nextraargs = nextra;
|
||
luaD_checkstack(L, p->maxstacksize + 1);
|
||
/* copy function to the top of the stack */
|
||
setobjs2s(L, L->top.p++, ci->func.p);
|
||
/* move fixed parameters to the top of the stack */
|
||
for (i = 1; i <= nfixparams; i++) {
|
||
setobjs2s(L, L->top.p++, ci->func.p + i);
|
||
setnilvalue(s2v(ci->func.p + i)); /* erase original parameter (for GC) */
|
||
}
|
||
ci->func.p += actual + 1;
|
||
ci->top.p += actual + 1;
|
||
lua_assert(L->top.p <= ci->top.p && ci->top.p <= L->stack_last.p);
|
||
}
|
||
|
||
|
||
void luaT_getvarargs (lua_State *L, CallInfo *ci, StkId where, int wanted) {
|
||
int i;
|
||
int nextra = ci->u.l.nextraargs;
|
||
if (wanted < 0) {
|
||
wanted = nextra; /* get all extra arguments available */
|
||
checkstackGCp(L, nextra, where); /* ensure stack space */
|
||
L->top.p = where + nextra; /* next instruction will need top */
|
||
}
|
||
for (i = 0; i < wanted && i < nextra; i++)
|
||
setobjs2s(L, where + i, ci->func.p - nextra + i);
|
||
for (; i < wanted; i++) /* complete required results with nil */
|
||
setnilvalue(s2v(where + i));
|
||
}
|
||
|
||
/*
|
||
** $Id: lstring.c $
|
||
** String table (keeps all strings handled by Lua)
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lstring_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
|
||
|
||
/*
|
||
** Maximum size for string table.
|
||
*/
|
||
#define MAXSTRTB cast_int(luaM_limitN(MAX_INT, TString*))
|
||
|
||
|
||
/*
|
||
** equality for long strings
|
||
*/
|
||
int luaS_eqlngstr (TString *a, TString *b) {
|
||
size_t len = a->u.lnglen;
|
||
lua_assert(a->tt == LUA_VLNGSTR && b->tt == LUA_VLNGSTR);
|
||
return (a == b) || /* same instance or... */
|
||
((len == b->u.lnglen) && /* equal length and ... */
|
||
(memcmp(getlngstr(a), getlngstr(b), len) == 0)); /* equal contents */
|
||
}
|
||
|
||
|
||
unsigned int luaS_hash (const char *str, size_t l, unsigned int seed) {
|
||
unsigned int h = seed ^ cast_uint(l);
|
||
for (; l > 0; l--)
|
||
h ^= ((h<<5) + (h>>2) + cast_byte(str[l - 1]));
|
||
return h;
|
||
}
|
||
|
||
|
||
unsigned int luaS_hashlongstr (TString *ts) {
|
||
lua_assert(ts->tt == LUA_VLNGSTR);
|
||
if (ts->extra == 0) { /* no hash? */
|
||
size_t len = ts->u.lnglen;
|
||
ts->hash = luaS_hash(getlngstr(ts), len, ts->hash);
|
||
ts->extra = 1; /* now it has its hash */
|
||
}
|
||
return ts->hash;
|
||
}
|
||
|
||
|
||
static void tablerehash (TString **vect, int osize, int nsize) {
|
||
int i;
|
||
for (i = osize; i < nsize; i++) /* clear new elements */
|
||
vect[i] = NULL;
|
||
for (i = 0; i < osize; i++) { /* rehash old part of the array */
|
||
TString *p = vect[i];
|
||
vect[i] = NULL;
|
||
while (p) { /* for each string in the list */
|
||
TString *hnext = p->u.hnext; /* save next */
|
||
unsigned int h = lmod(p->hash, nsize); /* new position */
|
||
p->u.hnext = vect[h]; /* chain it into array */
|
||
vect[h] = p;
|
||
p = hnext;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Resize the string table. If allocation fails, keep the current size.
|
||
** (This can degrade performance, but any non-zero size should work
|
||
** correctly.)
|
||
*/
|
||
void luaS_resize (lua_State *L, int nsize) {
|
||
stringtable *tb = &G(L)->strt;
|
||
int osize = tb->size;
|
||
TString **newvect;
|
||
if (nsize < osize) /* shrinking table? */
|
||
tablerehash(tb->hash, osize, nsize); /* depopulate shrinking part */
|
||
newvect = luaM_reallocvector(L, tb->hash, osize, nsize, TString*);
|
||
if (l_unlikely(newvect == NULL)) { /* reallocation failed? */
|
||
if (nsize < osize) /* was it shrinking table? */
|
||
tablerehash(tb->hash, nsize, osize); /* restore to original size */
|
||
/* leave table as it was */
|
||
}
|
||
else { /* allocation succeeded */
|
||
tb->hash = newvect;
|
||
tb->size = nsize;
|
||
if (nsize > osize)
|
||
tablerehash(newvect, osize, nsize); /* rehash for new size */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Clear API string cache. (Entries cannot be empty, so fill them with
|
||
** a non-collectable string.)
|
||
*/
|
||
void luaS_clearcache (global_State *g) {
|
||
int i, j;
|
||
for (i = 0; i < STRCACHE_N; i++)
|
||
for (j = 0; j < STRCACHE_M; j++) {
|
||
if (iswhite(g->strcache[i][j])) /* will entry be collected? */
|
||
g->strcache[i][j] = g->memerrmsg; /* replace it with something fixed */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Initialize the string table and the string cache
|
||
*/
|
||
void luaS_init (lua_State *L) {
|
||
global_State *g = G(L);
|
||
int i, j;
|
||
stringtable *tb = &G(L)->strt;
|
||
tb->hash = luaM_newvector(L, MINSTRTABSIZE, TString*);
|
||
tablerehash(tb->hash, 0, MINSTRTABSIZE); /* clear array */
|
||
tb->size = MINSTRTABSIZE;
|
||
/* pre-create memory-error message */
|
||
g->memerrmsg = luaS_newliteral(L, MEMERRMSG);
|
||
luaC_fix(L, obj2gco(g->memerrmsg)); /* it should never be collected */
|
||
for (i = 0; i < STRCACHE_N; i++) /* fill cache with valid strings */
|
||
for (j = 0; j < STRCACHE_M; j++)
|
||
g->strcache[i][j] = g->memerrmsg;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** creates a new string object
|
||
*/
|
||
static TString *createstrobj (lua_State *L, size_t l, int tag, unsigned int h) {
|
||
TString *ts;
|
||
GCObject *o;
|
||
size_t totalsize; /* total size of TString object */
|
||
totalsize = sizelstring(l);
|
||
o = luaC_newobj(L, tag, totalsize);
|
||
ts = gco2ts(o);
|
||
ts->hash = h;
|
||
ts->extra = 0;
|
||
getstr(ts)[l] = '\0'; /* ending 0 */
|
||
return ts;
|
||
}
|
||
|
||
|
||
TString *luaS_createlngstrobj (lua_State *L, size_t l) {
|
||
TString *ts = createstrobj(L, l, LUA_VLNGSTR, G(L)->seed);
|
||
ts->u.lnglen = l;
|
||
ts->shrlen = 0xFF; /* signals that it is a long string */
|
||
return ts;
|
||
}
|
||
|
||
|
||
void luaS_remove (lua_State *L, TString *ts) {
|
||
stringtable *tb = &G(L)->strt;
|
||
TString **p = &tb->hash[lmod(ts->hash, tb->size)];
|
||
while (*p != ts) /* find previous element */
|
||
p = &(*p)->u.hnext;
|
||
*p = (*p)->u.hnext; /* remove element from its list */
|
||
tb->nuse--;
|
||
}
|
||
|
||
|
||
static void growstrtab (lua_State *L, stringtable *tb) {
|
||
if (l_unlikely(tb->nuse == MAX_INT)) { /* too many strings? */
|
||
luaC_fullgc(L, 1); /* try to free some... */
|
||
if (tb->nuse == MAX_INT) /* still too many? */
|
||
luaM_error(L); /* cannot even create a message... */
|
||
}
|
||
if (tb->size <= MAXSTRTB / 2) /* can grow string table? */
|
||
luaS_resize(L, tb->size * 2);
|
||
}
|
||
|
||
|
||
/*
|
||
** Checks whether short string exists and reuses it or creates a new one.
|
||
*/
|
||
static TString *internshrstr (lua_State *L, const char *str, size_t l) {
|
||
TString *ts;
|
||
global_State *g = G(L);
|
||
stringtable *tb = &g->strt;
|
||
unsigned int h = luaS_hash(str, l, g->seed);
|
||
TString **list = &tb->hash[lmod(h, tb->size)];
|
||
lua_assert(str != NULL); /* otherwise 'memcmp'/'memcpy' are undefined */
|
||
for (ts = *list; ts != NULL; ts = ts->u.hnext) {
|
||
if (l == ts->shrlen && (memcmp(str, getshrstr(ts), l * sizeof(char)) == 0)) {
|
||
/* found! */
|
||
if (isdead(g, ts)) /* dead (but not collected yet)? */
|
||
changewhite(ts); /* resurrect it */
|
||
return ts;
|
||
}
|
||
}
|
||
/* else must create a new string */
|
||
if (tb->nuse >= tb->size) { /* need to grow string table? */
|
||
growstrtab(L, tb);
|
||
list = &tb->hash[lmod(h, tb->size)]; /* rehash with new size */
|
||
}
|
||
ts = createstrobj(L, l, LUA_VSHRSTR, h);
|
||
ts->shrlen = cast_byte(l);
|
||
memcpy(getshrstr(ts), str, l * sizeof(char));
|
||
ts->u.hnext = *list;
|
||
*list = ts;
|
||
tb->nuse++;
|
||
return ts;
|
||
}
|
||
|
||
|
||
/*
|
||
** new string (with explicit length)
|
||
*/
|
||
TString *luaS_newlstr (lua_State *L, const char *str, size_t l) {
|
||
if (l <= LUAI_MAXSHORTLEN) /* short string? */
|
||
return internshrstr(L, str, l);
|
||
else {
|
||
TString *ts;
|
||
if (l_unlikely(l * sizeof(char) >= (MAX_SIZE - sizeof(TString))))
|
||
luaM_toobig(L);
|
||
ts = luaS_createlngstrobj(L, l);
|
||
memcpy(getlngstr(ts), str, l * sizeof(char));
|
||
return ts;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Create or reuse a zero-terminated string, first checking in the
|
||
** cache (using the string address as a key). The cache can contain
|
||
** only zero-terminated strings, so it is safe to use 'strcmp' to
|
||
** check hits.
|
||
*/
|
||
TString *luaS_new (lua_State *L, const char *str) {
|
||
unsigned int i = point2uint(str) % STRCACHE_N; /* hash */
|
||
int j;
|
||
TString **p = G(L)->strcache[i];
|
||
for (j = 0; j < STRCACHE_M; j++) {
|
||
if (strcmp(str, getstr(p[j])) == 0) /* hit? */
|
||
return p[j]; /* that is it */
|
||
}
|
||
/* normal route */
|
||
for (j = STRCACHE_M - 1; j > 0; j--)
|
||
p[j] = p[j - 1]; /* move out last element */
|
||
/* new element is first in the list */
|
||
p[0] = luaS_newlstr(L, str, strlen(str));
|
||
return p[0];
|
||
}
|
||
|
||
|
||
Udata *luaS_newudata (lua_State *L, size_t s, int nuvalue) {
|
||
Udata *u;
|
||
int i;
|
||
GCObject *o;
|
||
if (l_unlikely(s > MAX_SIZE - udatamemoffset(nuvalue)))
|
||
luaM_toobig(L);
|
||
o = luaC_newobj(L, LUA_VUSERDATA, sizeudata(nuvalue, s));
|
||
u = gco2u(o);
|
||
u->len = s;
|
||
u->nuvalue = nuvalue;
|
||
u->metatable = NULL;
|
||
for (i = 0; i < nuvalue; i++)
|
||
setnilvalue(&u->uv[i].uv);
|
||
return u;
|
||
}
|
||
|
||
/*
|
||
** $Id: ltable.c $
|
||
** Lua tables (hash)
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ltable_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
/*
|
||
** Implementation of tables (aka arrays, objects, or hash tables).
|
||
** Tables keep its elements in two parts: an array part and a hash part.
|
||
** Non-negative integer keys are all candidates to be kept in the array
|
||
** part. The actual size of the array is the largest 'n' such that
|
||
** more than half the slots between 1 and n are in use.
|
||
** Hash uses a mix of chained scatter table with Brent's variation.
|
||
** A main invariant of these tables is that, if an element is not
|
||
** in its main position (i.e. the 'original' position that its hash gives
|
||
** to it), then the colliding element is in its own main position.
|
||
** Hence even when the load factor reaches 100%, performance remains good.
|
||
*/
|
||
|
||
#include <math.h>
|
||
#include <limits.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
/*
|
||
** MAXABITS is the largest integer such that MAXASIZE fits in an
|
||
** unsigned int.
|
||
*/
|
||
#define MAXABITS cast_int(sizeof(int) * CHAR_BIT - 1)
|
||
|
||
|
||
/*
|
||
** MAXASIZE is the maximum size of the array part. It is the minimum
|
||
** between 2^MAXABITS and the maximum size that, measured in bytes,
|
||
** fits in a 'size_t'.
|
||
*/
|
||
#define MAXASIZE luaM_limitN(1u << MAXABITS, TValue)
|
||
|
||
/*
|
||
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
|
||
** signed int.
|
||
*/
|
||
#define MAXHBITS (MAXABITS - 1)
|
||
|
||
|
||
/*
|
||
** MAXHSIZE is the maximum size of the hash part. It is the minimum
|
||
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
|
||
** it fits in a 'size_t'.
|
||
*/
|
||
#define MAXHSIZE luaM_limitN(1u << MAXHBITS, Node)
|
||
|
||
|
||
/*
|
||
** When the original hash value is good, hashing by a power of 2
|
||
** avoids the cost of '%'.
|
||
*/
|
||
#define hashpow2(t,n) (gnode(t, lmod((n), sizenode(t))))
|
||
|
||
/*
|
||
** for other types, it is better to avoid modulo by power of 2, as
|
||
** they can have many 2 factors.
|
||
*/
|
||
#define hashmod(t,n) (gnode(t, ((n) % ((sizenode(t)-1)|1))))
|
||
|
||
|
||
#define hashstr(t,str) hashpow2(t, (str)->hash)
|
||
#define hashboolean(t,p) hashpow2(t, p)
|
||
|
||
|
||
#define hashpointer(t,p) hashmod(t, point2uint(p))
|
||
|
||
|
||
#define dummynode (&dummynode_)
|
||
|
||
static const Node dummynode_ = {
|
||
{{NULL}, LUA_VEMPTY, /* value's value and type */
|
||
LUA_VNIL, 0, {NULL}} /* key type, next, and key value */
|
||
};
|
||
|
||
|
||
static const TValue absentkey = {ABSTKEYCONSTANT};
|
||
|
||
|
||
/*
|
||
** Hash for integers. To allow a good hash, use the remainder operator
|
||
** ('%'). If integer fits as a non-negative int, compute an int
|
||
** remainder, which is faster. Otherwise, use an unsigned-integer
|
||
** remainder, which uses all bits and ensures a non-negative result.
|
||
*/
|
||
static Node *hashint (const Table *t, lua_Integer i) {
|
||
lua_Unsigned ui = l_castS2U(i);
|
||
if (ui <= cast_uint(INT_MAX))
|
||
return hashmod(t, cast_int(ui));
|
||
else
|
||
return hashmod(t, ui);
|
||
}
|
||
|
||
|
||
/*
|
||
** Hash for floating-point numbers.
|
||
** The main computation should be just
|
||
** n = frexp(n, &i); return (n * INT_MAX) + i
|
||
** but there are some numerical subtleties.
|
||
** In a two-complement representation, INT_MAX does not has an exact
|
||
** representation as a float, but INT_MIN does; because the absolute
|
||
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
|
||
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
|
||
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
|
||
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
|
||
** INT_MIN.
|
||
*/
|
||
#if !defined(l_hashfloat)
|
||
static int l_hashfloat (lua_Number n) {
|
||
int i;
|
||
lua_Integer ni;
|
||
n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
|
||
if (!lua_numbertointeger(n, &ni)) { /* is 'n' inf/-inf/NaN? */
|
||
lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
|
||
return 0;
|
||
}
|
||
else { /* normal case */
|
||
unsigned int u = cast_uint(i) + cast_uint(ni);
|
||
return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
/*
|
||
** returns the 'main' position of an element in a table (that is,
|
||
** the index of its hash value).
|
||
*/
|
||
static Node *mainpositionTV (const Table *t, const TValue *key) {
|
||
switch (ttypetag(key)) {
|
||
case LUA_VNUMINT: {
|
||
lua_Integer i = ivalue(key);
|
||
return hashint(t, i);
|
||
}
|
||
case LUA_VNUMFLT: {
|
||
lua_Number n = fltvalue(key);
|
||
return hashmod(t, l_hashfloat(n));
|
||
}
|
||
case LUA_VSHRSTR: {
|
||
TString *ts = tsvalue(key);
|
||
return hashstr(t, ts);
|
||
}
|
||
case LUA_VLNGSTR: {
|
||
TString *ts = tsvalue(key);
|
||
return hashpow2(t, luaS_hashlongstr(ts));
|
||
}
|
||
case LUA_VFALSE:
|
||
return hashboolean(t, 0);
|
||
case LUA_VTRUE:
|
||
return hashboolean(t, 1);
|
||
case LUA_VLIGHTUSERDATA: {
|
||
void *p = pvalue(key);
|
||
return hashpointer(t, p);
|
||
}
|
||
case LUA_VLCF: {
|
||
lua_CFunction f = fvalue(key);
|
||
return hashpointer(t, f);
|
||
}
|
||
default: {
|
||
GCObject *o = gcvalue(key);
|
||
return hashpointer(t, o);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
|
||
TValue key;
|
||
getnodekey(cast(lua_State *, NULL), &key, nd);
|
||
return mainpositionTV(t, &key);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether key 'k1' is equal to the key in node 'n2'. This
|
||
** equality is raw, so there are no metamethods. Floats with integer
|
||
** values have been normalized, so integers cannot be equal to
|
||
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
|
||
** that short strings are handled in the default case.
|
||
** A true 'deadok' means to accept dead keys as equal to their original
|
||
** values. All dead keys are compared in the default case, by pointer
|
||
** identity. (Only collectable objects can produce dead keys.) Note that
|
||
** dead long strings are also compared by identity.
|
||
** Once a key is dead, its corresponding value may be collected, and
|
||
** then another value can be created with the same address. If this
|
||
** other value is given to 'next', 'equalkey' will signal a false
|
||
** positive. In a regular traversal, this situation should never happen,
|
||
** as all keys given to 'next' came from the table itself, and therefore
|
||
** could not have been collected. Outside a regular traversal, we
|
||
** have garbage in, garbage out. What is relevant is that this false
|
||
** positive does not break anything. (In particular, 'next' will return
|
||
** some other valid item on the table or nil.)
|
||
*/
|
||
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
|
||
if ((rawtt(k1) != keytt(n2)) && /* not the same variants? */
|
||
!(deadok && keyisdead(n2) && iscollectable(k1)))
|
||
return 0; /* cannot be same key */
|
||
switch (keytt(n2)) {
|
||
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
|
||
return 1;
|
||
case LUA_VNUMINT:
|
||
return (ivalue(k1) == keyival(n2));
|
||
case LUA_VNUMFLT:
|
||
return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
|
||
case LUA_VLIGHTUSERDATA:
|
||
return pvalue(k1) == pvalueraw(keyval(n2));
|
||
case LUA_VLCF:
|
||
return fvalue(k1) == fvalueraw(keyval(n2));
|
||
case ctb(LUA_VLNGSTR):
|
||
return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
|
||
default:
|
||
return gcvalue(k1) == gcvalueraw(keyval(n2));
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** True if value of 'alimit' is equal to the real size of the array
|
||
** part of table 't'. (Otherwise, the array part must be larger than
|
||
** 'alimit'.)
|
||
*/
|
||
#define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
|
||
|
||
|
||
/*
|
||
** Returns the real size of the 'array' array
|
||
*/
|
||
LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
|
||
if (limitequalsasize(t))
|
||
return t->alimit; /* this is the size */
|
||
else {
|
||
unsigned int size = t->alimit;
|
||
/* compute the smallest power of 2 not smaller than 'size' */
|
||
size |= (size >> 1);
|
||
size |= (size >> 2);
|
||
size |= (size >> 4);
|
||
size |= (size >> 8);
|
||
#if (UINT_MAX >> 14) > 3 /* unsigned int has more than 16 bits */
|
||
size |= (size >> 16);
|
||
#if (UINT_MAX >> 30) > 3
|
||
size |= (size >> 32); /* unsigned int has more than 32 bits */
|
||
#endif
|
||
#endif
|
||
size++;
|
||
lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
|
||
return size;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether real size of the array is a power of 2.
|
||
** (If it is not, 'alimit' cannot be changed to any other value
|
||
** without changing the real size.)
|
||
*/
|
||
static int ispow2realasize (const Table *t) {
|
||
return (!isrealasize(t) || ispow2(t->alimit));
|
||
}
|
||
|
||
|
||
static unsigned int setlimittosize (Table *t) {
|
||
t->alimit = luaH_realasize(t);
|
||
setrealasize(t);
|
||
return t->alimit;
|
||
}
|
||
|
||
|
||
#define limitasasize(t) check_exp(isrealasize(t), t->alimit)
|
||
|
||
|
||
|
||
/*
|
||
** "Generic" get version. (Not that generic: not valid for integers,
|
||
** which may be in array part, nor for floats with integral values.)
|
||
** See explanation about 'deadok' in function 'equalkey'.
|
||
*/
|
||
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
|
||
Node *n = mainpositionTV(t, key);
|
||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
if (equalkey(key, n, deadok))
|
||
return gval(n); /* that's it */
|
||
else {
|
||
int nx = gnext(n);
|
||
if (nx == 0)
|
||
return &absentkey; /* not found */
|
||
n += nx;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** returns the index for 'k' if 'k' is an appropriate key to live in
|
||
** the array part of a table, 0 otherwise.
|
||
*/
|
||
static unsigned int arrayindex (lua_Integer k) {
|
||
if (l_castS2U(k) - 1u < MAXASIZE) /* 'k' in [1, MAXASIZE]? */
|
||
return cast_uint(k); /* 'key' is an appropriate array index */
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** returns the index of a 'key' for table traversals. First goes all
|
||
** elements in the array part, then elements in the hash part. The
|
||
** beginning of a traversal is signaled by 0.
|
||
*/
|
||
static unsigned int findindex (lua_State *L, Table *t, TValue *key,
|
||
unsigned int asize) {
|
||
unsigned int i;
|
||
if (ttisnil(key)) return 0; /* first iteration */
|
||
i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
|
||
if (i - 1u < asize) /* is 'key' inside array part? */
|
||
return i; /* yes; that's the index */
|
||
else {
|
||
const TValue *n = getgeneric(t, key, 1);
|
||
if (l_unlikely(isabstkey(n)))
|
||
luaG_runerror(L, "invalid key to 'next'"); /* key not found */
|
||
i = cast_int(nodefromval(n) - gnode(t, 0)); /* key index in hash table */
|
||
/* hash elements are numbered after array ones */
|
||
return (i + 1) + asize;
|
||
}
|
||
}
|
||
|
||
|
||
int luaH_next (lua_State *L, Table *t, StkId key) {
|
||
unsigned int asize = luaH_realasize(t);
|
||
unsigned int i = findindex(L, t, s2v(key), asize); /* find original key */
|
||
for (; i < asize; i++) { /* try first array part */
|
||
if (!isempty(&t->array[i])) { /* a non-empty entry? */
|
||
setivalue(s2v(key), i + 1);
|
||
setobj2s(L, key + 1, &t->array[i]);
|
||
return 1;
|
||
}
|
||
}
|
||
for (i -= asize; cast_int(i) < sizenode(t); i++) { /* hash part */
|
||
if (!isempty(gval(gnode(t, i)))) { /* a non-empty entry? */
|
||
Node *n = gnode(t, i);
|
||
getnodekey(L, s2v(key), n);
|
||
setobj2s(L, key + 1, gval(n));
|
||
return 1;
|
||
}
|
||
}
|
||
return 0; /* no more elements */
|
||
}
|
||
|
||
|
||
static void freehash (lua_State *L, Table *t) {
|
||
if (!isdummy(t))
|
||
luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
|
||
}
|
||
|
||
|
||
/*
|
||
** {=============================================================
|
||
** Rehash
|
||
** ==============================================================
|
||
*/
|
||
|
||
/*
|
||
** Compute the optimal size for the array part of table 't'. 'nums' is a
|
||
** "count array" where 'nums[i]' is the number of integers in the table
|
||
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
|
||
** integer keys in the table and leaves with the number of keys that
|
||
** will go to the array part; return the optimal size. (The condition
|
||
** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
|
||
*/
|
||
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
|
||
int i;
|
||
unsigned int twotoi; /* 2^i (candidate for optimal size) */
|
||
unsigned int a = 0; /* number of elements smaller than 2^i */
|
||
unsigned int na = 0; /* number of elements to go to array part */
|
||
unsigned int optimal = 0; /* optimal size for array part */
|
||
/* loop while keys can fill more than half of total size */
|
||
for (i = 0, twotoi = 1;
|
||
twotoi > 0 && *pna > twotoi / 2;
|
||
i++, twotoi *= 2) {
|
||
a += nums[i];
|
||
if (a > twotoi/2) { /* more than half elements present? */
|
||
optimal = twotoi; /* optimal size (till now) */
|
||
na = a; /* all elements up to 'optimal' will go to array part */
|
||
}
|
||
}
|
||
lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
|
||
*pna = na;
|
||
return optimal;
|
||
}
|
||
|
||
|
||
static int countint (lua_Integer key, unsigned int *nums) {
|
||
unsigned int k = arrayindex(key);
|
||
if (k != 0) { /* is 'key' an appropriate array index? */
|
||
nums[luaO_ceillog2(k)]++; /* count as such */
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Count keys in array part of table 't': Fill 'nums[i]' with
|
||
** number of keys that will go into corresponding slice and return
|
||
** total number of non-nil keys.
|
||
*/
|
||
static unsigned int numusearray (const Table *t, unsigned int *nums) {
|
||
int lg;
|
||
unsigned int ttlg; /* 2^lg */
|
||
unsigned int ause = 0; /* summation of 'nums' */
|
||
unsigned int i = 1; /* count to traverse all array keys */
|
||
unsigned int asize = limitasasize(t); /* real array size */
|
||
/* traverse each slice */
|
||
for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
|
||
unsigned int lc = 0; /* counter */
|
||
unsigned int lim = ttlg;
|
||
if (lim > asize) {
|
||
lim = asize; /* adjust upper limit */
|
||
if (i > lim)
|
||
break; /* no more elements to count */
|
||
}
|
||
/* count elements in range (2^(lg - 1), 2^lg] */
|
||
for (; i <= lim; i++) {
|
||
if (!isempty(&t->array[i-1]))
|
||
lc++;
|
||
}
|
||
nums[lg] += lc;
|
||
ause += lc;
|
||
}
|
||
return ause;
|
||
}
|
||
|
||
|
||
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
|
||
int totaluse = 0; /* total number of elements */
|
||
int ause = 0; /* elements added to 'nums' (can go to array part) */
|
||
int i = sizenode(t);
|
||
while (i--) {
|
||
Node *n = &t->node[i];
|
||
if (!isempty(gval(n))) {
|
||
if (keyisinteger(n))
|
||
ause += countint(keyival(n), nums);
|
||
totaluse++;
|
||
}
|
||
}
|
||
*pna += ause;
|
||
return totaluse;
|
||
}
|
||
|
||
|
||
/*
|
||
** Creates an array for the hash part of a table with the given
|
||
** size, or reuses the dummy node if size is zero.
|
||
** The computation for size overflow is in two steps: the first
|
||
** comparison ensures that the shift in the second one does not
|
||
** overflow.
|
||
*/
|
||
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
|
||
if (size == 0) { /* no elements to hash part? */
|
||
t->node = cast(Node *, dummynode); /* use common 'dummynode' */
|
||
t->lsizenode = 0;
|
||
t->lastfree = NULL; /* signal that it is using dummy node */
|
||
}
|
||
else {
|
||
int i;
|
||
int lsize = luaO_ceillog2(size);
|
||
if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
|
||
luaG_runerror(L, "table overflow");
|
||
size = twoto(lsize);
|
||
t->node = luaM_newvector(L, size, Node);
|
||
for (i = 0; i < cast_int(size); i++) {
|
||
Node *n = gnode(t, i);
|
||
gnext(n) = 0;
|
||
setnilkey(n);
|
||
setempty(gval(n));
|
||
}
|
||
t->lsizenode = cast_byte(lsize);
|
||
t->lastfree = gnode(t, size); /* all positions are free */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** (Re)insert all elements from the hash part of 'ot' into table 't'.
|
||
*/
|
||
static void reinsert (lua_State *L, Table *ot, Table *t) {
|
||
int j;
|
||
int size = sizenode(ot);
|
||
for (j = 0; j < size; j++) {
|
||
Node *old = gnode(ot, j);
|
||
if (!isempty(gval(old))) {
|
||
/* doesn't need barrier/invalidate cache, as entry was
|
||
already present in the table */
|
||
TValue k;
|
||
getnodekey(L, &k, old);
|
||
luaH_set(L, t, &k, gval(old));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Exchange the hash part of 't1' and 't2'.
|
||
*/
|
||
static void exchangehashpart (Table *t1, Table *t2) {
|
||
lu_byte lsizenode = t1->lsizenode;
|
||
Node *node = t1->node;
|
||
Node *lastfree = t1->lastfree;
|
||
t1->lsizenode = t2->lsizenode;
|
||
t1->node = t2->node;
|
||
t1->lastfree = t2->lastfree;
|
||
t2->lsizenode = lsizenode;
|
||
t2->node = node;
|
||
t2->lastfree = lastfree;
|
||
}
|
||
|
||
|
||
/*
|
||
** Resize table 't' for the new given sizes. Both allocations (for
|
||
** the hash part and for the array part) can fail, which creates some
|
||
** subtleties. If the first allocation, for the hash part, fails, an
|
||
** error is raised and that is it. Otherwise, it copies the elements from
|
||
** the shrinking part of the array (if it is shrinking) into the new
|
||
** hash. Then it reallocates the array part. If that fails, the table
|
||
** is in its original state; the function frees the new hash part and then
|
||
** raises the allocation error. Otherwise, it sets the new hash part
|
||
** into the table, initializes the new part of the array (if any) with
|
||
** nils and reinserts the elements of the old hash back into the new
|
||
** parts of the table.
|
||
*/
|
||
void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
|
||
unsigned int nhsize) {
|
||
unsigned int i;
|
||
Table newt; /* to keep the new hash part */
|
||
unsigned int oldasize = setlimittosize(t);
|
||
TValue *newarray;
|
||
/* create new hash part with appropriate size into 'newt' */
|
||
setnodevector(L, &newt, nhsize);
|
||
if (newasize < oldasize) { /* will array shrink? */
|
||
t->alimit = newasize; /* pretend array has new size... */
|
||
exchangehashpart(t, &newt); /* and new hash */
|
||
/* re-insert into the new hash the elements from vanishing slice */
|
||
for (i = newasize; i < oldasize; i++) {
|
||
if (!isempty(&t->array[i]))
|
||
luaH_setint(L, t, i + 1, &t->array[i]);
|
||
}
|
||
t->alimit = oldasize; /* restore current size... */
|
||
exchangehashpart(t, &newt); /* and hash (in case of errors) */
|
||
}
|
||
/* allocate new array */
|
||
newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
|
||
if (l_unlikely(newarray == NULL && newasize > 0)) { /* allocation failed? */
|
||
freehash(L, &newt); /* release new hash part */
|
||
luaM_error(L); /* raise error (with array unchanged) */
|
||
}
|
||
/* allocation ok; initialize new part of the array */
|
||
exchangehashpart(t, &newt); /* 't' has the new hash ('newt' has the old) */
|
||
t->array = newarray; /* set new array part */
|
||
t->alimit = newasize;
|
||
for (i = oldasize; i < newasize; i++) /* clear new slice of the array */
|
||
setempty(&t->array[i]);
|
||
/* re-insert elements from old hash part into new parts */
|
||
reinsert(L, &newt, t); /* 'newt' now has the old hash */
|
||
freehash(L, &newt); /* free old hash part */
|
||
}
|
||
|
||
|
||
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
|
||
int nsize = allocsizenode(t);
|
||
luaH_resize(L, t, nasize, nsize);
|
||
}
|
||
|
||
/*
|
||
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
|
||
*/
|
||
static void rehash (lua_State *L, Table *t, const TValue *ek) {
|
||
unsigned int asize; /* optimal size for array part */
|
||
unsigned int na; /* number of keys in the array part */
|
||
unsigned int nums[MAXABITS + 1];
|
||
int i;
|
||
int totaluse;
|
||
for (i = 0; i <= MAXABITS; i++) nums[i] = 0; /* reset counts */
|
||
setlimittosize(t);
|
||
na = numusearray(t, nums); /* count keys in array part */
|
||
totaluse = na; /* all those keys are integer keys */
|
||
totaluse += numusehash(t, nums, &na); /* count keys in hash part */
|
||
/* count extra key */
|
||
if (ttisinteger(ek))
|
||
na += countint(ivalue(ek), nums);
|
||
totaluse++;
|
||
/* compute new size for array part */
|
||
asize = computesizes(nums, &na);
|
||
/* resize the table to new computed sizes */
|
||
luaH_resize(L, t, asize, totaluse - na);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** }=============================================================
|
||
*/
|
||
|
||
|
||
Table *luaH_new (lua_State *L) {
|
||
GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
|
||
Table *t = gco2t(o);
|
||
t->metatable = NULL;
|
||
t->flags = cast_byte(maskflags); /* table has no metamethod fields */
|
||
t->array = NULL;
|
||
t->alimit = 0;
|
||
setnodevector(L, t, 0);
|
||
return t;
|
||
}
|
||
|
||
|
||
void luaH_free (lua_State *L, Table *t) {
|
||
freehash(L, t);
|
||
luaM_freearray(L, t->array, luaH_realasize(t));
|
||
luaM_free(L, t);
|
||
}
|
||
|
||
|
||
static Node *getfreepos (Table *t) {
|
||
if (!isdummy(t)) {
|
||
while (t->lastfree > t->node) {
|
||
t->lastfree--;
|
||
if (keyisnil(t->lastfree))
|
||
return t->lastfree;
|
||
}
|
||
}
|
||
return NULL; /* could not find a free place */
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** inserts a new key into a hash table; first, check whether key's main
|
||
** position is free. If not, check whether colliding node is in its main
|
||
** position or not: if it is not, move colliding node to an empty place and
|
||
** put new key in its main position; otherwise (colliding node is in its main
|
||
** position), new key goes to an empty position.
|
||
*/
|
||
static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
|
||
TValue *value) {
|
||
Node *mp;
|
||
TValue aux;
|
||
if (l_unlikely(ttisnil(key)))
|
||
luaG_runerror(L, "table index is nil");
|
||
else if (ttisfloat(key)) {
|
||
lua_Number f = fltvalue(key);
|
||
lua_Integer k;
|
||
if (luaV_flttointeger(f, &k, F2Ieq)) { /* does key fit in an integer? */
|
||
setivalue(&aux, k);
|
||
key = &aux; /* insert it as an integer */
|
||
}
|
||
else if (l_unlikely(luai_numisnan(f)))
|
||
luaG_runerror(L, "table index is NaN");
|
||
}
|
||
if (ttisnil(value))
|
||
return; /* do not insert nil values */
|
||
mp = mainpositionTV(t, key);
|
||
if (!isempty(gval(mp)) || isdummy(t)) { /* main position is taken? */
|
||
Node *othern;
|
||
Node *f = getfreepos(t); /* get a free place */
|
||
if (f == NULL) { /* cannot find a free place? */
|
||
rehash(L, t, key); /* grow table */
|
||
/* whatever called 'newkey' takes care of TM cache */
|
||
luaH_set(L, t, key, value); /* insert key into grown table */
|
||
return;
|
||
}
|
||
lua_assert(!isdummy(t));
|
||
othern = mainpositionfromnode(t, mp);
|
||
if (othern != mp) { /* is colliding node out of its main position? */
|
||
/* yes; move colliding node into free position */
|
||
while (othern + gnext(othern) != mp) /* find previous */
|
||
othern += gnext(othern);
|
||
gnext(othern) = cast_int(f - othern); /* rechain to point to 'f' */
|
||
*f = *mp; /* copy colliding node into free pos. (mp->next also goes) */
|
||
if (gnext(mp) != 0) {
|
||
gnext(f) += cast_int(mp - f); /* correct 'next' */
|
||
gnext(mp) = 0; /* now 'mp' is free */
|
||
}
|
||
setempty(gval(mp));
|
||
}
|
||
else { /* colliding node is in its own main position */
|
||
/* new node will go into free position */
|
||
if (gnext(mp) != 0)
|
||
gnext(f) = cast_int((mp + gnext(mp)) - f); /* chain new position */
|
||
else lua_assert(gnext(f) == 0);
|
||
gnext(mp) = cast_int(f - mp);
|
||
mp = f;
|
||
}
|
||
}
|
||
setnodekey(L, mp, key);
|
||
luaC_barrierback(L, obj2gco(t), key);
|
||
lua_assert(isempty(gval(mp)));
|
||
setobj2t(L, gval(mp), value);
|
||
}
|
||
|
||
|
||
/*
|
||
** Search function for integers. If integer is inside 'alimit', get it
|
||
** directly from the array part. Otherwise, if 'alimit' is not
|
||
** the real size of the array, the key still can be in the array part.
|
||
** In this case, do the "Xmilia trick" to check whether 'key-1' is
|
||
** smaller than the real size.
|
||
** The trick works as follow: let 'p' be an integer such that
|
||
** '2^(p+1) >= alimit > 2^p', or '2^(p+1) > alimit-1 >= 2^p'.
|
||
** That is, 2^(p+1) is the real size of the array, and 'p' is the highest
|
||
** bit on in 'alimit-1'. What we have to check becomes 'key-1 < 2^(p+1)'.
|
||
** We compute '(key-1) & ~(alimit-1)', which we call 'res'; it will
|
||
** have the 'p' bit cleared. If the key is outside the array, that is,
|
||
** 'key-1 >= 2^(p+1)', then 'res' will have some bit on higher than 'p',
|
||
** therefore it will be larger or equal to 'alimit', and the check
|
||
** will fail. If 'key-1 < 2^(p+1)', then 'res' has no bit on higher than
|
||
** 'p', and as the bit 'p' itself was cleared, 'res' will be smaller
|
||
** than 2^p, therefore smaller than 'alimit', and the check succeeds.
|
||
** As special cases, when 'alimit' is 0 the condition is trivially false,
|
||
** and when 'alimit' is 1 the condition simplifies to 'key-1 < alimit'.
|
||
** If key is 0 or negative, 'res' will have its higher bit on, so that
|
||
** if cannot be smaller than alimit.
|
||
*/
|
||
const TValue *luaH_getint (Table *t, lua_Integer key) {
|
||
lua_Unsigned alimit = t->alimit;
|
||
if (l_castS2U(key) - 1u < alimit) /* 'key' in [1, t->alimit]? */
|
||
return &t->array[key - 1];
|
||
else if (!isrealasize(t) && /* key still may be in the array part? */
|
||
(((l_castS2U(key) - 1u) & ~(alimit - 1u)) < alimit)) {
|
||
t->alimit = cast_uint(key); /* probably '#t' is here now */
|
||
return &t->array[key - 1];
|
||
}
|
||
else { /* key is not in the array part; check the hash */
|
||
Node *n = hashint(t, key);
|
||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
if (keyisinteger(n) && keyival(n) == key)
|
||
return gval(n); /* that's it */
|
||
else {
|
||
int nx = gnext(n);
|
||
if (nx == 0) break;
|
||
n += nx;
|
||
}
|
||
}
|
||
return &absentkey;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** search function for short strings
|
||
*/
|
||
const TValue *luaH_getshortstr (Table *t, TString *key) {
|
||
Node *n = hashstr(t, key);
|
||
lua_assert(key->tt == LUA_VSHRSTR);
|
||
for (;;) { /* check whether 'key' is somewhere in the chain */
|
||
if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
|
||
return gval(n); /* that's it */
|
||
else {
|
||
int nx = gnext(n);
|
||
if (nx == 0)
|
||
return &absentkey; /* not found */
|
||
n += nx;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
const TValue *luaH_getstr (Table *t, TString *key) {
|
||
if (key->tt == LUA_VSHRSTR)
|
||
return luaH_getshortstr(t, key);
|
||
else { /* for long strings, use generic case */
|
||
TValue ko;
|
||
setsvalue(cast(lua_State *, NULL), &ko, key);
|
||
return getgeneric(t, &ko, 0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** main search function
|
||
*/
|
||
const TValue *luaH_get (Table *t, const TValue *key) {
|
||
switch (ttypetag(key)) {
|
||
case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
|
||
case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
|
||
case LUA_VNIL: return &absentkey;
|
||
case LUA_VNUMFLT: {
|
||
lua_Integer k;
|
||
if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
|
||
return luaH_getint(t, k); /* use specialized version */
|
||
/* else... */
|
||
} /* FALLTHROUGH */
|
||
default:
|
||
return getgeneric(t, key, 0);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Finish a raw "set table" operation, where 'slot' is where the value
|
||
** should have been (the result of a previous "get table").
|
||
** Beware: when using this function you probably need to check a GC
|
||
** barrier and invalidate the TM cache.
|
||
*/
|
||
void luaH_finishset (lua_State *L, Table *t, const TValue *key,
|
||
const TValue *slot, TValue *value) {
|
||
if (isabstkey(slot))
|
||
luaH_newkey(L, t, key, value);
|
||
else
|
||
setobj2t(L, cast(TValue *, slot), value);
|
||
}
|
||
|
||
|
||
/*
|
||
** beware: when using this function you probably need to check a GC
|
||
** barrier and invalidate the TM cache.
|
||
*/
|
||
void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
|
||
const TValue *slot = luaH_get(t, key);
|
||
luaH_finishset(L, t, key, slot, value);
|
||
}
|
||
|
||
|
||
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
|
||
const TValue *p = luaH_getint(t, key);
|
||
if (isabstkey(p)) {
|
||
TValue k;
|
||
setivalue(&k, key);
|
||
luaH_newkey(L, t, &k, value);
|
||
}
|
||
else
|
||
setobj2t(L, cast(TValue *, p), value);
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a boundary in the hash part of table 't'. From the
|
||
** caller, we know that 'j' is zero or present and that 'j + 1' is
|
||
** present. We want to find a larger key that is absent from the
|
||
** table, so that we can do a binary search between the two keys to
|
||
** find a boundary. We keep doubling 'j' until we get an absent index.
|
||
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
|
||
** absent, we are ready for the binary search. ('j', being max integer,
|
||
** is larger or equal to 'i', but it cannot be equal because it is
|
||
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
|
||
** boundary. ('j + 1' cannot be a present integer key because it is
|
||
** not a valid integer in Lua.)
|
||
*/
|
||
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
|
||
lua_Unsigned i;
|
||
if (j == 0) j++; /* the caller ensures 'j + 1' is present */
|
||
do {
|
||
i = j; /* 'i' is a present index */
|
||
if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
|
||
j *= 2;
|
||
else {
|
||
j = LUA_MAXINTEGER;
|
||
if (isempty(luaH_getint(t, j))) /* t[j] not present? */
|
||
break; /* 'j' now is an absent index */
|
||
else /* weird case */
|
||
return j; /* well, max integer is a boundary... */
|
||
}
|
||
} while (!isempty(luaH_getint(t, j))); /* repeat until an absent t[j] */
|
||
/* i < j && t[i] present && t[j] absent */
|
||
while (j - i > 1u) { /* do a binary search between them */
|
||
lua_Unsigned m = (i + j) / 2;
|
||
if (isempty(luaH_getint(t, m))) j = m;
|
||
else i = m;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
|
||
static unsigned int binsearch (const TValue *array, unsigned int i,
|
||
unsigned int j) {
|
||
while (j - i > 1u) { /* binary search */
|
||
unsigned int m = (i + j) / 2;
|
||
if (isempty(&array[m - 1])) j = m;
|
||
else i = m;
|
||
}
|
||
return i;
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a boundary in table 't'. (A 'boundary' is an integer index
|
||
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
|
||
** and 'maxinteger' if t[maxinteger] is present.)
|
||
** (In the next explanation, we use Lua indices, that is, with base 1.
|
||
** The code itself uses base 0 when indexing the array part of the table.)
|
||
** The code starts with 'limit = t->alimit', a position in the array
|
||
** part that may be a boundary.
|
||
**
|
||
** (1) If 't[limit]' is empty, there must be a boundary before it.
|
||
** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
|
||
** is present. If so, it is a boundary. Otherwise, do a binary search
|
||
** between 0 and limit to find a boundary. In both cases, try to
|
||
** use this boundary as the new 'alimit', as a hint for the next call.
|
||
**
|
||
** (2) If 't[limit]' is not empty and the array has more elements
|
||
** after 'limit', try to find a boundary there. Again, try first
|
||
** the special case (which should be quite frequent) where 'limit+1'
|
||
** is empty, so that 'limit' is a boundary. Otherwise, check the
|
||
** last element of the array part. If it is empty, there must be a
|
||
** boundary between the old limit (present) and the last element
|
||
** (absent), which is found with a binary search. (This boundary always
|
||
** can be a new limit.)
|
||
**
|
||
** (3) The last case is when there are no elements in the array part
|
||
** (limit == 0) or its last element (the new limit) is present.
|
||
** In this case, must check the hash part. If there is no hash part
|
||
** or 'limit+1' is absent, 'limit' is a boundary. Otherwise, call
|
||
** 'hash_search' to find a boundary in the hash part of the table.
|
||
** (In those cases, the boundary is not inside the array part, and
|
||
** therefore cannot be used as a new limit.)
|
||
*/
|
||
lua_Unsigned luaH_getn (Table *t) {
|
||
unsigned int limit = t->alimit;
|
||
if (limit > 0 && isempty(&t->array[limit - 1])) { /* (1)? */
|
||
/* there must be a boundary before 'limit' */
|
||
if (limit >= 2 && !isempty(&t->array[limit - 2])) {
|
||
/* 'limit - 1' is a boundary; can it be a new limit? */
|
||
if (ispow2realasize(t) && !ispow2(limit - 1)) {
|
||
t->alimit = limit - 1;
|
||
setnorealasize(t); /* now 'alimit' is not the real size */
|
||
}
|
||
return limit - 1;
|
||
}
|
||
else { /* must search for a boundary in [0, limit] */
|
||
unsigned int boundary = binsearch(t->array, 0, limit);
|
||
/* can this boundary represent the real size of the array? */
|
||
if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
|
||
t->alimit = boundary; /* use it as the new limit */
|
||
setnorealasize(t);
|
||
}
|
||
return boundary;
|
||
}
|
||
}
|
||
/* 'limit' is zero or present in table */
|
||
if (!limitequalsasize(t)) { /* (2)? */
|
||
/* 'limit' > 0 and array has more elements after 'limit' */
|
||
if (isempty(&t->array[limit])) /* 'limit + 1' is empty? */
|
||
return limit; /* this is the boundary */
|
||
/* else, try last element in the array */
|
||
limit = luaH_realasize(t);
|
||
if (isempty(&t->array[limit - 1])) { /* empty? */
|
||
/* there must be a boundary in the array after old limit,
|
||
and it must be a valid new limit */
|
||
unsigned int boundary = binsearch(t->array, t->alimit, limit);
|
||
t->alimit = boundary;
|
||
return boundary;
|
||
}
|
||
/* else, new limit is present in the table; check the hash part */
|
||
}
|
||
/* (3) 'limit' is the last element and either is zero or present in table */
|
||
lua_assert(limit == luaH_realasize(t) &&
|
||
(limit == 0 || !isempty(&t->array[limit - 1])));
|
||
if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
|
||
return limit; /* 'limit + 1' is absent */
|
||
else /* 'limit + 1' is also present */
|
||
return hash_search(t, limit);
|
||
}
|
||
|
||
|
||
|
||
#if defined(LUA_DEBUG)
|
||
|
||
/* export these functions for the test library */
|
||
|
||
Node *luaH_mainposition (const Table *t, const TValue *key) {
|
||
return mainpositionTV(t, key);
|
||
}
|
||
|
||
#endif
|
||
/*
|
||
** $Id: ldo.c $
|
||
** Stack and Call structure of Lua
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ldo_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <setjmp.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lapi.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lparser.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lundump.h"*/
|
||
/*#include "lvm.h"*/
|
||
/*#include "lzio.h"*/
|
||
|
||
|
||
|
||
#define errorstatus(s) ((s) > LUA_YIELD)
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Error-recovery functions
|
||
** =======================================================
|
||
*/
|
||
|
||
/*
|
||
** LUAI_THROW/LUAI_TRY define how Lua does exception handling. By
|
||
** default, Lua handles errors with exceptions when compiling as
|
||
** C++ code, with _longjmp/_setjmp when asked to use them, and with
|
||
** longjmp/setjmp otherwise.
|
||
*/
|
||
#if !defined(LUAI_THROW) /* { */
|
||
|
||
#if defined(__cplusplus) && !defined(LUA_USE_LONGJMP) /* { */
|
||
|
||
/* C++ exceptions */
|
||
#define LUAI_THROW(L,c) throw(c)
|
||
#define LUAI_TRY(L,c,a) \
|
||
try { a } catch(...) { if ((c)->status == 0) (c)->status = -1; }
|
||
#define luai_jmpbuf int /* dummy variable */
|
||
|
||
#elif defined(LUA_USE_POSIX) /* }{ */
|
||
|
||
/* in POSIX, try _longjmp/_setjmp (more efficient) */
|
||
#define LUAI_THROW(L,c) _longjmp((c)->b, 1)
|
||
#define LUAI_TRY(L,c,a) if (_setjmp((c)->b) == 0) { a }
|
||
#define luai_jmpbuf jmp_buf
|
||
|
||
#else /* }{ */
|
||
|
||
/* ISO C handling with long jumps */
|
||
#define LUAI_THROW(L,c) longjmp((c)->b, 1)
|
||
#define LUAI_TRY(L,c,a) if (setjmp((c)->b) == 0) { a }
|
||
#define luai_jmpbuf jmp_buf
|
||
|
||
#endif /* } */
|
||
|
||
#endif /* } */
|
||
|
||
|
||
|
||
/* chain list of long jump buffers */
|
||
struct lua_longjmp {
|
||
struct lua_longjmp *previous;
|
||
luai_jmpbuf b;
|
||
volatile int status; /* error code */
|
||
};
|
||
|
||
|
||
void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop) {
|
||
switch (errcode) {
|
||
case LUA_ERRMEM: { /* memory error? */
|
||
setsvalue2s(L, oldtop, G(L)->memerrmsg); /* reuse preregistered msg. */
|
||
break;
|
||
}
|
||
case LUA_ERRERR: {
|
||
setsvalue2s(L, oldtop, luaS_newliteral(L, "error in error handling"));
|
||
break;
|
||
}
|
||
case LUA_OK: { /* special case only for closing upvalues */
|
||
setnilvalue(s2v(oldtop)); /* no error message */
|
||
break;
|
||
}
|
||
default: {
|
||
lua_assert(errorstatus(errcode)); /* real error */
|
||
setobjs2s(L, oldtop, L->top.p - 1); /* error message on current top */
|
||
break;
|
||
}
|
||
}
|
||
L->top.p = oldtop + 1;
|
||
}
|
||
|
||
|
||
l_noret luaD_throw (lua_State *L, int errcode) {
|
||
if (L->errorJmp) { /* thread has an error handler? */
|
||
L->errorJmp->status = errcode; /* set status */
|
||
LUAI_THROW(L, L->errorJmp); /* jump to it */
|
||
}
|
||
else { /* thread has no error handler */
|
||
global_State *g = G(L);
|
||
errcode = luaE_resetthread(L, errcode); /* close all upvalues */
|
||
if (g->mainthread->errorJmp) { /* main thread has a handler? */
|
||
setobjs2s(L, g->mainthread->top.p++, L->top.p - 1); /* copy error obj. */
|
||
luaD_throw(g->mainthread, errcode); /* re-throw in main thread */
|
||
}
|
||
else { /* no handler at all; abort */
|
||
if (g->panic) { /* panic function? */
|
||
lua_unlock(L);
|
||
g->panic(L); /* call panic function (last chance to jump out) */
|
||
}
|
||
abort();
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) {
|
||
l_uint32 oldnCcalls = L->nCcalls;
|
||
struct lua_longjmp lj;
|
||
lj.status = LUA_OK;
|
||
lj.previous = L->errorJmp; /* chain new error handler */
|
||
L->errorJmp = &lj;
|
||
LUAI_TRY(L, &lj,
|
||
(*f)(L, ud);
|
||
);
|
||
L->errorJmp = lj.previous; /* restore old error handler */
|
||
L->nCcalls = oldnCcalls;
|
||
return lj.status;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Stack reallocation
|
||
** ===================================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** Change all pointers to the stack into offsets.
|
||
*/
|
||
static void relstack (lua_State *L) {
|
||
CallInfo *ci;
|
||
UpVal *up;
|
||
L->top.offset = savestack(L, L->top.p);
|
||
L->tbclist.offset = savestack(L, L->tbclist.p);
|
||
for (up = L->openupval; up != NULL; up = up->u.open.next)
|
||
up->v.offset = savestack(L, uplevel(up));
|
||
for (ci = L->ci; ci != NULL; ci = ci->previous) {
|
||
ci->top.offset = savestack(L, ci->top.p);
|
||
ci->func.offset = savestack(L, ci->func.p);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Change back all offsets into pointers.
|
||
*/
|
||
static void correctstack (lua_State *L) {
|
||
CallInfo *ci;
|
||
UpVal *up;
|
||
L->top.p = restorestack(L, L->top.offset);
|
||
L->tbclist.p = restorestack(L, L->tbclist.offset);
|
||
for (up = L->openupval; up != NULL; up = up->u.open.next)
|
||
up->v.p = s2v(restorestack(L, up->v.offset));
|
||
for (ci = L->ci; ci != NULL; ci = ci->previous) {
|
||
ci->top.p = restorestack(L, ci->top.offset);
|
||
ci->func.p = restorestack(L, ci->func.offset);
|
||
if (isLua(ci))
|
||
ci->u.l.trap = 1; /* signal to update 'trap' in 'luaV_execute' */
|
||
}
|
||
}
|
||
|
||
|
||
/* some space for error handling */
|
||
#define ERRORSTACKSIZE (LUAI_MAXSTACK + 200)
|
||
|
||
/*
|
||
** Reallocate the stack to a new size, correcting all pointers into it.
|
||
** In ISO C, any pointer use after the pointer has been deallocated is
|
||
** undefined behavior. So, before the reallocation, all pointers are
|
||
** changed to offsets, and after the reallocation they are changed back
|
||
** to pointers. As during the reallocation the pointers are invalid, the
|
||
** reallocation cannot run emergency collections.
|
||
**
|
||
** In case of allocation error, raise an error or return false according
|
||
** to 'raiseerror'.
|
||
*/
|
||
int luaD_reallocstack (lua_State *L, int newsize, int raiseerror) {
|
||
int oldsize = stacksize(L);
|
||
int i;
|
||
StkId newstack;
|
||
int oldgcstop = G(L)->gcstopem;
|
||
lua_assert(newsize <= LUAI_MAXSTACK || newsize == ERRORSTACKSIZE);
|
||
relstack(L); /* change pointers to offsets */
|
||
G(L)->gcstopem = 1; /* stop emergency collection */
|
||
newstack = luaM_reallocvector(L, L->stack.p, oldsize + EXTRA_STACK,
|
||
newsize + EXTRA_STACK, StackValue);
|
||
G(L)->gcstopem = oldgcstop; /* restore emergency collection */
|
||
if (l_unlikely(newstack == NULL)) { /* reallocation failed? */
|
||
correctstack(L); /* change offsets back to pointers */
|
||
if (raiseerror)
|
||
luaM_error(L);
|
||
else return 0; /* do not raise an error */
|
||
}
|
||
L->stack.p = newstack;
|
||
correctstack(L); /* change offsets back to pointers */
|
||
L->stack_last.p = L->stack.p + newsize;
|
||
for (i = oldsize + EXTRA_STACK; i < newsize + EXTRA_STACK; i++)
|
||
setnilvalue(s2v(newstack + i)); /* erase new segment */
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to grow the stack by at least 'n' elements. When 'raiseerror'
|
||
** is true, raises any error; otherwise, return 0 in case of errors.
|
||
*/
|
||
int luaD_growstack (lua_State *L, int n, int raiseerror) {
|
||
int size = stacksize(L);
|
||
if (l_unlikely(size > LUAI_MAXSTACK)) {
|
||
/* if stack is larger than maximum, thread is already using the
|
||
extra space reserved for errors, that is, thread is handling
|
||
a stack error; cannot grow further than that. */
|
||
lua_assert(stacksize(L) == ERRORSTACKSIZE);
|
||
if (raiseerror)
|
||
luaD_throw(L, LUA_ERRERR); /* error inside message handler */
|
||
return 0; /* if not 'raiseerror', just signal it */
|
||
}
|
||
else if (n < LUAI_MAXSTACK) { /* avoids arithmetic overflows */
|
||
int newsize = 2 * size; /* tentative new size */
|
||
int needed = cast_int(L->top.p - L->stack.p) + n;
|
||
if (newsize > LUAI_MAXSTACK) /* cannot cross the limit */
|
||
newsize = LUAI_MAXSTACK;
|
||
if (newsize < needed) /* but must respect what was asked for */
|
||
newsize = needed;
|
||
if (l_likely(newsize <= LUAI_MAXSTACK))
|
||
return luaD_reallocstack(L, newsize, raiseerror);
|
||
}
|
||
/* else stack overflow */
|
||
/* add extra size to be able to handle the error message */
|
||
luaD_reallocstack(L, ERRORSTACKSIZE, raiseerror);
|
||
if (raiseerror)
|
||
luaG_runerror(L, "stack overflow");
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Compute how much of the stack is being used, by computing the
|
||
** maximum top of all call frames in the stack and the current top.
|
||
*/
|
||
static int stackinuse (lua_State *L) {
|
||
CallInfo *ci;
|
||
int res;
|
||
StkId lim = L->top.p;
|
||
for (ci = L->ci; ci != NULL; ci = ci->previous) {
|
||
if (lim < ci->top.p) lim = ci->top.p;
|
||
}
|
||
lua_assert(lim <= L->stack_last.p + EXTRA_STACK);
|
||
res = cast_int(lim - L->stack.p) + 1; /* part of stack in use */
|
||
if (res < LUA_MINSTACK)
|
||
res = LUA_MINSTACK; /* ensure a minimum size */
|
||
return res;
|
||
}
|
||
|
||
|
||
/*
|
||
** If stack size is more than 3 times the current use, reduce that size
|
||
** to twice the current use. (So, the final stack size is at most 2/3 the
|
||
** previous size, and half of its entries are empty.)
|
||
** As a particular case, if stack was handling a stack overflow and now
|
||
** it is not, 'max' (limited by LUAI_MAXSTACK) will be smaller than
|
||
** stacksize (equal to ERRORSTACKSIZE in this case), and so the stack
|
||
** will be reduced to a "regular" size.
|
||
*/
|
||
void luaD_shrinkstack (lua_State *L) {
|
||
int inuse = stackinuse(L);
|
||
int max = (inuse > LUAI_MAXSTACK / 3) ? LUAI_MAXSTACK : inuse * 3;
|
||
/* if thread is currently not handling a stack overflow and its
|
||
size is larger than maximum "reasonable" size, shrink it */
|
||
if (inuse <= LUAI_MAXSTACK && stacksize(L) > max) {
|
||
int nsize = (inuse > LUAI_MAXSTACK / 2) ? LUAI_MAXSTACK : inuse * 2;
|
||
luaD_reallocstack(L, nsize, 0); /* ok if that fails */
|
||
}
|
||
else /* don't change stack */
|
||
condmovestack(L,{},{}); /* (change only for debugging) */
|
||
luaE_shrinkCI(L); /* shrink CI list */
|
||
}
|
||
|
||
|
||
void luaD_inctop (lua_State *L) {
|
||
luaD_checkstack(L, 1);
|
||
L->top.p++;
|
||
}
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** Call a hook for the given event. Make sure there is a hook to be
|
||
** called. (Both 'L->hook' and 'L->hookmask', which trigger this
|
||
** function, can be changed asynchronously by signals.)
|
||
*/
|
||
void luaD_hook (lua_State *L, int event, int line,
|
||
int ftransfer, int ntransfer) {
|
||
lua_Hook hook = L->hook;
|
||
if (hook && L->allowhook) { /* make sure there is a hook */
|
||
int mask = CIST_HOOKED;
|
||
CallInfo *ci = L->ci;
|
||
ptrdiff_t top = savestack(L, L->top.p); /* preserve original 'top' */
|
||
ptrdiff_t ci_top = savestack(L, ci->top.p); /* idem for 'ci->top' */
|
||
lua_Debug ar;
|
||
ar.event = event;
|
||
ar.currentline = line;
|
||
ar.i_ci = ci;
|
||
if (ntransfer != 0) {
|
||
mask |= CIST_TRAN; /* 'ci' has transfer information */
|
||
ci->u2.transferinfo.ftransfer = ftransfer;
|
||
ci->u2.transferinfo.ntransfer = ntransfer;
|
||
}
|
||
if (isLua(ci) && L->top.p < ci->top.p)
|
||
L->top.p = ci->top.p; /* protect entire activation register */
|
||
luaD_checkstack(L, LUA_MINSTACK); /* ensure minimum stack size */
|
||
if (ci->top.p < L->top.p + LUA_MINSTACK)
|
||
ci->top.p = L->top.p + LUA_MINSTACK;
|
||
L->allowhook = 0; /* cannot call hooks inside a hook */
|
||
ci->callstatus |= mask;
|
||
lua_unlock(L);
|
||
(*hook)(L, &ar);
|
||
lua_lock(L);
|
||
lua_assert(!L->allowhook);
|
||
L->allowhook = 1;
|
||
ci->top.p = restorestack(L, ci_top);
|
||
L->top.p = restorestack(L, top);
|
||
ci->callstatus &= ~mask;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Executes a call hook for Lua functions. This function is called
|
||
** whenever 'hookmask' is not zero, so it checks whether call hooks are
|
||
** active.
|
||
*/
|
||
void luaD_hookcall (lua_State *L, CallInfo *ci) {
|
||
L->oldpc = 0; /* set 'oldpc' for new function */
|
||
if (L->hookmask & LUA_MASKCALL) { /* is call hook on? */
|
||
int event = (ci->callstatus & CIST_TAIL) ? LUA_HOOKTAILCALL
|
||
: LUA_HOOKCALL;
|
||
Proto *p = ci_func(ci)->p;
|
||
ci->u.l.savedpc++; /* hooks assume 'pc' is already incremented */
|
||
luaD_hook(L, event, -1, 1, p->numparams);
|
||
ci->u.l.savedpc--; /* correct 'pc' */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Executes a return hook for Lua and C functions and sets/corrects
|
||
** 'oldpc'. (Note that this correction is needed by the line hook, so it
|
||
** is done even when return hooks are off.)
|
||
*/
|
||
static void rethook (lua_State *L, CallInfo *ci, int nres) {
|
||
if (L->hookmask & LUA_MASKRET) { /* is return hook on? */
|
||
StkId firstres = L->top.p - nres; /* index of first result */
|
||
int delta = 0; /* correction for vararg functions */
|
||
int ftransfer;
|
||
if (isLua(ci)) {
|
||
Proto *p = ci_func(ci)->p;
|
||
if (p->is_vararg)
|
||
delta = ci->u.l.nextraargs + p->numparams + 1;
|
||
}
|
||
ci->func.p += delta; /* if vararg, back to virtual 'func' */
|
||
ftransfer = cast(unsigned short, firstres - ci->func.p);
|
||
luaD_hook(L, LUA_HOOKRET, -1, ftransfer, nres); /* call it */
|
||
ci->func.p -= delta;
|
||
}
|
||
if (isLua(ci = ci->previous))
|
||
L->oldpc = pcRel(ci->u.l.savedpc, ci_func(ci)->p); /* set 'oldpc' */
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether 'func' has a '__call' metafield. If so, put it in the
|
||
** stack, below original 'func', so that 'luaD_precall' can call it. Raise
|
||
** an error if there is no '__call' metafield.
|
||
*/
|
||
static StkId tryfuncTM (lua_State *L, StkId func) {
|
||
const TValue *tm;
|
||
StkId p;
|
||
checkstackGCp(L, 1, func); /* space for metamethod */
|
||
tm = luaT_gettmbyobj(L, s2v(func), TM_CALL); /* (after previous GC) */
|
||
if (l_unlikely(ttisnil(tm)))
|
||
luaG_callerror(L, s2v(func)); /* nothing to call */
|
||
for (p = L->top.p; p > func; p--) /* open space for metamethod */
|
||
setobjs2s(L, p, p-1);
|
||
L->top.p++; /* stack space pre-allocated by the caller */
|
||
setobj2s(L, func, tm); /* metamethod is the new function to be called */
|
||
return func;
|
||
}
|
||
|
||
|
||
/*
|
||
** Given 'nres' results at 'firstResult', move 'wanted' of them to 'res'.
|
||
** Handle most typical cases (zero results for commands, one result for
|
||
** expressions, multiple results for tail calls/single parameters)
|
||
** separated.
|
||
*/
|
||
l_sinline void moveresults (lua_State *L, StkId res, int nres, int wanted) {
|
||
StkId firstresult;
|
||
int i;
|
||
switch (wanted) { /* handle typical cases separately */
|
||
case 0: /* no values needed */
|
||
L->top.p = res;
|
||
return;
|
||
case 1: /* one value needed */
|
||
if (nres == 0) /* no results? */
|
||
setnilvalue(s2v(res)); /* adjust with nil */
|
||
else /* at least one result */
|
||
setobjs2s(L, res, L->top.p - nres); /* move it to proper place */
|
||
L->top.p = res + 1;
|
||
return;
|
||
case LUA_MULTRET:
|
||
wanted = nres; /* we want all results */
|
||
break;
|
||
default: /* two/more results and/or to-be-closed variables */
|
||
if (hastocloseCfunc(wanted)) { /* to-be-closed variables? */
|
||
L->ci->callstatus |= CIST_CLSRET; /* in case of yields */
|
||
L->ci->u2.nres = nres;
|
||
res = luaF_close(L, res, CLOSEKTOP, 1);
|
||
L->ci->callstatus &= ~CIST_CLSRET;
|
||
if (L->hookmask) { /* if needed, call hook after '__close's */
|
||
ptrdiff_t savedres = savestack(L, res);
|
||
rethook(L, L->ci, nres);
|
||
res = restorestack(L, savedres); /* hook can move stack */
|
||
}
|
||
wanted = decodeNresults(wanted);
|
||
if (wanted == LUA_MULTRET)
|
||
wanted = nres; /* we want all results */
|
||
}
|
||
break;
|
||
}
|
||
/* generic case */
|
||
firstresult = L->top.p - nres; /* index of first result */
|
||
if (nres > wanted) /* extra results? */
|
||
nres = wanted; /* don't need them */
|
||
for (i = 0; i < nres; i++) /* move all results to correct place */
|
||
setobjs2s(L, res + i, firstresult + i);
|
||
for (; i < wanted; i++) /* complete wanted number of results */
|
||
setnilvalue(s2v(res + i));
|
||
L->top.p = res + wanted; /* top points after the last result */
|
||
}
|
||
|
||
|
||
/*
|
||
** Finishes a function call: calls hook if necessary, moves current
|
||
** number of results to proper place, and returns to previous call
|
||
** info. If function has to close variables, hook must be called after
|
||
** that.
|
||
*/
|
||
void luaD_poscall (lua_State *L, CallInfo *ci, int nres) {
|
||
int wanted = ci->nresults;
|
||
if (l_unlikely(L->hookmask && !hastocloseCfunc(wanted)))
|
||
rethook(L, ci, nres);
|
||
/* move results to proper place */
|
||
moveresults(L, ci->func.p, nres, wanted);
|
||
/* function cannot be in any of these cases when returning */
|
||
lua_assert(!(ci->callstatus &
|
||
(CIST_HOOKED | CIST_YPCALL | CIST_FIN | CIST_TRAN | CIST_CLSRET)));
|
||
L->ci = ci->previous; /* back to caller (after closing variables) */
|
||
}
|
||
|
||
|
||
|
||
#define next_ci(L) (L->ci->next ? L->ci->next : luaE_extendCI(L))
|
||
|
||
|
||
l_sinline CallInfo *prepCallInfo (lua_State *L, StkId func, int nret,
|
||
int mask, StkId top) {
|
||
CallInfo *ci = L->ci = next_ci(L); /* new frame */
|
||
ci->func.p = func;
|
||
ci->nresults = nret;
|
||
ci->callstatus = mask;
|
||
ci->top.p = top;
|
||
return ci;
|
||
}
|
||
|
||
|
||
/*
|
||
** precall for C functions
|
||
*/
|
||
l_sinline int precallC (lua_State *L, StkId func, int nresults,
|
||
lua_CFunction f) {
|
||
int n; /* number of returns */
|
||
CallInfo *ci;
|
||
checkstackGCp(L, LUA_MINSTACK, func); /* ensure minimum stack size */
|
||
L->ci = ci = prepCallInfo(L, func, nresults, CIST_C,
|
||
L->top.p + LUA_MINSTACK);
|
||
lua_assert(ci->top.p <= L->stack_last.p);
|
||
if (l_unlikely(L->hookmask & LUA_MASKCALL)) {
|
||
int narg = cast_int(L->top.p - func) - 1;
|
||
luaD_hook(L, LUA_HOOKCALL, -1, 1, narg);
|
||
}
|
||
lua_unlock(L);
|
||
n = (*f)(L); /* do the actual call */
|
||
lua_lock(L);
|
||
api_checknelems(L, n);
|
||
luaD_poscall(L, ci, n);
|
||
return n;
|
||
}
|
||
|
||
|
||
/*
|
||
** Prepare a function for a tail call, building its call info on top
|
||
** of the current call info. 'narg1' is the number of arguments plus 1
|
||
** (so that it includes the function itself). Return the number of
|
||
** results, if it was a C function, or -1 for a Lua function.
|
||
*/
|
||
int luaD_pretailcall (lua_State *L, CallInfo *ci, StkId func,
|
||
int narg1, int delta) {
|
||
retry:
|
||
switch (ttypetag(s2v(func))) {
|
||
case LUA_VCCL: /* C closure */
|
||
return precallC(L, func, LUA_MULTRET, clCvalue(s2v(func))->f);
|
||
case LUA_VLCF: /* light C function */
|
||
return precallC(L, func, LUA_MULTRET, fvalue(s2v(func)));
|
||
case LUA_VLCL: { /* Lua function */
|
||
Proto *p = clLvalue(s2v(func))->p;
|
||
int fsize = p->maxstacksize; /* frame size */
|
||
int nfixparams = p->numparams;
|
||
int i;
|
||
checkstackGCp(L, fsize - delta, func);
|
||
ci->func.p -= delta; /* restore 'func' (if vararg) */
|
||
for (i = 0; i < narg1; i++) /* move down function and arguments */
|
||
setobjs2s(L, ci->func.p + i, func + i);
|
||
func = ci->func.p; /* moved-down function */
|
||
for (; narg1 <= nfixparams; narg1++)
|
||
setnilvalue(s2v(func + narg1)); /* complete missing arguments */
|
||
ci->top.p = func + 1 + fsize; /* top for new function */
|
||
lua_assert(ci->top.p <= L->stack_last.p);
|
||
ci->u.l.savedpc = p->code; /* starting point */
|
||
ci->callstatus |= CIST_TAIL;
|
||
L->top.p = func + narg1; /* set top */
|
||
return -1;
|
||
}
|
||
default: { /* not a function */
|
||
func = tryfuncTM(L, func); /* try to get '__call' metamethod */
|
||
/* return luaD_pretailcall(L, ci, func, narg1 + 1, delta); */
|
||
narg1++;
|
||
goto retry; /* try again */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Prepares the call to a function (C or Lua). For C functions, also do
|
||
** the call. The function to be called is at '*func'. The arguments
|
||
** are on the stack, right after the function. Returns the CallInfo
|
||
** to be executed, if it was a Lua function. Otherwise (a C function)
|
||
** returns NULL, with all the results on the stack, starting at the
|
||
** original function position.
|
||
*/
|
||
CallInfo *luaD_precall (lua_State *L, StkId func, int nresults) {
|
||
retry:
|
||
switch (ttypetag(s2v(func))) {
|
||
case LUA_VCCL: /* C closure */
|
||
precallC(L, func, nresults, clCvalue(s2v(func))->f);
|
||
return NULL;
|
||
case LUA_VLCF: /* light C function */
|
||
precallC(L, func, nresults, fvalue(s2v(func)));
|
||
return NULL;
|
||
case LUA_VLCL: { /* Lua function */
|
||
CallInfo *ci;
|
||
Proto *p = clLvalue(s2v(func))->p;
|
||
int narg = cast_int(L->top.p - func) - 1; /* number of real arguments */
|
||
int nfixparams = p->numparams;
|
||
int fsize = p->maxstacksize; /* frame size */
|
||
checkstackGCp(L, fsize, func);
|
||
L->ci = ci = prepCallInfo(L, func, nresults, 0, func + 1 + fsize);
|
||
ci->u.l.savedpc = p->code; /* starting point */
|
||
for (; narg < nfixparams; narg++)
|
||
setnilvalue(s2v(L->top.p++)); /* complete missing arguments */
|
||
lua_assert(ci->top.p <= L->stack_last.p);
|
||
return ci;
|
||
}
|
||
default: { /* not a function */
|
||
func = tryfuncTM(L, func); /* try to get '__call' metamethod */
|
||
/* return luaD_precall(L, func, nresults); */
|
||
goto retry; /* try again with metamethod */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Call a function (C or Lua) through C. 'inc' can be 1 (increment
|
||
** number of recursive invocations in the C stack) or nyci (the same
|
||
** plus increment number of non-yieldable calls).
|
||
** This function can be called with some use of EXTRA_STACK, so it should
|
||
** check the stack before doing anything else. 'luaD_precall' already
|
||
** does that.
|
||
*/
|
||
l_sinline void ccall (lua_State *L, StkId func, int nResults, l_uint32 inc) {
|
||
CallInfo *ci;
|
||
L->nCcalls += inc;
|
||
if (l_unlikely(getCcalls(L) >= LUAI_MAXCCALLS)) {
|
||
checkstackp(L, 0, func); /* free any use of EXTRA_STACK */
|
||
luaE_checkcstack(L);
|
||
}
|
||
if ((ci = luaD_precall(L, func, nResults)) != NULL) { /* Lua function? */
|
||
ci->callstatus = CIST_FRESH; /* mark that it is a "fresh" execute */
|
||
luaV_execute(L, ci); /* call it */
|
||
}
|
||
L->nCcalls -= inc;
|
||
}
|
||
|
||
|
||
/*
|
||
** External interface for 'ccall'
|
||
*/
|
||
void luaD_call (lua_State *L, StkId func, int nResults) {
|
||
ccall(L, func, nResults, 1);
|
||
}
|
||
|
||
|
||
/*
|
||
** Similar to 'luaD_call', but does not allow yields during the call.
|
||
*/
|
||
void luaD_callnoyield (lua_State *L, StkId func, int nResults) {
|
||
ccall(L, func, nResults, nyci);
|
||
}
|
||
|
||
|
||
/*
|
||
** Finish the job of 'lua_pcallk' after it was interrupted by an yield.
|
||
** (The caller, 'finishCcall', does the final call to 'adjustresults'.)
|
||
** The main job is to complete the 'luaD_pcall' called by 'lua_pcallk'.
|
||
** If a '__close' method yields here, eventually control will be back
|
||
** to 'finishCcall' (when that '__close' method finally returns) and
|
||
** 'finishpcallk' will run again and close any still pending '__close'
|
||
** methods. Similarly, if a '__close' method errs, 'precover' calls
|
||
** 'unroll' which calls ''finishCcall' and we are back here again, to
|
||
** close any pending '__close' methods.
|
||
** Note that, up to the call to 'luaF_close', the corresponding
|
||
** 'CallInfo' is not modified, so that this repeated run works like the
|
||
** first one (except that it has at least one less '__close' to do). In
|
||
** particular, field CIST_RECST preserves the error status across these
|
||
** multiple runs, changing only if there is a new error.
|
||
*/
|
||
static int finishpcallk (lua_State *L, CallInfo *ci) {
|
||
int status = getcistrecst(ci); /* get original status */
|
||
if (l_likely(status == LUA_OK)) /* no error? */
|
||
status = LUA_YIELD; /* was interrupted by an yield */
|
||
else { /* error */
|
||
StkId func = restorestack(L, ci->u2.funcidx);
|
||
L->allowhook = getoah(ci->callstatus); /* restore 'allowhook' */
|
||
func = luaF_close(L, func, status, 1); /* can yield or raise an error */
|
||
luaD_seterrorobj(L, status, func);
|
||
luaD_shrinkstack(L); /* restore stack size in case of overflow */
|
||
setcistrecst(ci, LUA_OK); /* clear original status */
|
||
}
|
||
ci->callstatus &= ~CIST_YPCALL;
|
||
L->errfunc = ci->u.c.old_errfunc;
|
||
/* if it is here, there were errors or yields; unlike 'lua_pcallk',
|
||
do not change status */
|
||
return status;
|
||
}
|
||
|
||
|
||
/*
|
||
** Completes the execution of a C function interrupted by an yield.
|
||
** The interruption must have happened while the function was either
|
||
** closing its tbc variables in 'moveresults' or executing
|
||
** 'lua_callk'/'lua_pcallk'. In the first case, it just redoes
|
||
** 'luaD_poscall'. In the second case, the call to 'finishpcallk'
|
||
** finishes the interrupted execution of 'lua_pcallk'. After that, it
|
||
** calls the continuation of the interrupted function and finally it
|
||
** completes the job of the 'luaD_call' that called the function. In
|
||
** the call to 'adjustresults', we do not know the number of results
|
||
** of the function called by 'lua_callk'/'lua_pcallk', so we are
|
||
** conservative and use LUA_MULTRET (always adjust).
|
||
*/
|
||
static void finishCcall (lua_State *L, CallInfo *ci) {
|
||
int n; /* actual number of results from C function */
|
||
if (ci->callstatus & CIST_CLSRET) { /* was returning? */
|
||
lua_assert(hastocloseCfunc(ci->nresults));
|
||
n = ci->u2.nres; /* just redo 'luaD_poscall' */
|
||
/* don't need to reset CIST_CLSRET, as it will be set again anyway */
|
||
}
|
||
else {
|
||
int status = LUA_YIELD; /* default if there were no errors */
|
||
/* must have a continuation and must be able to call it */
|
||
lua_assert(ci->u.c.k != NULL && yieldable(L));
|
||
if (ci->callstatus & CIST_YPCALL) /* was inside a 'lua_pcallk'? */
|
||
status = finishpcallk(L, ci); /* finish it */
|
||
adjustresults(L, LUA_MULTRET); /* finish 'lua_callk' */
|
||
lua_unlock(L);
|
||
n = (*ci->u.c.k)(L, status, ci->u.c.ctx); /* call continuation */
|
||
lua_lock(L);
|
||
api_checknelems(L, n);
|
||
}
|
||
luaD_poscall(L, ci, n); /* finish 'luaD_call' */
|
||
}
|
||
|
||
|
||
/*
|
||
** Executes "full continuation" (everything in the stack) of a
|
||
** previously interrupted coroutine until the stack is empty (or another
|
||
** interruption long-jumps out of the loop).
|
||
*/
|
||
static void unroll (lua_State *L, void *ud) {
|
||
CallInfo *ci;
|
||
UNUSED(ud);
|
||
while ((ci = L->ci) != &L->base_ci) { /* something in the stack */
|
||
if (!isLua(ci)) /* C function? */
|
||
finishCcall(L, ci); /* complete its execution */
|
||
else { /* Lua function */
|
||
luaV_finishOp(L); /* finish interrupted instruction */
|
||
luaV_execute(L, ci); /* execute down to higher C 'boundary' */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a suspended protected call (a "recover point") for the
|
||
** given thread.
|
||
*/
|
||
static CallInfo *findpcall (lua_State *L) {
|
||
CallInfo *ci;
|
||
for (ci = L->ci; ci != NULL; ci = ci->previous) { /* search for a pcall */
|
||
if (ci->callstatus & CIST_YPCALL)
|
||
return ci;
|
||
}
|
||
return NULL; /* no pending pcall */
|
||
}
|
||
|
||
|
||
/*
|
||
** Signal an error in the call to 'lua_resume', not in the execution
|
||
** of the coroutine itself. (Such errors should not be handled by any
|
||
** coroutine error handler and should not kill the coroutine.)
|
||
*/
|
||
static int resume_error (lua_State *L, const char *msg, int narg) {
|
||
L->top.p -= narg; /* remove args from the stack */
|
||
setsvalue2s(L, L->top.p, luaS_new(L, msg)); /* push error message */
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
return LUA_ERRRUN;
|
||
}
|
||
|
||
|
||
/*
|
||
** Do the work for 'lua_resume' in protected mode. Most of the work
|
||
** depends on the status of the coroutine: initial state, suspended
|
||
** inside a hook, or regularly suspended (optionally with a continuation
|
||
** function), plus erroneous cases: non-suspended coroutine or dead
|
||
** coroutine.
|
||
*/
|
||
static void resume (lua_State *L, void *ud) {
|
||
int n = *(cast(int*, ud)); /* number of arguments */
|
||
StkId firstArg = L->top.p - n; /* first argument */
|
||
CallInfo *ci = L->ci;
|
||
if (L->status == LUA_OK) /* starting a coroutine? */
|
||
ccall(L, firstArg - 1, LUA_MULTRET, 0); /* just call its body */
|
||
else { /* resuming from previous yield */
|
||
lua_assert(L->status == LUA_YIELD);
|
||
L->status = LUA_OK; /* mark that it is running (again) */
|
||
if (isLua(ci)) { /* yielded inside a hook? */
|
||
/* undo increment made by 'luaG_traceexec': instruction was not
|
||
executed yet */
|
||
lua_assert(ci->callstatus & CIST_HOOKYIELD);
|
||
ci->u.l.savedpc--;
|
||
L->top.p = firstArg; /* discard arguments */
|
||
luaV_execute(L, ci); /* just continue running Lua code */
|
||
}
|
||
else { /* 'common' yield */
|
||
if (ci->u.c.k != NULL) { /* does it have a continuation function? */
|
||
lua_unlock(L);
|
||
n = (*ci->u.c.k)(L, LUA_YIELD, ci->u.c.ctx); /* call continuation */
|
||
lua_lock(L);
|
||
api_checknelems(L, n);
|
||
}
|
||
luaD_poscall(L, ci, n); /* finish 'luaD_call' */
|
||
}
|
||
unroll(L, NULL); /* run continuation */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Unrolls a coroutine in protected mode while there are recoverable
|
||
** errors, that is, errors inside a protected call. (Any error
|
||
** interrupts 'unroll', and this loop protects it again so it can
|
||
** continue.) Stops with a normal end (status == LUA_OK), an yield
|
||
** (status == LUA_YIELD), or an unprotected error ('findpcall' doesn't
|
||
** find a recover point).
|
||
*/
|
||
static int precover (lua_State *L, int status) {
|
||
CallInfo *ci;
|
||
while (errorstatus(status) && (ci = findpcall(L)) != NULL) {
|
||
L->ci = ci; /* go down to recovery functions */
|
||
setcistrecst(ci, status); /* status to finish 'pcall' */
|
||
status = luaD_rawrunprotected(L, unroll, NULL);
|
||
}
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_resume (lua_State *L, lua_State *from, int nargs,
|
||
int *nresults) {
|
||
int status;
|
||
lua_lock(L);
|
||
if (L->status == LUA_OK) { /* may be starting a coroutine */
|
||
if (L->ci != &L->base_ci) /* not in base level? */
|
||
return resume_error(L, "cannot resume non-suspended coroutine", nargs);
|
||
else if (L->top.p - (L->ci->func.p + 1) == nargs) /* no function? */
|
||
return resume_error(L, "cannot resume dead coroutine", nargs);
|
||
}
|
||
else if (L->status != LUA_YIELD) /* ended with errors? */
|
||
return resume_error(L, "cannot resume dead coroutine", nargs);
|
||
L->nCcalls = (from) ? getCcalls(from) : 0;
|
||
if (getCcalls(L) >= LUAI_MAXCCALLS)
|
||
return resume_error(L, "C stack overflow", nargs);
|
||
L->nCcalls++;
|
||
luai_userstateresume(L, nargs);
|
||
api_checknelems(L, (L->status == LUA_OK) ? nargs + 1 : nargs);
|
||
status = luaD_rawrunprotected(L, resume, &nargs);
|
||
/* continue running after recoverable errors */
|
||
status = precover(L, status);
|
||
if (l_likely(!errorstatus(status)))
|
||
lua_assert(status == L->status); /* normal end or yield */
|
||
else { /* unrecoverable error */
|
||
L->status = cast_byte(status); /* mark thread as 'dead' */
|
||
luaD_seterrorobj(L, status, L->top.p); /* push error message */
|
||
L->ci->top.p = L->top.p;
|
||
}
|
||
*nresults = (status == LUA_YIELD) ? L->ci->u2.nyield
|
||
: cast_int(L->top.p - (L->ci->func.p + 1));
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_isyieldable (lua_State *L) {
|
||
return yieldable(L);
|
||
}
|
||
|
||
|
||
LUA_API int lua_yieldk (lua_State *L, int nresults, lua_KContext ctx,
|
||
lua_KFunction k) {
|
||
CallInfo *ci;
|
||
luai_userstateyield(L, nresults);
|
||
lua_lock(L);
|
||
ci = L->ci;
|
||
api_checknelems(L, nresults);
|
||
if (l_unlikely(!yieldable(L))) {
|
||
if (L != G(L)->mainthread)
|
||
luaG_runerror(L, "attempt to yield across a C-call boundary");
|
||
else
|
||
luaG_runerror(L, "attempt to yield from outside a coroutine");
|
||
}
|
||
L->status = LUA_YIELD;
|
||
ci->u2.nyield = nresults; /* save number of results */
|
||
if (isLua(ci)) { /* inside a hook? */
|
||
lua_assert(!isLuacode(ci));
|
||
api_check(L, nresults == 0, "hooks cannot yield values");
|
||
api_check(L, k == NULL, "hooks cannot continue after yielding");
|
||
}
|
||
else {
|
||
if ((ci->u.c.k = k) != NULL) /* is there a continuation? */
|
||
ci->u.c.ctx = ctx; /* save context */
|
||
luaD_throw(L, LUA_YIELD);
|
||
}
|
||
lua_assert(ci->callstatus & CIST_HOOKED); /* must be inside a hook */
|
||
lua_unlock(L);
|
||
return 0; /* return to 'luaD_hook' */
|
||
}
|
||
|
||
|
||
/*
|
||
** Auxiliary structure to call 'luaF_close' in protected mode.
|
||
*/
|
||
struct CloseP {
|
||
StkId level;
|
||
int status;
|
||
};
|
||
|
||
|
||
/*
|
||
** Auxiliary function to call 'luaF_close' in protected mode.
|
||
*/
|
||
static void closepaux (lua_State *L, void *ud) {
|
||
struct CloseP *pcl = cast(struct CloseP *, ud);
|
||
luaF_close(L, pcl->level, pcl->status, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Calls 'luaF_close' in protected mode. Return the original status
|
||
** or, in case of errors, the new status.
|
||
*/
|
||
int luaD_closeprotected (lua_State *L, ptrdiff_t level, int status) {
|
||
CallInfo *old_ci = L->ci;
|
||
lu_byte old_allowhooks = L->allowhook;
|
||
for (;;) { /* keep closing upvalues until no more errors */
|
||
struct CloseP pcl;
|
||
pcl.level = restorestack(L, level); pcl.status = status;
|
||
status = luaD_rawrunprotected(L, &closepaux, &pcl);
|
||
if (l_likely(status == LUA_OK)) /* no more errors? */
|
||
return pcl.status;
|
||
else { /* an error occurred; restore saved state and repeat */
|
||
L->ci = old_ci;
|
||
L->allowhook = old_allowhooks;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Call the C function 'func' in protected mode, restoring basic
|
||
** thread information ('allowhook', etc.) and in particular
|
||
** its stack level in case of errors.
|
||
*/
|
||
int luaD_pcall (lua_State *L, Pfunc func, void *u,
|
||
ptrdiff_t old_top, ptrdiff_t ef) {
|
||
int status;
|
||
CallInfo *old_ci = L->ci;
|
||
lu_byte old_allowhooks = L->allowhook;
|
||
ptrdiff_t old_errfunc = L->errfunc;
|
||
L->errfunc = ef;
|
||
status = luaD_rawrunprotected(L, func, u);
|
||
if (l_unlikely(status != LUA_OK)) { /* an error occurred? */
|
||
L->ci = old_ci;
|
||
L->allowhook = old_allowhooks;
|
||
status = luaD_closeprotected(L, old_top, status);
|
||
luaD_seterrorobj(L, status, restorestack(L, old_top));
|
||
luaD_shrinkstack(L); /* restore stack size in case of overflow */
|
||
}
|
||
L->errfunc = old_errfunc;
|
||
return status;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** Execute a protected parser.
|
||
*/
|
||
struct SParser { /* data to 'f_parser' */
|
||
ZIO *z;
|
||
Mbuffer buff; /* dynamic structure used by the scanner */
|
||
Dyndata dyd; /* dynamic structures used by the parser */
|
||
const char *mode;
|
||
const char *name;
|
||
};
|
||
|
||
|
||
static void checkmode (lua_State *L, const char *mode, const char *x) {
|
||
if (mode && strchr(mode, x[0]) == NULL) {
|
||
luaO_pushfstring(L,
|
||
"attempt to load a %s chunk (mode is '%s')", x, mode);
|
||
luaD_throw(L, LUA_ERRSYNTAX);
|
||
}
|
||
}
|
||
|
||
|
||
static void f_parser (lua_State *L, void *ud) {
|
||
LClosure *cl;
|
||
struct SParser *p = cast(struct SParser *, ud);
|
||
int c = zgetc(p->z); /* read first character */
|
||
if (c == LUA_SIGNATURE[0]) {
|
||
checkmode(L, p->mode, "binary");
|
||
cl = luaU_undump(L, p->z, p->name);
|
||
}
|
||
else {
|
||
checkmode(L, p->mode, "text");
|
||
cl = luaY_parser(L, p->z, &p->buff, &p->dyd, p->name, c);
|
||
}
|
||
lua_assert(cl->nupvalues == cl->p->sizeupvalues);
|
||
luaF_initupvals(L, cl);
|
||
}
|
||
|
||
|
||
int luaD_protectedparser (lua_State *L, ZIO *z, const char *name,
|
||
const char *mode) {
|
||
struct SParser p;
|
||
int status;
|
||
incnny(L); /* cannot yield during parsing */
|
||
p.z = z; p.name = name; p.mode = mode;
|
||
p.dyd.actvar.arr = NULL; p.dyd.actvar.size = 0;
|
||
p.dyd.gt.arr = NULL; p.dyd.gt.size = 0;
|
||
p.dyd.label.arr = NULL; p.dyd.label.size = 0;
|
||
luaZ_initbuffer(L, &p.buff);
|
||
status = luaD_pcall(L, f_parser, &p, savestack(L, L->top.p), L->errfunc);
|
||
luaZ_freebuffer(L, &p.buff);
|
||
luaM_freearray(L, p.dyd.actvar.arr, p.dyd.actvar.size);
|
||
luaM_freearray(L, p.dyd.gt.arr, p.dyd.gt.size);
|
||
luaM_freearray(L, p.dyd.label.arr, p.dyd.label.size);
|
||
decnny(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
/*
|
||
** $Id: lvm.c $
|
||
** Lua virtual machine
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lvm_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
#include <float.h>
|
||
#include <limits.h>
|
||
#include <math.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lopcodes.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
/*
|
||
** By default, use jump tables in the main interpreter loop on gcc
|
||
** and compatible compilers.
|
||
*/
|
||
#if !defined(LUA_USE_JUMPTABLE)
|
||
#if defined(__GNUC__)
|
||
#define LUA_USE_JUMPTABLE 1
|
||
#else
|
||
#define LUA_USE_JUMPTABLE 0
|
||
#endif
|
||
#endif
|
||
|
||
|
||
|
||
/* limit for table tag-method chains (to avoid infinite loops) */
|
||
#define MAXTAGLOOP 2000
|
||
|
||
|
||
/*
|
||
** 'l_intfitsf' checks whether a given integer is in the range that
|
||
** can be converted to a float without rounding. Used in comparisons.
|
||
*/
|
||
|
||
/* number of bits in the mantissa of a float */
|
||
#define NBM (l_floatatt(MANT_DIG))
|
||
|
||
/*
|
||
** Check whether some integers may not fit in a float, testing whether
|
||
** (maxinteger >> NBM) > 0. (That implies (1 << NBM) <= maxinteger.)
|
||
** (The shifts are done in parts, to avoid shifting by more than the size
|
||
** of an integer. In a worst case, NBM == 113 for long double and
|
||
** sizeof(long) == 32.)
|
||
*/
|
||
#if ((((LUA_MAXINTEGER >> (NBM / 4)) >> (NBM / 4)) >> (NBM / 4)) \
|
||
>> (NBM - (3 * (NBM / 4)))) > 0
|
||
|
||
/* limit for integers that fit in a float */
|
||
#define MAXINTFITSF ((lua_Unsigned)1 << NBM)
|
||
|
||
/* check whether 'i' is in the interval [-MAXINTFITSF, MAXINTFITSF] */
|
||
#define l_intfitsf(i) ((MAXINTFITSF + l_castS2U(i)) <= (2 * MAXINTFITSF))
|
||
|
||
#else /* all integers fit in a float precisely */
|
||
|
||
#define l_intfitsf(i) 1
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Try to convert a value from string to a number value.
|
||
** If the value is not a string or is a string not representing
|
||
** a valid numeral (or if coercions from strings to numbers
|
||
** are disabled via macro 'cvt2num'), do not modify 'result'
|
||
** and return 0.
|
||
*/
|
||
static int l_strton (const TValue *obj, TValue *result) {
|
||
lua_assert(obj != result);
|
||
if (!cvt2num(obj)) /* is object not a string? */
|
||
return 0;
|
||
else {
|
||
TString *st = tsvalue(obj);
|
||
return (luaO_str2num(getstr(st), result) == tsslen(st) + 1);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to convert a value to a float. The float case is already handled
|
||
** by the macro 'tonumber'.
|
||
*/
|
||
int luaV_tonumber_ (const TValue *obj, lua_Number *n) {
|
||
TValue v;
|
||
if (ttisinteger(obj)) {
|
||
*n = cast_num(ivalue(obj));
|
||
return 1;
|
||
}
|
||
else if (l_strton(obj, &v)) { /* string coercible to number? */
|
||
*n = nvalue(&v); /* convert result of 'luaO_str2num' to a float */
|
||
return 1;
|
||
}
|
||
else
|
||
return 0; /* conversion failed */
|
||
}
|
||
|
||
|
||
/*
|
||
** try to convert a float to an integer, rounding according to 'mode'.
|
||
*/
|
||
int luaV_flttointeger (lua_Number n, lua_Integer *p, F2Imod mode) {
|
||
lua_Number f = l_floor(n);
|
||
if (n != f) { /* not an integral value? */
|
||
if (mode == F2Ieq) return 0; /* fails if mode demands integral value */
|
||
else if (mode == F2Iceil) /* needs ceil? */
|
||
f += 1; /* convert floor to ceil (remember: n != f) */
|
||
}
|
||
return lua_numbertointeger(f, p);
|
||
}
|
||
|
||
|
||
/*
|
||
** try to convert a value to an integer, rounding according to 'mode',
|
||
** without string coercion.
|
||
** ("Fast track" handled by macro 'tointegerns'.)
|
||
*/
|
||
int luaV_tointegerns (const TValue *obj, lua_Integer *p, F2Imod mode) {
|
||
if (ttisfloat(obj))
|
||
return luaV_flttointeger(fltvalue(obj), p, mode);
|
||
else if (ttisinteger(obj)) {
|
||
*p = ivalue(obj);
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** try to convert a value to an integer.
|
||
*/
|
||
int luaV_tointeger (const TValue *obj, lua_Integer *p, F2Imod mode) {
|
||
TValue v;
|
||
if (l_strton(obj, &v)) /* does 'obj' point to a numerical string? */
|
||
obj = &v; /* change it to point to its corresponding number */
|
||
return luaV_tointegerns(obj, p, mode);
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to convert a 'for' limit to an integer, preserving the semantics
|
||
** of the loop. Return true if the loop must not run; otherwise, '*p'
|
||
** gets the integer limit.
|
||
** (The following explanation assumes a positive step; it is valid for
|
||
** negative steps mutatis mutandis.)
|
||
** If the limit is an integer or can be converted to an integer,
|
||
** rounding down, that is the limit.
|
||
** Otherwise, check whether the limit can be converted to a float. If
|
||
** the float is too large, clip it to LUA_MAXINTEGER. If the float
|
||
** is too negative, the loop should not run, because any initial
|
||
** integer value is greater than such limit; so, the function returns
|
||
** true to signal that. (For this latter case, no integer limit would be
|
||
** correct; even a limit of LUA_MININTEGER would run the loop once for
|
||
** an initial value equal to LUA_MININTEGER.)
|
||
*/
|
||
static int forlimit (lua_State *L, lua_Integer init, const TValue *lim,
|
||
lua_Integer *p, lua_Integer step) {
|
||
if (!luaV_tointeger(lim, p, (step < 0 ? F2Iceil : F2Ifloor))) {
|
||
/* not coercible to in integer */
|
||
lua_Number flim; /* try to convert to float */
|
||
if (!tonumber(lim, &flim)) /* cannot convert to float? */
|
||
luaG_forerror(L, lim, "limit");
|
||
/* else 'flim' is a float out of integer bounds */
|
||
if (luai_numlt(0, flim)) { /* if it is positive, it is too large */
|
||
if (step < 0) return 1; /* initial value must be less than it */
|
||
*p = LUA_MAXINTEGER; /* truncate */
|
||
}
|
||
else { /* it is less than min integer */
|
||
if (step > 0) return 1; /* initial value must be greater than it */
|
||
*p = LUA_MININTEGER; /* truncate */
|
||
}
|
||
}
|
||
return (step > 0 ? init > *p : init < *p); /* not to run? */
|
||
}
|
||
|
||
|
||
/*
|
||
** Prepare a numerical for loop (opcode OP_FORPREP).
|
||
** Return true to skip the loop. Otherwise,
|
||
** after preparation, stack will be as follows:
|
||
** ra : internal index (safe copy of the control variable)
|
||
** ra + 1 : loop counter (integer loops) or limit (float loops)
|
||
** ra + 2 : step
|
||
** ra + 3 : control variable
|
||
*/
|
||
static int forprep (lua_State *L, StkId ra) {
|
||
TValue *pinit = s2v(ra);
|
||
TValue *plimit = s2v(ra + 1);
|
||
TValue *pstep = s2v(ra + 2);
|
||
if (ttisinteger(pinit) && ttisinteger(pstep)) { /* integer loop? */
|
||
lua_Integer init = ivalue(pinit);
|
||
lua_Integer step = ivalue(pstep);
|
||
lua_Integer limit;
|
||
if (step == 0)
|
||
luaG_runerror(L, "'for' step is zero");
|
||
setivalue(s2v(ra + 3), init); /* control variable */
|
||
if (forlimit(L, init, plimit, &limit, step))
|
||
return 1; /* skip the loop */
|
||
else { /* prepare loop counter */
|
||
lua_Unsigned count;
|
||
if (step > 0) { /* ascending loop? */
|
||
count = l_castS2U(limit) - l_castS2U(init);
|
||
if (step != 1) /* avoid division in the too common case */
|
||
count /= l_castS2U(step);
|
||
}
|
||
else { /* step < 0; descending loop */
|
||
count = l_castS2U(init) - l_castS2U(limit);
|
||
/* 'step+1' avoids negating 'mininteger' */
|
||
count /= l_castS2U(-(step + 1)) + 1u;
|
||
}
|
||
/* store the counter in place of the limit (which won't be
|
||
needed anymore) */
|
||
setivalue(plimit, l_castU2S(count));
|
||
}
|
||
}
|
||
else { /* try making all values floats */
|
||
lua_Number init; lua_Number limit; lua_Number step;
|
||
if (l_unlikely(!tonumber(plimit, &limit)))
|
||
luaG_forerror(L, plimit, "limit");
|
||
if (l_unlikely(!tonumber(pstep, &step)))
|
||
luaG_forerror(L, pstep, "step");
|
||
if (l_unlikely(!tonumber(pinit, &init)))
|
||
luaG_forerror(L, pinit, "initial value");
|
||
if (step == 0)
|
||
luaG_runerror(L, "'for' step is zero");
|
||
if (luai_numlt(0, step) ? luai_numlt(limit, init)
|
||
: luai_numlt(init, limit))
|
||
return 1; /* skip the loop */
|
||
else {
|
||
/* make sure internal values are all floats */
|
||
setfltvalue(plimit, limit);
|
||
setfltvalue(pstep, step);
|
||
setfltvalue(s2v(ra), init); /* internal index */
|
||
setfltvalue(s2v(ra + 3), init); /* control variable */
|
||
}
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Execute a step of a float numerical for loop, returning
|
||
** true iff the loop must continue. (The integer case is
|
||
** written online with opcode OP_FORLOOP, for performance.)
|
||
*/
|
||
static int floatforloop (StkId ra) {
|
||
lua_Number step = fltvalue(s2v(ra + 2));
|
||
lua_Number limit = fltvalue(s2v(ra + 1));
|
||
lua_Number idx = fltvalue(s2v(ra)); /* internal index */
|
||
idx = luai_numadd(L, idx, step); /* increment index */
|
||
if (luai_numlt(0, step) ? luai_numle(idx, limit)
|
||
: luai_numle(limit, idx)) {
|
||
chgfltvalue(s2v(ra), idx); /* update internal index */
|
||
setfltvalue(s2v(ra + 3), idx); /* and control variable */
|
||
return 1; /* jump back */
|
||
}
|
||
else
|
||
return 0; /* finish the loop */
|
||
}
|
||
|
||
|
||
/*
|
||
** Finish the table access 'val = t[key]'.
|
||
** if 'slot' is NULL, 't' is not a table; otherwise, 'slot' points to
|
||
** t[k] entry (which must be empty).
|
||
*/
|
||
void luaV_finishget (lua_State *L, const TValue *t, TValue *key, StkId val,
|
||
const TValue *slot) {
|
||
int loop; /* counter to avoid infinite loops */
|
||
const TValue *tm; /* metamethod */
|
||
for (loop = 0; loop < MAXTAGLOOP; loop++) {
|
||
if (slot == NULL) { /* 't' is not a table? */
|
||
lua_assert(!ttistable(t));
|
||
tm = luaT_gettmbyobj(L, t, TM_INDEX);
|
||
if (l_unlikely(notm(tm)))
|
||
luaG_typeerror(L, t, "index"); /* no metamethod */
|
||
/* else will try the metamethod */
|
||
}
|
||
else { /* 't' is a table */
|
||
lua_assert(isempty(slot));
|
||
tm = fasttm(L, hvalue(t)->metatable, TM_INDEX); /* table's metamethod */
|
||
if (tm == NULL) { /* no metamethod? */
|
||
setnilvalue(s2v(val)); /* result is nil */
|
||
return;
|
||
}
|
||
/* else will try the metamethod */
|
||
}
|
||
if (ttisfunction(tm)) { /* is metamethod a function? */
|
||
luaT_callTMres(L, tm, t, key, val); /* call it */
|
||
return;
|
||
}
|
||
t = tm; /* else try to access 'tm[key]' */
|
||
if (luaV_fastget(L, t, key, slot, luaH_get)) { /* fast track? */
|
||
setobj2s(L, val, slot); /* done */
|
||
return;
|
||
}
|
||
/* else repeat (tail call 'luaV_finishget') */
|
||
}
|
||
luaG_runerror(L, "'__index' chain too long; possible loop");
|
||
}
|
||
|
||
|
||
/*
|
||
** Finish a table assignment 't[key] = val'.
|
||
** If 'slot' is NULL, 't' is not a table. Otherwise, 'slot' points
|
||
** to the entry 't[key]', or to a value with an absent key if there
|
||
** is no such entry. (The value at 'slot' must be empty, otherwise
|
||
** 'luaV_fastget' would have done the job.)
|
||
*/
|
||
void luaV_finishset (lua_State *L, const TValue *t, TValue *key,
|
||
TValue *val, const TValue *slot) {
|
||
int loop; /* counter to avoid infinite loops */
|
||
for (loop = 0; loop < MAXTAGLOOP; loop++) {
|
||
const TValue *tm; /* '__newindex' metamethod */
|
||
if (slot != NULL) { /* is 't' a table? */
|
||
Table *h = hvalue(t); /* save 't' table */
|
||
lua_assert(isempty(slot)); /* slot must be empty */
|
||
tm = fasttm(L, h->metatable, TM_NEWINDEX); /* get metamethod */
|
||
if (tm == NULL) { /* no metamethod? */
|
||
luaH_finishset(L, h, key, slot, val); /* set new value */
|
||
invalidateTMcache(h);
|
||
luaC_barrierback(L, obj2gco(h), val);
|
||
return;
|
||
}
|
||
/* else will try the metamethod */
|
||
}
|
||
else { /* not a table; check metamethod */
|
||
tm = luaT_gettmbyobj(L, t, TM_NEWINDEX);
|
||
if (l_unlikely(notm(tm)))
|
||
luaG_typeerror(L, t, "index");
|
||
}
|
||
/* try the metamethod */
|
||
if (ttisfunction(tm)) {
|
||
luaT_callTM(L, tm, t, key, val);
|
||
return;
|
||
}
|
||
t = tm; /* else repeat assignment over 'tm' */
|
||
if (luaV_fastget(L, t, key, slot, luaH_get)) {
|
||
luaV_finishfastset(L, t, slot, val);
|
||
return; /* done */
|
||
}
|
||
/* else 'return luaV_finishset(L, t, key, val, slot)' (loop) */
|
||
}
|
||
luaG_runerror(L, "'__newindex' chain too long; possible loop");
|
||
}
|
||
|
||
|
||
/*
|
||
** Compare two strings 'ts1' x 'ts2', returning an integer less-equal-
|
||
** -greater than zero if 'ts1' is less-equal-greater than 'ts2'.
|
||
** The code is a little tricky because it allows '\0' in the strings
|
||
** and it uses 'strcoll' (to respect locales) for each segment
|
||
** of the strings. Note that segments can compare equal but still
|
||
** have different lengths.
|
||
*/
|
||
static int l_strcmp (const TString *ts1, const TString *ts2) {
|
||
const char *s1 = getstr(ts1);
|
||
size_t rl1 = tsslen(ts1); /* real length */
|
||
const char *s2 = getstr(ts2);
|
||
size_t rl2 = tsslen(ts2);
|
||
for (;;) { /* for each segment */
|
||
int temp = strcoll(s1, s2);
|
||
if (temp != 0) /* not equal? */
|
||
return temp; /* done */
|
||
else { /* strings are equal up to a '\0' */
|
||
size_t zl1 = strlen(s1); /* index of first '\0' in 's1' */
|
||
size_t zl2 = strlen(s2); /* index of first '\0' in 's2' */
|
||
if (zl2 == rl2) /* 's2' is finished? */
|
||
return (zl1 == rl1) ? 0 : 1; /* check 's1' */
|
||
else if (zl1 == rl1) /* 's1' is finished? */
|
||
return -1; /* 's1' is less than 's2' ('s2' is not finished) */
|
||
/* both strings longer than 'zl'; go on comparing after the '\0' */
|
||
zl1++; zl2++;
|
||
s1 += zl1; rl1 -= zl1; s2 += zl2; rl2 -= zl2;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether integer 'i' is less than float 'f'. If 'i' has an
|
||
** exact representation as a float ('l_intfitsf'), compare numbers as
|
||
** floats. Otherwise, use the equivalence 'i < f <=> i < ceil(f)'.
|
||
** If 'ceil(f)' is out of integer range, either 'f' is greater than
|
||
** all integers or less than all integers.
|
||
** (The test with 'l_intfitsf' is only for performance; the else
|
||
** case is correct for all values, but it is slow due to the conversion
|
||
** from float to int.)
|
||
** When 'f' is NaN, comparisons must result in false.
|
||
*/
|
||
l_sinline int LTintfloat (lua_Integer i, lua_Number f) {
|
||
if (l_intfitsf(i))
|
||
return luai_numlt(cast_num(i), f); /* compare them as floats */
|
||
else { /* i < f <=> i < ceil(f) */
|
||
lua_Integer fi;
|
||
if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
|
||
return i < fi; /* compare them as integers */
|
||
else /* 'f' is either greater or less than all integers */
|
||
return f > 0; /* greater? */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether integer 'i' is less than or equal to float 'f'.
|
||
** See comments on previous function.
|
||
*/
|
||
l_sinline int LEintfloat (lua_Integer i, lua_Number f) {
|
||
if (l_intfitsf(i))
|
||
return luai_numle(cast_num(i), f); /* compare them as floats */
|
||
else { /* i <= f <=> i <= floor(f) */
|
||
lua_Integer fi;
|
||
if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
|
||
return i <= fi; /* compare them as integers */
|
||
else /* 'f' is either greater or less than all integers */
|
||
return f > 0; /* greater? */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether float 'f' is less than integer 'i'.
|
||
** See comments on previous function.
|
||
*/
|
||
l_sinline int LTfloatint (lua_Number f, lua_Integer i) {
|
||
if (l_intfitsf(i))
|
||
return luai_numlt(f, cast_num(i)); /* compare them as floats */
|
||
else { /* f < i <=> floor(f) < i */
|
||
lua_Integer fi;
|
||
if (luaV_flttointeger(f, &fi, F2Ifloor)) /* fi = floor(f) */
|
||
return fi < i; /* compare them as integers */
|
||
else /* 'f' is either greater or less than all integers */
|
||
return f < 0; /* less? */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether float 'f' is less than or equal to integer 'i'.
|
||
** See comments on previous function.
|
||
*/
|
||
l_sinline int LEfloatint (lua_Number f, lua_Integer i) {
|
||
if (l_intfitsf(i))
|
||
return luai_numle(f, cast_num(i)); /* compare them as floats */
|
||
else { /* f <= i <=> ceil(f) <= i */
|
||
lua_Integer fi;
|
||
if (luaV_flttointeger(f, &fi, F2Iceil)) /* fi = ceil(f) */
|
||
return fi <= i; /* compare them as integers */
|
||
else /* 'f' is either greater or less than all integers */
|
||
return f < 0; /* less? */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Return 'l < r', for numbers.
|
||
*/
|
||
l_sinline int LTnum (const TValue *l, const TValue *r) {
|
||
lua_assert(ttisnumber(l) && ttisnumber(r));
|
||
if (ttisinteger(l)) {
|
||
lua_Integer li = ivalue(l);
|
||
if (ttisinteger(r))
|
||
return li < ivalue(r); /* both are integers */
|
||
else /* 'l' is int and 'r' is float */
|
||
return LTintfloat(li, fltvalue(r)); /* l < r ? */
|
||
}
|
||
else {
|
||
lua_Number lf = fltvalue(l); /* 'l' must be float */
|
||
if (ttisfloat(r))
|
||
return luai_numlt(lf, fltvalue(r)); /* both are float */
|
||
else /* 'l' is float and 'r' is int */
|
||
return LTfloatint(lf, ivalue(r));
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Return 'l <= r', for numbers.
|
||
*/
|
||
l_sinline int LEnum (const TValue *l, const TValue *r) {
|
||
lua_assert(ttisnumber(l) && ttisnumber(r));
|
||
if (ttisinteger(l)) {
|
||
lua_Integer li = ivalue(l);
|
||
if (ttisinteger(r))
|
||
return li <= ivalue(r); /* both are integers */
|
||
else /* 'l' is int and 'r' is float */
|
||
return LEintfloat(li, fltvalue(r)); /* l <= r ? */
|
||
}
|
||
else {
|
||
lua_Number lf = fltvalue(l); /* 'l' must be float */
|
||
if (ttisfloat(r))
|
||
return luai_numle(lf, fltvalue(r)); /* both are float */
|
||
else /* 'l' is float and 'r' is int */
|
||
return LEfloatint(lf, ivalue(r));
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** return 'l < r' for non-numbers.
|
||
*/
|
||
static int lessthanothers (lua_State *L, const TValue *l, const TValue *r) {
|
||
lua_assert(!ttisnumber(l) || !ttisnumber(r));
|
||
if (ttisstring(l) && ttisstring(r)) /* both are strings? */
|
||
return l_strcmp(tsvalue(l), tsvalue(r)) < 0;
|
||
else
|
||
return luaT_callorderTM(L, l, r, TM_LT);
|
||
}
|
||
|
||
|
||
/*
|
||
** Main operation less than; return 'l < r'.
|
||
*/
|
||
int luaV_lessthan (lua_State *L, const TValue *l, const TValue *r) {
|
||
if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
|
||
return LTnum(l, r);
|
||
else return lessthanothers(L, l, r);
|
||
}
|
||
|
||
|
||
/*
|
||
** return 'l <= r' for non-numbers.
|
||
*/
|
||
static int lessequalothers (lua_State *L, const TValue *l, const TValue *r) {
|
||
lua_assert(!ttisnumber(l) || !ttisnumber(r));
|
||
if (ttisstring(l) && ttisstring(r)) /* both are strings? */
|
||
return l_strcmp(tsvalue(l), tsvalue(r)) <= 0;
|
||
else
|
||
return luaT_callorderTM(L, l, r, TM_LE);
|
||
}
|
||
|
||
|
||
/*
|
||
** Main operation less than or equal to; return 'l <= r'.
|
||
*/
|
||
int luaV_lessequal (lua_State *L, const TValue *l, const TValue *r) {
|
||
if (ttisnumber(l) && ttisnumber(r)) /* both operands are numbers? */
|
||
return LEnum(l, r);
|
||
else return lessequalothers(L, l, r);
|
||
}
|
||
|
||
|
||
/*
|
||
** Main operation for equality of Lua values; return 't1 == t2'.
|
||
** L == NULL means raw equality (no metamethods)
|
||
*/
|
||
int luaV_equalobj (lua_State *L, const TValue *t1, const TValue *t2) {
|
||
const TValue *tm;
|
||
if (ttypetag(t1) != ttypetag(t2)) { /* not the same variant? */
|
||
if (ttype(t1) != ttype(t2) || ttype(t1) != LUA_TNUMBER)
|
||
return 0; /* only numbers can be equal with different variants */
|
||
else { /* two numbers with different variants */
|
||
/* One of them is an integer. If the other does not have an
|
||
integer value, they cannot be equal; otherwise, compare their
|
||
integer values. */
|
||
lua_Integer i1, i2;
|
||
return (luaV_tointegerns(t1, &i1, F2Ieq) &&
|
||
luaV_tointegerns(t2, &i2, F2Ieq) &&
|
||
i1 == i2);
|
||
}
|
||
}
|
||
/* values have same type and same variant */
|
||
switch (ttypetag(t1)) {
|
||
case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE: return 1;
|
||
case LUA_VNUMINT: return (ivalue(t1) == ivalue(t2));
|
||
case LUA_VNUMFLT: return luai_numeq(fltvalue(t1), fltvalue(t2));
|
||
case LUA_VLIGHTUSERDATA: return pvalue(t1) == pvalue(t2);
|
||
case LUA_VLCF: return fvalue(t1) == fvalue(t2);
|
||
case LUA_VSHRSTR: return eqshrstr(tsvalue(t1), tsvalue(t2));
|
||
case LUA_VLNGSTR: return luaS_eqlngstr(tsvalue(t1), tsvalue(t2));
|
||
case LUA_VUSERDATA: {
|
||
if (uvalue(t1) == uvalue(t2)) return 1;
|
||
else if (L == NULL) return 0;
|
||
tm = fasttm(L, uvalue(t1)->metatable, TM_EQ);
|
||
if (tm == NULL)
|
||
tm = fasttm(L, uvalue(t2)->metatable, TM_EQ);
|
||
break; /* will try TM */
|
||
}
|
||
case LUA_VTABLE: {
|
||
if (hvalue(t1) == hvalue(t2)) return 1;
|
||
else if (L == NULL) return 0;
|
||
tm = fasttm(L, hvalue(t1)->metatable, TM_EQ);
|
||
if (tm == NULL)
|
||
tm = fasttm(L, hvalue(t2)->metatable, TM_EQ);
|
||
break; /* will try TM */
|
||
}
|
||
default:
|
||
return gcvalue(t1) == gcvalue(t2);
|
||
}
|
||
if (tm == NULL) /* no TM? */
|
||
return 0; /* objects are different */
|
||
else {
|
||
luaT_callTMres(L, tm, t1, t2, L->top.p); /* call TM */
|
||
return !l_isfalse(s2v(L->top.p));
|
||
}
|
||
}
|
||
|
||
|
||
/* macro used by 'luaV_concat' to ensure that element at 'o' is a string */
|
||
#define tostring(L,o) \
|
||
(ttisstring(o) || (cvt2str(o) && (luaO_tostring(L, o), 1)))
|
||
|
||
#define isemptystr(o) (ttisshrstring(o) && tsvalue(o)->shrlen == 0)
|
||
|
||
/* copy strings in stack from top - n up to top - 1 to buffer */
|
||
static void copy2buff (StkId top, int n, char *buff) {
|
||
size_t tl = 0; /* size already copied */
|
||
do {
|
||
TString *st = tsvalue(s2v(top - n));
|
||
size_t l = tsslen(st); /* length of string being copied */
|
||
memcpy(buff + tl, getstr(st), l * sizeof(char));
|
||
tl += l;
|
||
} while (--n > 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Main operation for concatenation: concat 'total' values in the stack,
|
||
** from 'L->top.p - total' up to 'L->top.p - 1'.
|
||
*/
|
||
void luaV_concat (lua_State *L, int total) {
|
||
if (total == 1)
|
||
return; /* "all" values already concatenated */
|
||
do {
|
||
StkId top = L->top.p;
|
||
int n = 2; /* number of elements handled in this pass (at least 2) */
|
||
if (!(ttisstring(s2v(top - 2)) || cvt2str(s2v(top - 2))) ||
|
||
!tostring(L, s2v(top - 1)))
|
||
luaT_tryconcatTM(L); /* may invalidate 'top' */
|
||
else if (isemptystr(s2v(top - 1))) /* second operand is empty? */
|
||
cast_void(tostring(L, s2v(top - 2))); /* result is first operand */
|
||
else if (isemptystr(s2v(top - 2))) { /* first operand is empty string? */
|
||
setobjs2s(L, top - 2, top - 1); /* result is second op. */
|
||
}
|
||
else {
|
||
/* at least two non-empty string values; get as many as possible */
|
||
size_t tl = tsslen(tsvalue(s2v(top - 1)));
|
||
TString *ts;
|
||
/* collect total length and number of strings */
|
||
for (n = 1; n < total && tostring(L, s2v(top - n - 1)); n++) {
|
||
size_t l = tsslen(tsvalue(s2v(top - n - 1)));
|
||
if (l_unlikely(l >= MAX_SIZE - sizeof(TString) - tl)) {
|
||
L->top.p = top - total; /* pop strings to avoid wasting stack */
|
||
luaG_runerror(L, "string length overflow");
|
||
}
|
||
tl += l;
|
||
}
|
||
if (tl <= LUAI_MAXSHORTLEN) { /* is result a short string? */
|
||
char buff[LUAI_MAXSHORTLEN];
|
||
copy2buff(top, n, buff); /* copy strings to buffer */
|
||
ts = luaS_newlstr(L, buff, tl);
|
||
}
|
||
else { /* long string; copy strings directly to final result */
|
||
ts = luaS_createlngstrobj(L, tl);
|
||
copy2buff(top, n, getlngstr(ts));
|
||
}
|
||
setsvalue2s(L, top - n, ts); /* create result */
|
||
}
|
||
total -= n - 1; /* got 'n' strings to create one new */
|
||
L->top.p -= n - 1; /* popped 'n' strings and pushed one */
|
||
} while (total > 1); /* repeat until only 1 result left */
|
||
}
|
||
|
||
|
||
/*
|
||
** Main operation 'ra = #rb'.
|
||
*/
|
||
void luaV_objlen (lua_State *L, StkId ra, const TValue *rb) {
|
||
const TValue *tm;
|
||
switch (ttypetag(rb)) {
|
||
case LUA_VTABLE: {
|
||
Table *h = hvalue(rb);
|
||
tm = fasttm(L, h->metatable, TM_LEN);
|
||
if (tm) break; /* metamethod? break switch to call it */
|
||
setivalue(s2v(ra), luaH_getn(h)); /* else primitive len */
|
||
return;
|
||
}
|
||
case LUA_VSHRSTR: {
|
||
setivalue(s2v(ra), tsvalue(rb)->shrlen);
|
||
return;
|
||
}
|
||
case LUA_VLNGSTR: {
|
||
setivalue(s2v(ra), tsvalue(rb)->u.lnglen);
|
||
return;
|
||
}
|
||
default: { /* try metamethod */
|
||
tm = luaT_gettmbyobj(L, rb, TM_LEN);
|
||
if (l_unlikely(notm(tm))) /* no metamethod? */
|
||
luaG_typeerror(L, rb, "get length of");
|
||
break;
|
||
}
|
||
}
|
||
luaT_callTMres(L, tm, rb, rb, ra);
|
||
}
|
||
|
||
|
||
/*
|
||
** Integer division; return 'm // n', that is, floor(m/n).
|
||
** C division truncates its result (rounds towards zero).
|
||
** 'floor(q) == trunc(q)' when 'q >= 0' or when 'q' is integer,
|
||
** otherwise 'floor(q) == trunc(q) - 1'.
|
||
*/
|
||
lua_Integer luaV_idiv (lua_State *L, lua_Integer m, lua_Integer n) {
|
||
if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
|
||
if (n == 0)
|
||
luaG_runerror(L, "attempt to divide by zero");
|
||
return intop(-, 0, m); /* n==-1; avoid overflow with 0x80000...//-1 */
|
||
}
|
||
else {
|
||
lua_Integer q = m / n; /* perform C division */
|
||
if ((m ^ n) < 0 && m % n != 0) /* 'm/n' would be negative non-integer? */
|
||
q -= 1; /* correct result for different rounding */
|
||
return q;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Integer modulus; return 'm % n'. (Assume that C '%' with
|
||
** negative operands follows C99 behavior. See previous comment
|
||
** about luaV_idiv.)
|
||
*/
|
||
lua_Integer luaV_mod (lua_State *L, lua_Integer m, lua_Integer n) {
|
||
if (l_unlikely(l_castS2U(n) + 1u <= 1u)) { /* special cases: -1 or 0 */
|
||
if (n == 0)
|
||
luaG_runerror(L, "attempt to perform 'n%%0'");
|
||
return 0; /* m % -1 == 0; avoid overflow with 0x80000...%-1 */
|
||
}
|
||
else {
|
||
lua_Integer r = m % n;
|
||
if (r != 0 && (r ^ n) < 0) /* 'm/n' would be non-integer negative? */
|
||
r += n; /* correct result for different rounding */
|
||
return r;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Float modulus
|
||
*/
|
||
lua_Number luaV_modf (lua_State *L, lua_Number m, lua_Number n) {
|
||
lua_Number r;
|
||
luai_nummod(L, m, n, r);
|
||
return r;
|
||
}
|
||
|
||
|
||
/* number of bits in an integer */
|
||
#define NBITS cast_int(sizeof(lua_Integer) * CHAR_BIT)
|
||
|
||
|
||
/*
|
||
** Shift left operation. (Shift right just negates 'y'.)
|
||
*/
|
||
lua_Integer luaV_shiftl (lua_Integer x, lua_Integer y) {
|
||
if (y < 0) { /* shift right? */
|
||
if (y <= -NBITS) return 0;
|
||
else return intop(>>, x, -y);
|
||
}
|
||
else { /* shift left */
|
||
if (y >= NBITS) return 0;
|
||
else return intop(<<, x, y);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** create a new Lua closure, push it in the stack, and initialize
|
||
** its upvalues.
|
||
*/
|
||
static void pushclosure (lua_State *L, Proto *p, UpVal **encup, StkId base,
|
||
StkId ra) {
|
||
int nup = p->sizeupvalues;
|
||
Upvaldesc *uv = p->upvalues;
|
||
int i;
|
||
LClosure *ncl = luaF_newLclosure(L, nup);
|
||
ncl->p = p;
|
||
setclLvalue2s(L, ra, ncl); /* anchor new closure in stack */
|
||
for (i = 0; i < nup; i++) { /* fill in its upvalues */
|
||
if (uv[i].instack) /* upvalue refers to local variable? */
|
||
ncl->upvals[i] = luaF_findupval(L, base + uv[i].idx);
|
||
else /* get upvalue from enclosing function */
|
||
ncl->upvals[i] = encup[uv[i].idx];
|
||
luaC_objbarrier(L, ncl, ncl->upvals[i]);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** finish execution of an opcode interrupted by a yield
|
||
*/
|
||
void luaV_finishOp (lua_State *L) {
|
||
CallInfo *ci = L->ci;
|
||
StkId base = ci->func.p + 1;
|
||
Instruction inst = *(ci->u.l.savedpc - 1); /* interrupted instruction */
|
||
OpCode op = GET_OPCODE(inst);
|
||
switch (op) { /* finish its execution */
|
||
case OP_MMBIN: case OP_MMBINI: case OP_MMBINK: {
|
||
setobjs2s(L, base + GETARG_A(*(ci->u.l.savedpc - 2)), --L->top.p);
|
||
break;
|
||
}
|
||
case OP_UNM: case OP_BNOT: case OP_LEN:
|
||
case OP_GETTABUP: case OP_GETTABLE: case OP_GETI:
|
||
case OP_GETFIELD: case OP_SELF: {
|
||
setobjs2s(L, base + GETARG_A(inst), --L->top.p);
|
||
break;
|
||
}
|
||
case OP_LT: case OP_LE:
|
||
case OP_LTI: case OP_LEI:
|
||
case OP_GTI: case OP_GEI:
|
||
case OP_EQ: { /* note that 'OP_EQI'/'OP_EQK' cannot yield */
|
||
int res = !l_isfalse(s2v(L->top.p - 1));
|
||
L->top.p--;
|
||
#if defined(LUA_COMPAT_LT_LE)
|
||
if (ci->callstatus & CIST_LEQ) { /* "<=" using "<" instead? */
|
||
ci->callstatus ^= CIST_LEQ; /* clear mark */
|
||
res = !res; /* negate result */
|
||
}
|
||
#endif
|
||
lua_assert(GET_OPCODE(*ci->u.l.savedpc) == OP_JMP);
|
||
if (res != GETARG_k(inst)) /* condition failed? */
|
||
ci->u.l.savedpc++; /* skip jump instruction */
|
||
break;
|
||
}
|
||
case OP_CONCAT: {
|
||
StkId top = L->top.p - 1; /* top when 'luaT_tryconcatTM' was called */
|
||
int a = GETARG_A(inst); /* first element to concatenate */
|
||
int total = cast_int(top - 1 - (base + a)); /* yet to concatenate */
|
||
setobjs2s(L, top - 2, top); /* put TM result in proper position */
|
||
L->top.p = top - 1; /* top is one after last element (at top-2) */
|
||
luaV_concat(L, total); /* concat them (may yield again) */
|
||
break;
|
||
}
|
||
case OP_CLOSE: { /* yielded closing variables */
|
||
ci->u.l.savedpc--; /* repeat instruction to close other vars. */
|
||
break;
|
||
}
|
||
case OP_RETURN: { /* yielded closing variables */
|
||
StkId ra = base + GETARG_A(inst);
|
||
/* adjust top to signal correct number of returns, in case the
|
||
return is "up to top" ('isIT') */
|
||
L->top.p = ra + ci->u2.nres;
|
||
/* repeat instruction to close other vars. and complete the return */
|
||
ci->u.l.savedpc--;
|
||
break;
|
||
}
|
||
default: {
|
||
/* only these other opcodes can yield */
|
||
lua_assert(op == OP_TFORCALL || op == OP_CALL ||
|
||
op == OP_TAILCALL || op == OP_SETTABUP || op == OP_SETTABLE ||
|
||
op == OP_SETI || op == OP_SETFIELD);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Macros for arithmetic/bitwise/comparison opcodes in 'luaV_execute'
|
||
** ===================================================================
|
||
*/
|
||
|
||
#define l_addi(L,a,b) intop(+, a, b)
|
||
#define l_subi(L,a,b) intop(-, a, b)
|
||
#define l_muli(L,a,b) intop(*, a, b)
|
||
#define l_band(a,b) intop(&, a, b)
|
||
#define l_bor(a,b) intop(|, a, b)
|
||
#define l_bxor(a,b) intop(^, a, b)
|
||
|
||
#define l_lti(a,b) (a < b)
|
||
#define l_lei(a,b) (a <= b)
|
||
#define l_gti(a,b) (a > b)
|
||
#define l_gei(a,b) (a >= b)
|
||
|
||
|
||
/*
|
||
** Arithmetic operations with immediate operands. 'iop' is the integer
|
||
** operation, 'fop' is the float operation.
|
||
*/
|
||
#define op_arithI(L,iop,fop) { \
|
||
StkId ra = RA(i); \
|
||
TValue *v1 = vRB(i); \
|
||
int imm = GETARG_sC(i); \
|
||
if (ttisinteger(v1)) { \
|
||
lua_Integer iv1 = ivalue(v1); \
|
||
pc++; setivalue(s2v(ra), iop(L, iv1, imm)); \
|
||
} \
|
||
else if (ttisfloat(v1)) { \
|
||
lua_Number nb = fltvalue(v1); \
|
||
lua_Number fimm = cast_num(imm); \
|
||
pc++; setfltvalue(s2v(ra), fop(L, nb, fimm)); \
|
||
}}
|
||
|
||
|
||
/*
|
||
** Auxiliary function for arithmetic operations over floats and others
|
||
** with two register operands.
|
||
*/
|
||
#define op_arithf_aux(L,v1,v2,fop) { \
|
||
lua_Number n1; lua_Number n2; \
|
||
if (tonumberns(v1, n1) && tonumberns(v2, n2)) { \
|
||
pc++; setfltvalue(s2v(ra), fop(L, n1, n2)); \
|
||
}}
|
||
|
||
|
||
/*
|
||
** Arithmetic operations over floats and others with register operands.
|
||
*/
|
||
#define op_arithf(L,fop) { \
|
||
StkId ra = RA(i); \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = vRC(i); \
|
||
op_arithf_aux(L, v1, v2, fop); }
|
||
|
||
|
||
/*
|
||
** Arithmetic operations with K operands for floats.
|
||
*/
|
||
#define op_arithfK(L,fop) { \
|
||
StkId ra = RA(i); \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \
|
||
op_arithf_aux(L, v1, v2, fop); }
|
||
|
||
|
||
/*
|
||
** Arithmetic operations over integers and floats.
|
||
*/
|
||
#define op_arith_aux(L,v1,v2,iop,fop) { \
|
||
StkId ra = RA(i); \
|
||
if (ttisinteger(v1) && ttisinteger(v2)) { \
|
||
lua_Integer i1 = ivalue(v1); lua_Integer i2 = ivalue(v2); \
|
||
pc++; setivalue(s2v(ra), iop(L, i1, i2)); \
|
||
} \
|
||
else op_arithf_aux(L, v1, v2, fop); }
|
||
|
||
|
||
/*
|
||
** Arithmetic operations with register operands.
|
||
*/
|
||
#define op_arith(L,iop,fop) { \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = vRC(i); \
|
||
op_arith_aux(L, v1, v2, iop, fop); }
|
||
|
||
|
||
/*
|
||
** Arithmetic operations with K operands.
|
||
*/
|
||
#define op_arithK(L,iop,fop) { \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = KC(i); lua_assert(ttisnumber(v2)); \
|
||
op_arith_aux(L, v1, v2, iop, fop); }
|
||
|
||
|
||
/*
|
||
** Bitwise operations with constant operand.
|
||
*/
|
||
#define op_bitwiseK(L,op) { \
|
||
StkId ra = RA(i); \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = KC(i); \
|
||
lua_Integer i1; \
|
||
lua_Integer i2 = ivalue(v2); \
|
||
if (tointegerns(v1, &i1)) { \
|
||
pc++; setivalue(s2v(ra), op(i1, i2)); \
|
||
}}
|
||
|
||
|
||
/*
|
||
** Bitwise operations with register operands.
|
||
*/
|
||
#define op_bitwise(L,op) { \
|
||
StkId ra = RA(i); \
|
||
TValue *v1 = vRB(i); \
|
||
TValue *v2 = vRC(i); \
|
||
lua_Integer i1; lua_Integer i2; \
|
||
if (tointegerns(v1, &i1) && tointegerns(v2, &i2)) { \
|
||
pc++; setivalue(s2v(ra), op(i1, i2)); \
|
||
}}
|
||
|
||
|
||
/*
|
||
** Order operations with register operands. 'opn' actually works
|
||
** for all numbers, but the fast track improves performance for
|
||
** integers.
|
||
*/
|
||
#define op_order(L,opi,opn,other) { \
|
||
StkId ra = RA(i); \
|
||
int cond; \
|
||
TValue *rb = vRB(i); \
|
||
if (ttisinteger(s2v(ra)) && ttisinteger(rb)) { \
|
||
lua_Integer ia = ivalue(s2v(ra)); \
|
||
lua_Integer ib = ivalue(rb); \
|
||
cond = opi(ia, ib); \
|
||
} \
|
||
else if (ttisnumber(s2v(ra)) && ttisnumber(rb)) \
|
||
cond = opn(s2v(ra), rb); \
|
||
else \
|
||
Protect(cond = other(L, s2v(ra), rb)); \
|
||
docondjump(); }
|
||
|
||
|
||
/*
|
||
** Order operations with immediate operand. (Immediate operand is
|
||
** always small enough to have an exact representation as a float.)
|
||
*/
|
||
#define op_orderI(L,opi,opf,inv,tm) { \
|
||
StkId ra = RA(i); \
|
||
int cond; \
|
||
int im = GETARG_sB(i); \
|
||
if (ttisinteger(s2v(ra))) \
|
||
cond = opi(ivalue(s2v(ra)), im); \
|
||
else if (ttisfloat(s2v(ra))) { \
|
||
lua_Number fa = fltvalue(s2v(ra)); \
|
||
lua_Number fim = cast_num(im); \
|
||
cond = opf(fa, fim); \
|
||
} \
|
||
else { \
|
||
int isf = GETARG_C(i); \
|
||
Protect(cond = luaT_callorderiTM(L, s2v(ra), im, inv, isf, tm)); \
|
||
} \
|
||
docondjump(); }
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Function 'luaV_execute': main interpreter loop
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** some macros for common tasks in 'luaV_execute'
|
||
*/
|
||
|
||
|
||
#define RA(i) (base+GETARG_A(i))
|
||
#define RB(i) (base+GETARG_B(i))
|
||
#define vRB(i) s2v(RB(i))
|
||
#define KB(i) (k+GETARG_B(i))
|
||
#define RC(i) (base+GETARG_C(i))
|
||
#define vRC(i) s2v(RC(i))
|
||
#define KC(i) (k+GETARG_C(i))
|
||
#define RKC(i) ((TESTARG_k(i)) ? k + GETARG_C(i) : s2v(base + GETARG_C(i)))
|
||
|
||
|
||
|
||
#define updatetrap(ci) (trap = ci->u.l.trap)
|
||
|
||
#define updatebase(ci) (base = ci->func.p + 1)
|
||
|
||
|
||
#define updatestack(ci) \
|
||
{ if (l_unlikely(trap)) { updatebase(ci); ra = RA(i); } }
|
||
|
||
|
||
/*
|
||
** Execute a jump instruction. The 'updatetrap' allows signals to stop
|
||
** tight loops. (Without it, the local copy of 'trap' could never change.)
|
||
*/
|
||
#define dojump(ci,i,e) { pc += GETARG_sJ(i) + e; updatetrap(ci); }
|
||
|
||
|
||
/* for test instructions, execute the jump instruction that follows it */
|
||
#define donextjump(ci) { Instruction ni = *pc; dojump(ci, ni, 1); }
|
||
|
||
/*
|
||
** do a conditional jump: skip next instruction if 'cond' is not what
|
||
** was expected (parameter 'k'), else do next instruction, which must
|
||
** be a jump.
|
||
*/
|
||
#define docondjump() if (cond != GETARG_k(i)) pc++; else donextjump(ci);
|
||
|
||
|
||
/*
|
||
** Correct global 'pc'.
|
||
*/
|
||
#define savepc(L) (ci->u.l.savedpc = pc)
|
||
|
||
|
||
/*
|
||
** Whenever code can raise errors, the global 'pc' and the global
|
||
** 'top' must be correct to report occasional errors.
|
||
*/
|
||
#define savestate(L,ci) (savepc(L), L->top.p = ci->top.p)
|
||
|
||
|
||
/*
|
||
** Protect code that, in general, can raise errors, reallocate the
|
||
** stack, and change the hooks.
|
||
*/
|
||
#define Protect(exp) (savestate(L,ci), (exp), updatetrap(ci))
|
||
|
||
/* special version that does not change the top */
|
||
#define ProtectNT(exp) (savepc(L), (exp), updatetrap(ci))
|
||
|
||
/*
|
||
** Protect code that can only raise errors. (That is, it cannot change
|
||
** the stack or hooks.)
|
||
*/
|
||
#define halfProtect(exp) (savestate(L,ci), (exp))
|
||
|
||
/* 'c' is the limit of live values in the stack */
|
||
#define checkGC(L,c) \
|
||
{ luaC_condGC(L, (savepc(L), L->top.p = (c)), \
|
||
updatetrap(ci)); \
|
||
luai_threadyield(L); }
|
||
|
||
|
||
/* fetch an instruction and prepare its execution */
|
||
#define vmfetch() { \
|
||
if (l_unlikely(trap)) { /* stack reallocation or hooks? */ \
|
||
trap = luaG_traceexec(L, pc); /* handle hooks */ \
|
||
updatebase(ci); /* correct stack */ \
|
||
} \
|
||
i = *(pc++); \
|
||
}
|
||
|
||
#define vmdispatch(o) switch(o)
|
||
#define vmcase(l) case l:
|
||
#define vmbreak break
|
||
|
||
|
||
void luaV_execute (lua_State *L, CallInfo *ci) {
|
||
LClosure *cl;
|
||
TValue *k;
|
||
StkId base;
|
||
const Instruction *pc;
|
||
int trap;
|
||
#if LUA_USE_JUMPTABLE
|
||
/*#include "ljumptab.h"*/
|
||
/*
|
||
** $Id: ljumptab.h $
|
||
** Jump Table for the Lua interpreter
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#undef vmdispatch
|
||
#undef vmcase
|
||
#undef vmbreak
|
||
|
||
#define vmdispatch(x) goto *disptab[x];
|
||
|
||
#define vmcase(l) L_##l:
|
||
|
||
#define vmbreak vmfetch(); vmdispatch(GET_OPCODE(i));
|
||
|
||
|
||
static const void *const disptab[NUM_OPCODES] = {
|
||
|
||
#if 0
|
||
** you can update the following list with this command:
|
||
**
|
||
** sed -n '/^OP_/\!d; s/OP_/\&\&L_OP_/ ; s/,.*/,/ ; s/\/.*// ; p' lopcodes.h
|
||
**
|
||
#endif
|
||
|
||
&&L_OP_MOVE,
|
||
&&L_OP_LOADI,
|
||
&&L_OP_LOADF,
|
||
&&L_OP_LOADK,
|
||
&&L_OP_LOADKX,
|
||
&&L_OP_LOADFALSE,
|
||
&&L_OP_LFALSESKIP,
|
||
&&L_OP_LOADTRUE,
|
||
&&L_OP_LOADNIL,
|
||
&&L_OP_GETUPVAL,
|
||
&&L_OP_SETUPVAL,
|
||
&&L_OP_GETTABUP,
|
||
&&L_OP_GETTABLE,
|
||
&&L_OP_GETI,
|
||
&&L_OP_GETFIELD,
|
||
&&L_OP_SETTABUP,
|
||
&&L_OP_SETTABLE,
|
||
&&L_OP_SETI,
|
||
&&L_OP_SETFIELD,
|
||
&&L_OP_NEWTABLE,
|
||
&&L_OP_SELF,
|
||
&&L_OP_ADDI,
|
||
&&L_OP_ADDK,
|
||
&&L_OP_SUBK,
|
||
&&L_OP_MULK,
|
||
&&L_OP_MODK,
|
||
&&L_OP_POWK,
|
||
&&L_OP_DIVK,
|
||
&&L_OP_IDIVK,
|
||
&&L_OP_BANDK,
|
||
&&L_OP_BORK,
|
||
&&L_OP_BXORK,
|
||
&&L_OP_SHRI,
|
||
&&L_OP_SHLI,
|
||
&&L_OP_ADD,
|
||
&&L_OP_SUB,
|
||
&&L_OP_MUL,
|
||
&&L_OP_MOD,
|
||
&&L_OP_POW,
|
||
&&L_OP_DIV,
|
||
&&L_OP_IDIV,
|
||
&&L_OP_BAND,
|
||
&&L_OP_BOR,
|
||
&&L_OP_BXOR,
|
||
&&L_OP_SHL,
|
||
&&L_OP_SHR,
|
||
&&L_OP_MMBIN,
|
||
&&L_OP_MMBINI,
|
||
&&L_OP_MMBINK,
|
||
&&L_OP_UNM,
|
||
&&L_OP_BNOT,
|
||
&&L_OP_NOT,
|
||
&&L_OP_LEN,
|
||
&&L_OP_CONCAT,
|
||
&&L_OP_CLOSE,
|
||
&&L_OP_TBC,
|
||
&&L_OP_JMP,
|
||
&&L_OP_EQ,
|
||
&&L_OP_LT,
|
||
&&L_OP_LE,
|
||
&&L_OP_EQK,
|
||
&&L_OP_EQI,
|
||
&&L_OP_LTI,
|
||
&&L_OP_LEI,
|
||
&&L_OP_GTI,
|
||
&&L_OP_GEI,
|
||
&&L_OP_TEST,
|
||
&&L_OP_TESTSET,
|
||
&&L_OP_CALL,
|
||
&&L_OP_TAILCALL,
|
||
&&L_OP_RETURN,
|
||
&&L_OP_RETURN0,
|
||
&&L_OP_RETURN1,
|
||
&&L_OP_FORLOOP,
|
||
&&L_OP_FORPREP,
|
||
&&L_OP_TFORPREP,
|
||
&&L_OP_TFORCALL,
|
||
&&L_OP_TFORLOOP,
|
||
&&L_OP_SETLIST,
|
||
&&L_OP_CLOSURE,
|
||
&&L_OP_VARARG,
|
||
&&L_OP_VARARGPREP,
|
||
&&L_OP_EXTRAARG
|
||
|
||
};
|
||
#endif
|
||
startfunc:
|
||
trap = L->hookmask;
|
||
returning: /* trap already set */
|
||
cl = ci_func(ci);
|
||
k = cl->p->k;
|
||
pc = ci->u.l.savedpc;
|
||
if (l_unlikely(trap))
|
||
trap = luaG_tracecall(L);
|
||
base = ci->func.p + 1;
|
||
/* main loop of interpreter */
|
||
for (;;) {
|
||
Instruction i; /* instruction being executed */
|
||
vmfetch();
|
||
#if 0
|
||
/* low-level line tracing for debugging Lua */
|
||
printf("line: %d\n", luaG_getfuncline(cl->p, pcRel(pc, cl->p)));
|
||
#endif
|
||
lua_assert(base == ci->func.p + 1);
|
||
lua_assert(base <= L->top.p && L->top.p <= L->stack_last.p);
|
||
/* invalidate top for instructions not expecting it */
|
||
lua_assert(isIT(i) || (cast_void(L->top.p = base), 1));
|
||
vmdispatch (GET_OPCODE(i)) {
|
||
vmcase(OP_MOVE) {
|
||
StkId ra = RA(i);
|
||
setobjs2s(L, ra, RB(i));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADI) {
|
||
StkId ra = RA(i);
|
||
lua_Integer b = GETARG_sBx(i);
|
||
setivalue(s2v(ra), b);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADF) {
|
||
StkId ra = RA(i);
|
||
int b = GETARG_sBx(i);
|
||
setfltvalue(s2v(ra), cast_num(b));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADK) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = k + GETARG_Bx(i);
|
||
setobj2s(L, ra, rb);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADKX) {
|
||
StkId ra = RA(i);
|
||
TValue *rb;
|
||
rb = k + GETARG_Ax(*pc); pc++;
|
||
setobj2s(L, ra, rb);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADFALSE) {
|
||
StkId ra = RA(i);
|
||
setbfvalue(s2v(ra));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LFALSESKIP) {
|
||
StkId ra = RA(i);
|
||
setbfvalue(s2v(ra));
|
||
pc++; /* skip next instruction */
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADTRUE) {
|
||
StkId ra = RA(i);
|
||
setbtvalue(s2v(ra));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LOADNIL) {
|
||
StkId ra = RA(i);
|
||
int b = GETARG_B(i);
|
||
do {
|
||
setnilvalue(s2v(ra++));
|
||
} while (b--);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GETUPVAL) {
|
||
StkId ra = RA(i);
|
||
int b = GETARG_B(i);
|
||
setobj2s(L, ra, cl->upvals[b]->v.p);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SETUPVAL) {
|
||
StkId ra = RA(i);
|
||
UpVal *uv = cl->upvals[GETARG_B(i)];
|
||
setobj(L, uv->v.p, s2v(ra));
|
||
luaC_barrier(L, uv, s2v(ra));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GETTABUP) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *upval = cl->upvals[GETARG_B(i)]->v.p;
|
||
TValue *rc = KC(i);
|
||
TString *key = tsvalue(rc); /* key must be a short string */
|
||
if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) {
|
||
setobj2s(L, ra, slot);
|
||
}
|
||
else
|
||
Protect(luaV_finishget(L, upval, rc, ra, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GETTABLE) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = vRB(i);
|
||
TValue *rc = vRC(i);
|
||
lua_Unsigned n;
|
||
if (ttisinteger(rc) /* fast track for integers? */
|
||
? (cast_void(n = ivalue(rc)), luaV_fastgeti(L, rb, n, slot))
|
||
: luaV_fastget(L, rb, rc, slot, luaH_get)) {
|
||
setobj2s(L, ra, slot);
|
||
}
|
||
else
|
||
Protect(luaV_finishget(L, rb, rc, ra, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GETI) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = vRB(i);
|
||
int c = GETARG_C(i);
|
||
if (luaV_fastgeti(L, rb, c, slot)) {
|
||
setobj2s(L, ra, slot);
|
||
}
|
||
else {
|
||
TValue key;
|
||
setivalue(&key, c);
|
||
Protect(luaV_finishget(L, rb, &key, ra, slot));
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GETFIELD) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = vRB(i);
|
||
TValue *rc = KC(i);
|
||
TString *key = tsvalue(rc); /* key must be a short string */
|
||
if (luaV_fastget(L, rb, key, slot, luaH_getshortstr)) {
|
||
setobj2s(L, ra, slot);
|
||
}
|
||
else
|
||
Protect(luaV_finishget(L, rb, rc, ra, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SETTABUP) {
|
||
const TValue *slot;
|
||
TValue *upval = cl->upvals[GETARG_A(i)]->v.p;
|
||
TValue *rb = KB(i);
|
||
TValue *rc = RKC(i);
|
||
TString *key = tsvalue(rb); /* key must be a short string */
|
||
if (luaV_fastget(L, upval, key, slot, luaH_getshortstr)) {
|
||
luaV_finishfastset(L, upval, slot, rc);
|
||
}
|
||
else
|
||
Protect(luaV_finishset(L, upval, rb, rc, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SETTABLE) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = vRB(i); /* key (table is in 'ra') */
|
||
TValue *rc = RKC(i); /* value */
|
||
lua_Unsigned n;
|
||
if (ttisinteger(rb) /* fast track for integers? */
|
||
? (cast_void(n = ivalue(rb)), luaV_fastgeti(L, s2v(ra), n, slot))
|
||
: luaV_fastget(L, s2v(ra), rb, slot, luaH_get)) {
|
||
luaV_finishfastset(L, s2v(ra), slot, rc);
|
||
}
|
||
else
|
||
Protect(luaV_finishset(L, s2v(ra), rb, rc, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SETI) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
int c = GETARG_B(i);
|
||
TValue *rc = RKC(i);
|
||
if (luaV_fastgeti(L, s2v(ra), c, slot)) {
|
||
luaV_finishfastset(L, s2v(ra), slot, rc);
|
||
}
|
||
else {
|
||
TValue key;
|
||
setivalue(&key, c);
|
||
Protect(luaV_finishset(L, s2v(ra), &key, rc, slot));
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SETFIELD) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = KB(i);
|
||
TValue *rc = RKC(i);
|
||
TString *key = tsvalue(rb); /* key must be a short string */
|
||
if (luaV_fastget(L, s2v(ra), key, slot, luaH_getshortstr)) {
|
||
luaV_finishfastset(L, s2v(ra), slot, rc);
|
||
}
|
||
else
|
||
Protect(luaV_finishset(L, s2v(ra), rb, rc, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_NEWTABLE) {
|
||
StkId ra = RA(i);
|
||
int b = GETARG_B(i); /* log2(hash size) + 1 */
|
||
int c = GETARG_C(i); /* array size */
|
||
Table *t;
|
||
if (b > 0)
|
||
b = 1 << (b - 1); /* size is 2^(b - 1) */
|
||
lua_assert((!TESTARG_k(i)) == (GETARG_Ax(*pc) == 0));
|
||
if (TESTARG_k(i)) /* non-zero extra argument? */
|
||
c += GETARG_Ax(*pc) * (MAXARG_C + 1); /* add it to size */
|
||
pc++; /* skip extra argument */
|
||
L->top.p = ra + 1; /* correct top in case of emergency GC */
|
||
t = luaH_new(L); /* memory allocation */
|
||
sethvalue2s(L, ra, t);
|
||
if (b != 0 || c != 0)
|
||
luaH_resize(L, t, c, b); /* idem */
|
||
checkGC(L, ra + 1);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SELF) {
|
||
StkId ra = RA(i);
|
||
const TValue *slot;
|
||
TValue *rb = vRB(i);
|
||
TValue *rc = RKC(i);
|
||
TString *key = tsvalue(rc); /* key must be a string */
|
||
setobj2s(L, ra + 1, rb);
|
||
if (luaV_fastget(L, rb, key, slot, luaH_getstr)) {
|
||
setobj2s(L, ra, slot);
|
||
}
|
||
else
|
||
Protect(luaV_finishget(L, rb, rc, ra, slot));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_ADDI) {
|
||
op_arithI(L, l_addi, luai_numadd);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_ADDK) {
|
||
op_arithK(L, l_addi, luai_numadd);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SUBK) {
|
||
op_arithK(L, l_subi, luai_numsub);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MULK) {
|
||
op_arithK(L, l_muli, luai_nummul);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MODK) {
|
||
savestate(L, ci); /* in case of division by 0 */
|
||
op_arithK(L, luaV_mod, luaV_modf);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_POWK) {
|
||
op_arithfK(L, luai_numpow);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_DIVK) {
|
||
op_arithfK(L, luai_numdiv);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_IDIVK) {
|
||
savestate(L, ci); /* in case of division by 0 */
|
||
op_arithK(L, luaV_idiv, luai_numidiv);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BANDK) {
|
||
op_bitwiseK(L, l_band);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BORK) {
|
||
op_bitwiseK(L, l_bor);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BXORK) {
|
||
op_bitwiseK(L, l_bxor);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SHRI) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
int ic = GETARG_sC(i);
|
||
lua_Integer ib;
|
||
if (tointegerns(rb, &ib)) {
|
||
pc++; setivalue(s2v(ra), luaV_shiftl(ib, -ic));
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SHLI) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
int ic = GETARG_sC(i);
|
||
lua_Integer ib;
|
||
if (tointegerns(rb, &ib)) {
|
||
pc++; setivalue(s2v(ra), luaV_shiftl(ic, ib));
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_ADD) {
|
||
op_arith(L, l_addi, luai_numadd);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SUB) {
|
||
op_arith(L, l_subi, luai_numsub);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MUL) {
|
||
op_arith(L, l_muli, luai_nummul);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MOD) {
|
||
savestate(L, ci); /* in case of division by 0 */
|
||
op_arith(L, luaV_mod, luaV_modf);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_POW) {
|
||
op_arithf(L, luai_numpow);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_DIV) { /* float division (always with floats) */
|
||
op_arithf(L, luai_numdiv);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_IDIV) { /* floor division */
|
||
savestate(L, ci); /* in case of division by 0 */
|
||
op_arith(L, luaV_idiv, luai_numidiv);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BAND) {
|
||
op_bitwise(L, l_band);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BOR) {
|
||
op_bitwise(L, l_bor);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BXOR) {
|
||
op_bitwise(L, l_bxor);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SHR) {
|
||
op_bitwise(L, luaV_shiftr);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_SHL) {
|
||
op_bitwise(L, luaV_shiftl);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MMBIN) {
|
||
StkId ra = RA(i);
|
||
Instruction pi = *(pc - 2); /* original arith. expression */
|
||
TValue *rb = vRB(i);
|
||
TMS tm = (TMS)GETARG_C(i);
|
||
StkId result = RA(pi);
|
||
lua_assert(OP_ADD <= GET_OPCODE(pi) && GET_OPCODE(pi) <= OP_SHR);
|
||
Protect(luaT_trybinTM(L, s2v(ra), rb, result, tm));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MMBINI) {
|
||
StkId ra = RA(i);
|
||
Instruction pi = *(pc - 2); /* original arith. expression */
|
||
int imm = GETARG_sB(i);
|
||
TMS tm = (TMS)GETARG_C(i);
|
||
int flip = GETARG_k(i);
|
||
StkId result = RA(pi);
|
||
Protect(luaT_trybiniTM(L, s2v(ra), imm, flip, result, tm));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_MMBINK) {
|
||
StkId ra = RA(i);
|
||
Instruction pi = *(pc - 2); /* original arith. expression */
|
||
TValue *imm = KB(i);
|
||
TMS tm = (TMS)GETARG_C(i);
|
||
int flip = GETARG_k(i);
|
||
StkId result = RA(pi);
|
||
Protect(luaT_trybinassocTM(L, s2v(ra), imm, flip, result, tm));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_UNM) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
lua_Number nb;
|
||
if (ttisinteger(rb)) {
|
||
lua_Integer ib = ivalue(rb);
|
||
setivalue(s2v(ra), intop(-, 0, ib));
|
||
}
|
||
else if (tonumberns(rb, nb)) {
|
||
setfltvalue(s2v(ra), luai_numunm(L, nb));
|
||
}
|
||
else
|
||
Protect(luaT_trybinTM(L, rb, rb, ra, TM_UNM));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_BNOT) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
lua_Integer ib;
|
||
if (tointegerns(rb, &ib)) {
|
||
setivalue(s2v(ra), intop(^, ~l_castS2U(0), ib));
|
||
}
|
||
else
|
||
Protect(luaT_trybinTM(L, rb, rb, ra, TM_BNOT));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_NOT) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
if (l_isfalse(rb))
|
||
setbtvalue(s2v(ra));
|
||
else
|
||
setbfvalue(s2v(ra));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LEN) {
|
||
StkId ra = RA(i);
|
||
Protect(luaV_objlen(L, ra, vRB(i)));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_CONCAT) {
|
||
StkId ra = RA(i);
|
||
int n = GETARG_B(i); /* number of elements to concatenate */
|
||
L->top.p = ra + n; /* mark the end of concat operands */
|
||
ProtectNT(luaV_concat(L, n));
|
||
checkGC(L, L->top.p); /* 'luaV_concat' ensures correct top */
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_CLOSE) {
|
||
StkId ra = RA(i);
|
||
Protect(luaF_close(L, ra, LUA_OK, 1));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_TBC) {
|
||
StkId ra = RA(i);
|
||
/* create new to-be-closed upvalue */
|
||
halfProtect(luaF_newtbcupval(L, ra));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_JMP) {
|
||
dojump(ci, i, 0);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_EQ) {
|
||
StkId ra = RA(i);
|
||
int cond;
|
||
TValue *rb = vRB(i);
|
||
Protect(cond = luaV_equalobj(L, s2v(ra), rb));
|
||
docondjump();
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LT) {
|
||
op_order(L, l_lti, LTnum, lessthanothers);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LE) {
|
||
op_order(L, l_lei, LEnum, lessequalothers);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_EQK) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = KB(i);
|
||
/* basic types do not use '__eq'; we can use raw equality */
|
||
int cond = luaV_rawequalobj(s2v(ra), rb);
|
||
docondjump();
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_EQI) {
|
||
StkId ra = RA(i);
|
||
int cond;
|
||
int im = GETARG_sB(i);
|
||
if (ttisinteger(s2v(ra)))
|
||
cond = (ivalue(s2v(ra)) == im);
|
||
else if (ttisfloat(s2v(ra)))
|
||
cond = luai_numeq(fltvalue(s2v(ra)), cast_num(im));
|
||
else
|
||
cond = 0; /* other types cannot be equal to a number */
|
||
docondjump();
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LTI) {
|
||
op_orderI(L, l_lti, luai_numlt, 0, TM_LT);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_LEI) {
|
||
op_orderI(L, l_lei, luai_numle, 0, TM_LE);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GTI) {
|
||
op_orderI(L, l_gti, luai_numgt, 1, TM_LT);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_GEI) {
|
||
op_orderI(L, l_gei, luai_numge, 1, TM_LE);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_TEST) {
|
||
StkId ra = RA(i);
|
||
int cond = !l_isfalse(s2v(ra));
|
||
docondjump();
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_TESTSET) {
|
||
StkId ra = RA(i);
|
||
TValue *rb = vRB(i);
|
||
if (l_isfalse(rb) == GETARG_k(i))
|
||
pc++;
|
||
else {
|
||
setobj2s(L, ra, rb);
|
||
donextjump(ci);
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_CALL) {
|
||
StkId ra = RA(i);
|
||
CallInfo *newci;
|
||
int b = GETARG_B(i);
|
||
int nresults = GETARG_C(i) - 1;
|
||
if (b != 0) /* fixed number of arguments? */
|
||
L->top.p = ra + b; /* top signals number of arguments */
|
||
/* else previous instruction set top */
|
||
savepc(L); /* in case of errors */
|
||
if ((newci = luaD_precall(L, ra, nresults)) == NULL)
|
||
updatetrap(ci); /* C call; nothing else to be done */
|
||
else { /* Lua call: run function in this same C frame */
|
||
ci = newci;
|
||
goto startfunc;
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_TAILCALL) {
|
||
StkId ra = RA(i);
|
||
int b = GETARG_B(i); /* number of arguments + 1 (function) */
|
||
int n; /* number of results when calling a C function */
|
||
int nparams1 = GETARG_C(i);
|
||
/* delta is virtual 'func' - real 'func' (vararg functions) */
|
||
int delta = (nparams1) ? ci->u.l.nextraargs + nparams1 : 0;
|
||
if (b != 0)
|
||
L->top.p = ra + b;
|
||
else /* previous instruction set top */
|
||
b = cast_int(L->top.p - ra);
|
||
savepc(ci); /* several calls here can raise errors */
|
||
if (TESTARG_k(i)) {
|
||
luaF_closeupval(L, base); /* close upvalues from current call */
|
||
lua_assert(L->tbclist.p < base); /* no pending tbc variables */
|
||
lua_assert(base == ci->func.p + 1);
|
||
}
|
||
if ((n = luaD_pretailcall(L, ci, ra, b, delta)) < 0) /* Lua function? */
|
||
goto startfunc; /* execute the callee */
|
||
else { /* C function? */
|
||
ci->func.p -= delta; /* restore 'func' (if vararg) */
|
||
luaD_poscall(L, ci, n); /* finish caller */
|
||
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
||
goto ret; /* caller returns after the tail call */
|
||
}
|
||
}
|
||
vmcase(OP_RETURN) {
|
||
StkId ra = RA(i);
|
||
int n = GETARG_B(i) - 1; /* number of results */
|
||
int nparams1 = GETARG_C(i);
|
||
if (n < 0) /* not fixed? */
|
||
n = cast_int(L->top.p - ra); /* get what is available */
|
||
savepc(ci);
|
||
if (TESTARG_k(i)) { /* may there be open upvalues? */
|
||
ci->u2.nres = n; /* save number of returns */
|
||
if (L->top.p < ci->top.p)
|
||
L->top.p = ci->top.p;
|
||
luaF_close(L, base, CLOSEKTOP, 1);
|
||
updatetrap(ci);
|
||
updatestack(ci);
|
||
}
|
||
if (nparams1) /* vararg function? */
|
||
ci->func.p -= ci->u.l.nextraargs + nparams1;
|
||
L->top.p = ra + n; /* set call for 'luaD_poscall' */
|
||
luaD_poscall(L, ci, n);
|
||
updatetrap(ci); /* 'luaD_poscall' can change hooks */
|
||
goto ret;
|
||
}
|
||
vmcase(OP_RETURN0) {
|
||
if (l_unlikely(L->hookmask)) {
|
||
StkId ra = RA(i);
|
||
L->top.p = ra;
|
||
savepc(ci);
|
||
luaD_poscall(L, ci, 0); /* no hurry... */
|
||
trap = 1;
|
||
}
|
||
else { /* do the 'poscall' here */
|
||
int nres;
|
||
L->ci = ci->previous; /* back to caller */
|
||
L->top.p = base - 1;
|
||
for (nres = ci->nresults; l_unlikely(nres > 0); nres--)
|
||
setnilvalue(s2v(L->top.p++)); /* all results are nil */
|
||
}
|
||
goto ret;
|
||
}
|
||
vmcase(OP_RETURN1) {
|
||
if (l_unlikely(L->hookmask)) {
|
||
StkId ra = RA(i);
|
||
L->top.p = ra + 1;
|
||
savepc(ci);
|
||
luaD_poscall(L, ci, 1); /* no hurry... */
|
||
trap = 1;
|
||
}
|
||
else { /* do the 'poscall' here */
|
||
int nres = ci->nresults;
|
||
L->ci = ci->previous; /* back to caller */
|
||
if (nres == 0)
|
||
L->top.p = base - 1; /* asked for no results */
|
||
else {
|
||
StkId ra = RA(i);
|
||
setobjs2s(L, base - 1, ra); /* at least this result */
|
||
L->top.p = base;
|
||
for (; l_unlikely(nres > 1); nres--)
|
||
setnilvalue(s2v(L->top.p++)); /* complete missing results */
|
||
}
|
||
}
|
||
ret: /* return from a Lua function */
|
||
if (ci->callstatus & CIST_FRESH)
|
||
return; /* end this frame */
|
||
else {
|
||
ci = ci->previous;
|
||
goto returning; /* continue running caller in this frame */
|
||
}
|
||
}
|
||
vmcase(OP_FORLOOP) {
|
||
StkId ra = RA(i);
|
||
if (ttisinteger(s2v(ra + 2))) { /* integer loop? */
|
||
lua_Unsigned count = l_castS2U(ivalue(s2v(ra + 1)));
|
||
if (count > 0) { /* still more iterations? */
|
||
lua_Integer step = ivalue(s2v(ra + 2));
|
||
lua_Integer idx = ivalue(s2v(ra)); /* internal index */
|
||
chgivalue(s2v(ra + 1), count - 1); /* update counter */
|
||
idx = intop(+, idx, step); /* add step to index */
|
||
chgivalue(s2v(ra), idx); /* update internal index */
|
||
setivalue(s2v(ra + 3), idx); /* and control variable */
|
||
pc -= GETARG_Bx(i); /* jump back */
|
||
}
|
||
}
|
||
else if (floatforloop(ra)) /* float loop */
|
||
pc -= GETARG_Bx(i); /* jump back */
|
||
updatetrap(ci); /* allows a signal to break the loop */
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_FORPREP) {
|
||
StkId ra = RA(i);
|
||
savestate(L, ci); /* in case of errors */
|
||
if (forprep(L, ra))
|
||
pc += GETARG_Bx(i) + 1; /* skip the loop */
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_TFORPREP) {
|
||
StkId ra = RA(i);
|
||
/* create to-be-closed upvalue (if needed) */
|
||
halfProtect(luaF_newtbcupval(L, ra + 3));
|
||
pc += GETARG_Bx(i);
|
||
i = *(pc++); /* go to next instruction */
|
||
lua_assert(GET_OPCODE(i) == OP_TFORCALL && ra == RA(i));
|
||
goto l_tforcall;
|
||
}
|
||
vmcase(OP_TFORCALL) {
|
||
l_tforcall: {
|
||
StkId ra = RA(i);
|
||
/* 'ra' has the iterator function, 'ra + 1' has the state,
|
||
'ra + 2' has the control variable, and 'ra + 3' has the
|
||
to-be-closed variable. The call will use the stack after
|
||
these values (starting at 'ra + 4')
|
||
*/
|
||
/* push function, state, and control variable */
|
||
memcpy(ra + 4, ra, 3 * sizeof(*ra));
|
||
L->top.p = ra + 4 + 3;
|
||
ProtectNT(luaD_call(L, ra + 4, GETARG_C(i))); /* do the call */
|
||
updatestack(ci); /* stack may have changed */
|
||
i = *(pc++); /* go to next instruction */
|
||
lua_assert(GET_OPCODE(i) == OP_TFORLOOP && ra == RA(i));
|
||
goto l_tforloop;
|
||
}}
|
||
vmcase(OP_TFORLOOP) {
|
||
l_tforloop: {
|
||
StkId ra = RA(i);
|
||
if (!ttisnil(s2v(ra + 4))) { /* continue loop? */
|
||
setobjs2s(L, ra + 2, ra + 4); /* save control variable */
|
||
pc -= GETARG_Bx(i); /* jump back */
|
||
}
|
||
vmbreak;
|
||
}}
|
||
vmcase(OP_SETLIST) {
|
||
StkId ra = RA(i);
|
||
int n = GETARG_B(i);
|
||
unsigned int last = GETARG_C(i);
|
||
Table *h = hvalue(s2v(ra));
|
||
if (n == 0)
|
||
n = cast_int(L->top.p - ra) - 1; /* get up to the top */
|
||
else
|
||
L->top.p = ci->top.p; /* correct top in case of emergency GC */
|
||
last += n;
|
||
if (TESTARG_k(i)) {
|
||
last += GETARG_Ax(*pc) * (MAXARG_C + 1);
|
||
pc++;
|
||
}
|
||
if (last > luaH_realasize(h)) /* needs more space? */
|
||
luaH_resizearray(L, h, last); /* preallocate it at once */
|
||
for (; n > 0; n--) {
|
||
TValue *val = s2v(ra + n);
|
||
setobj2t(L, &h->array[last - 1], val);
|
||
last--;
|
||
luaC_barrierback(L, obj2gco(h), val);
|
||
}
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_CLOSURE) {
|
||
StkId ra = RA(i);
|
||
Proto *p = cl->p->p[GETARG_Bx(i)];
|
||
halfProtect(pushclosure(L, p, cl->upvals, base, ra));
|
||
checkGC(L, ra + 1);
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_VARARG) {
|
||
StkId ra = RA(i);
|
||
int n = GETARG_C(i) - 1; /* required results */
|
||
Protect(luaT_getvarargs(L, ci, ra, n));
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_VARARGPREP) {
|
||
ProtectNT(luaT_adjustvarargs(L, GETARG_A(i), ci, cl->p));
|
||
if (l_unlikely(trap)) { /* previous "Protect" updated trap */
|
||
luaD_hookcall(L, ci);
|
||
L->oldpc = 1; /* next opcode will be seen as a "new" line */
|
||
}
|
||
updatebase(ci); /* function has new base after adjustment */
|
||
vmbreak;
|
||
}
|
||
vmcase(OP_EXTRAARG) {
|
||
lua_assert(0);
|
||
vmbreak;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* }================================================================== */
|
||
/*
|
||
** $Id: lapi.c $
|
||
** Lua API
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lapi_c
|
||
#define LUA_CORE
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <limits.h>
|
||
#include <stdarg.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lapi.h"*/
|
||
/*#include "ldebug.h"*/
|
||
/*#include "ldo.h"*/
|
||
/*#include "lfunc.h"*/
|
||
/*#include "lgc.h"*/
|
||
/*#include "lmem.h"*/
|
||
/*#include "lobject.h"*/
|
||
/*#include "lstate.h"*/
|
||
/*#include "lstring.h"*/
|
||
/*#include "ltable.h"*/
|
||
/*#include "ltm.h"*/
|
||
/*#include "lundump.h"*/
|
||
/*#include "lvm.h"*/
|
||
|
||
|
||
|
||
const char lua_ident[] =
|
||
"$LuaVersion: " LUA_COPYRIGHT " $"
|
||
"$LuaAuthors: " LUA_AUTHORS " $";
|
||
|
||
|
||
|
||
/*
|
||
** Test for a valid index (one that is not the 'nilvalue').
|
||
** '!ttisnil(o)' implies 'o != &G(L)->nilvalue', so it is not needed.
|
||
** However, it covers the most common cases in a faster way.
|
||
*/
|
||
#define isvalid(L, o) (!ttisnil(o) || o != &G(L)->nilvalue)
|
||
|
||
|
||
/* test for pseudo index */
|
||
#define ispseudo(i) ((i) <= LUA_REGISTRYINDEX)
|
||
|
||
/* test for upvalue */
|
||
#define isupvalue(i) ((i) < LUA_REGISTRYINDEX)
|
||
|
||
|
||
/*
|
||
** Convert an acceptable index to a pointer to its respective value.
|
||
** Non-valid indices return the special nil value 'G(L)->nilvalue'.
|
||
*/
|
||
static TValue *index2value (lua_State *L, int idx) {
|
||
CallInfo *ci = L->ci;
|
||
if (idx > 0) {
|
||
StkId o = ci->func.p + idx;
|
||
api_check(L, idx <= ci->top.p - (ci->func.p + 1), "unacceptable index");
|
||
if (o >= L->top.p) return &G(L)->nilvalue;
|
||
else return s2v(o);
|
||
}
|
||
else if (!ispseudo(idx)) { /* negative index */
|
||
api_check(L, idx != 0 && -idx <= L->top.p - (ci->func.p + 1),
|
||
"invalid index");
|
||
return s2v(L->top.p + idx);
|
||
}
|
||
else if (idx == LUA_REGISTRYINDEX)
|
||
return &G(L)->l_registry;
|
||
else { /* upvalues */
|
||
idx = LUA_REGISTRYINDEX - idx;
|
||
api_check(L, idx <= MAXUPVAL + 1, "upvalue index too large");
|
||
if (ttisCclosure(s2v(ci->func.p))) { /* C closure? */
|
||
CClosure *func = clCvalue(s2v(ci->func.p));
|
||
return (idx <= func->nupvalues) ? &func->upvalue[idx-1]
|
||
: &G(L)->nilvalue;
|
||
}
|
||
else { /* light C function or Lua function (through a hook)?) */
|
||
api_check(L, ttislcf(s2v(ci->func.p)), "caller not a C function");
|
||
return &G(L)->nilvalue; /* no upvalues */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** Convert a valid actual index (not a pseudo-index) to its address.
|
||
*/
|
||
l_sinline StkId index2stack (lua_State *L, int idx) {
|
||
CallInfo *ci = L->ci;
|
||
if (idx > 0) {
|
||
StkId o = ci->func.p + idx;
|
||
api_check(L, o < L->top.p, "invalid index");
|
||
return o;
|
||
}
|
||
else { /* non-positive index */
|
||
api_check(L, idx != 0 && -idx <= L->top.p - (ci->func.p + 1),
|
||
"invalid index");
|
||
api_check(L, !ispseudo(idx), "invalid index");
|
||
return L->top.p + idx;
|
||
}
|
||
}
|
||
|
||
|
||
LUA_API int lua_checkstack (lua_State *L, int n) {
|
||
int res;
|
||
CallInfo *ci;
|
||
lua_lock(L);
|
||
ci = L->ci;
|
||
api_check(L, n >= 0, "negative 'n'");
|
||
if (L->stack_last.p - L->top.p > n) /* stack large enough? */
|
||
res = 1; /* yes; check is OK */
|
||
else /* need to grow stack */
|
||
res = luaD_growstack(L, n, 0);
|
||
if (res && ci->top.p < L->top.p + n)
|
||
ci->top.p = L->top.p + n; /* adjust frame top */
|
||
lua_unlock(L);
|
||
return res;
|
||
}
|
||
|
||
|
||
LUA_API void lua_xmove (lua_State *from, lua_State *to, int n) {
|
||
int i;
|
||
if (from == to) return;
|
||
lua_lock(to);
|
||
api_checknelems(from, n);
|
||
api_check(from, G(from) == G(to), "moving among independent states");
|
||
api_check(from, to->ci->top.p - to->top.p >= n, "stack overflow");
|
||
from->top.p -= n;
|
||
for (i = 0; i < n; i++) {
|
||
setobjs2s(to, to->top.p, from->top.p + i);
|
||
to->top.p++; /* stack already checked by previous 'api_check' */
|
||
}
|
||
lua_unlock(to);
|
||
}
|
||
|
||
|
||
LUA_API lua_CFunction lua_atpanic (lua_State *L, lua_CFunction panicf) {
|
||
lua_CFunction old;
|
||
lua_lock(L);
|
||
old = G(L)->panic;
|
||
G(L)->panic = panicf;
|
||
lua_unlock(L);
|
||
return old;
|
||
}
|
||
|
||
|
||
LUA_API lua_Number lua_version (lua_State *L) {
|
||
UNUSED(L);
|
||
return LUA_VERSION_NUM;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** basic stack manipulation
|
||
*/
|
||
|
||
|
||
/*
|
||
** convert an acceptable stack index into an absolute index
|
||
*/
|
||
LUA_API int lua_absindex (lua_State *L, int idx) {
|
||
return (idx > 0 || ispseudo(idx))
|
||
? idx
|
||
: cast_int(L->top.p - L->ci->func.p) + idx;
|
||
}
|
||
|
||
|
||
LUA_API int lua_gettop (lua_State *L) {
|
||
return cast_int(L->top.p - (L->ci->func.p + 1));
|
||
}
|
||
|
||
|
||
LUA_API void lua_settop (lua_State *L, int idx) {
|
||
CallInfo *ci;
|
||
StkId func, newtop;
|
||
ptrdiff_t diff; /* difference for new top */
|
||
lua_lock(L);
|
||
ci = L->ci;
|
||
func = ci->func.p;
|
||
if (idx >= 0) {
|
||
api_check(L, idx <= ci->top.p - (func + 1), "new top too large");
|
||
diff = ((func + 1) + idx) - L->top.p;
|
||
for (; diff > 0; diff--)
|
||
setnilvalue(s2v(L->top.p++)); /* clear new slots */
|
||
}
|
||
else {
|
||
api_check(L, -(idx+1) <= (L->top.p - (func + 1)), "invalid new top");
|
||
diff = idx + 1; /* will "subtract" index (as it is negative) */
|
||
}
|
||
api_check(L, L->tbclist.p < L->top.p, "previous pop of an unclosed slot");
|
||
newtop = L->top.p + diff;
|
||
if (diff < 0 && L->tbclist.p >= newtop) {
|
||
lua_assert(hastocloseCfunc(ci->nresults));
|
||
newtop = luaF_close(L, newtop, CLOSEKTOP, 0);
|
||
}
|
||
L->top.p = newtop; /* correct top only after closing any upvalue */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_closeslot (lua_State *L, int idx) {
|
||
StkId level;
|
||
lua_lock(L);
|
||
level = index2stack(L, idx);
|
||
api_check(L, hastocloseCfunc(L->ci->nresults) && L->tbclist.p == level,
|
||
"no variable to close at given level");
|
||
level = luaF_close(L, level, CLOSEKTOP, 0);
|
||
setnilvalue(s2v(level));
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** Reverse the stack segment from 'from' to 'to'
|
||
** (auxiliary to 'lua_rotate')
|
||
** Note that we move(copy) only the value inside the stack.
|
||
** (We do not move additional fields that may exist.)
|
||
*/
|
||
l_sinline void reverse (lua_State *L, StkId from, StkId to) {
|
||
for (; from < to; from++, to--) {
|
||
TValue temp;
|
||
setobj(L, &temp, s2v(from));
|
||
setobjs2s(L, from, to);
|
||
setobj2s(L, to, &temp);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Let x = AB, where A is a prefix of length 'n'. Then,
|
||
** rotate x n == BA. But BA == (A^r . B^r)^r.
|
||
*/
|
||
LUA_API void lua_rotate (lua_State *L, int idx, int n) {
|
||
StkId p, t, m;
|
||
lua_lock(L);
|
||
t = L->top.p - 1; /* end of stack segment being rotated */
|
||
p = index2stack(L, idx); /* start of segment */
|
||
api_check(L, (n >= 0 ? n : -n) <= (t - p + 1), "invalid 'n'");
|
||
m = (n >= 0 ? t - n : p - n - 1); /* end of prefix */
|
||
reverse(L, p, m); /* reverse the prefix with length 'n' */
|
||
reverse(L, m + 1, t); /* reverse the suffix */
|
||
reverse(L, p, t); /* reverse the entire segment */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_copy (lua_State *L, int fromidx, int toidx) {
|
||
TValue *fr, *to;
|
||
lua_lock(L);
|
||
fr = index2value(L, fromidx);
|
||
to = index2value(L, toidx);
|
||
api_check(L, isvalid(L, to), "invalid index");
|
||
setobj(L, to, fr);
|
||
if (isupvalue(toidx)) /* function upvalue? */
|
||
luaC_barrier(L, clCvalue(s2v(L->ci->func.p)), fr);
|
||
/* LUA_REGISTRYINDEX does not need gc barrier
|
||
(collector revisits it before finishing collection) */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushvalue (lua_State *L, int idx) {
|
||
lua_lock(L);
|
||
setobj2s(L, L->top.p, index2value(L, idx));
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** access functions (stack -> C)
|
||
*/
|
||
|
||
|
||
LUA_API int lua_type (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return (isvalid(L, o) ? ttype(o) : LUA_TNONE);
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_typename (lua_State *L, int t) {
|
||
UNUSED(L);
|
||
api_check(L, LUA_TNONE <= t && t < LUA_NUMTYPES, "invalid type");
|
||
return ttypename(t);
|
||
}
|
||
|
||
|
||
LUA_API int lua_iscfunction (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return (ttislcf(o) || (ttisCclosure(o)));
|
||
}
|
||
|
||
|
||
LUA_API int lua_isinteger (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return ttisinteger(o);
|
||
}
|
||
|
||
|
||
LUA_API int lua_isnumber (lua_State *L, int idx) {
|
||
lua_Number n;
|
||
const TValue *o = index2value(L, idx);
|
||
return tonumber(o, &n);
|
||
}
|
||
|
||
|
||
LUA_API int lua_isstring (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return (ttisstring(o) || cvt2str(o));
|
||
}
|
||
|
||
|
||
LUA_API int lua_isuserdata (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return (ttisfulluserdata(o) || ttislightuserdata(o));
|
||
}
|
||
|
||
|
||
LUA_API int lua_rawequal (lua_State *L, int index1, int index2) {
|
||
const TValue *o1 = index2value(L, index1);
|
||
const TValue *o2 = index2value(L, index2);
|
||
return (isvalid(L, o1) && isvalid(L, o2)) ? luaV_rawequalobj(o1, o2) : 0;
|
||
}
|
||
|
||
|
||
LUA_API void lua_arith (lua_State *L, int op) {
|
||
lua_lock(L);
|
||
if (op != LUA_OPUNM && op != LUA_OPBNOT)
|
||
api_checknelems(L, 2); /* all other operations expect two operands */
|
||
else { /* for unary operations, add fake 2nd operand */
|
||
api_checknelems(L, 1);
|
||
setobjs2s(L, L->top.p, L->top.p - 1);
|
||
api_incr_top(L);
|
||
}
|
||
/* first operand at top - 2, second at top - 1; result go to top - 2 */
|
||
luaO_arith(L, op, s2v(L->top.p - 2), s2v(L->top.p - 1), L->top.p - 2);
|
||
L->top.p--; /* remove second operand */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API int lua_compare (lua_State *L, int index1, int index2, int op) {
|
||
const TValue *o1;
|
||
const TValue *o2;
|
||
int i = 0;
|
||
lua_lock(L); /* may call tag method */
|
||
o1 = index2value(L, index1);
|
||
o2 = index2value(L, index2);
|
||
if (isvalid(L, o1) && isvalid(L, o2)) {
|
||
switch (op) {
|
||
case LUA_OPEQ: i = luaV_equalobj(L, o1, o2); break;
|
||
case LUA_OPLT: i = luaV_lessthan(L, o1, o2); break;
|
||
case LUA_OPLE: i = luaV_lessequal(L, o1, o2); break;
|
||
default: api_check(L, 0, "invalid option");
|
||
}
|
||
}
|
||
lua_unlock(L);
|
||
return i;
|
||
}
|
||
|
||
|
||
LUA_API size_t lua_stringtonumber (lua_State *L, const char *s) {
|
||
size_t sz = luaO_str2num(s, s2v(L->top.p));
|
||
if (sz != 0)
|
||
api_incr_top(L);
|
||
return sz;
|
||
}
|
||
|
||
|
||
LUA_API lua_Number lua_tonumberx (lua_State *L, int idx, int *pisnum) {
|
||
lua_Number n = 0;
|
||
const TValue *o = index2value(L, idx);
|
||
int isnum = tonumber(o, &n);
|
||
if (pisnum)
|
||
*pisnum = isnum;
|
||
return n;
|
||
}
|
||
|
||
|
||
LUA_API lua_Integer lua_tointegerx (lua_State *L, int idx, int *pisnum) {
|
||
lua_Integer res = 0;
|
||
const TValue *o = index2value(L, idx);
|
||
int isnum = tointeger(o, &res);
|
||
if (pisnum)
|
||
*pisnum = isnum;
|
||
return res;
|
||
}
|
||
|
||
|
||
LUA_API int lua_toboolean (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return !l_isfalse(o);
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_tolstring (lua_State *L, int idx, size_t *len) {
|
||
TValue *o;
|
||
lua_lock(L);
|
||
o = index2value(L, idx);
|
||
if (!ttisstring(o)) {
|
||
if (!cvt2str(o)) { /* not convertible? */
|
||
if (len != NULL) *len = 0;
|
||
lua_unlock(L);
|
||
return NULL;
|
||
}
|
||
luaO_tostring(L, o);
|
||
luaC_checkGC(L);
|
||
o = index2value(L, idx); /* previous call may reallocate the stack */
|
||
}
|
||
if (len != NULL)
|
||
*len = tsslen(tsvalue(o));
|
||
lua_unlock(L);
|
||
return getstr(tsvalue(o));
|
||
}
|
||
|
||
|
||
LUA_API lua_Unsigned lua_rawlen (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
switch (ttypetag(o)) {
|
||
case LUA_VSHRSTR: return tsvalue(o)->shrlen;
|
||
case LUA_VLNGSTR: return tsvalue(o)->u.lnglen;
|
||
case LUA_VUSERDATA: return uvalue(o)->len;
|
||
case LUA_VTABLE: return luaH_getn(hvalue(o));
|
||
default: return 0;
|
||
}
|
||
}
|
||
|
||
|
||
LUA_API lua_CFunction lua_tocfunction (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
if (ttislcf(o)) return fvalue(o);
|
||
else if (ttisCclosure(o))
|
||
return clCvalue(o)->f;
|
||
else return NULL; /* not a C function */
|
||
}
|
||
|
||
|
||
l_sinline void *touserdata (const TValue *o) {
|
||
switch (ttype(o)) {
|
||
case LUA_TUSERDATA: return getudatamem(uvalue(o));
|
||
case LUA_TLIGHTUSERDATA: return pvalue(o);
|
||
default: return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
LUA_API void *lua_touserdata (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return touserdata(o);
|
||
}
|
||
|
||
|
||
LUA_API lua_State *lua_tothread (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
return (!ttisthread(o)) ? NULL : thvalue(o);
|
||
}
|
||
|
||
|
||
/*
|
||
** Returns a pointer to the internal representation of an object.
|
||
** Note that ANSI C does not allow the conversion of a pointer to
|
||
** function to a 'void*', so the conversion here goes through
|
||
** a 'size_t'. (As the returned pointer is only informative, this
|
||
** conversion should not be a problem.)
|
||
*/
|
||
LUA_API const void *lua_topointer (lua_State *L, int idx) {
|
||
const TValue *o = index2value(L, idx);
|
||
switch (ttypetag(o)) {
|
||
case LUA_VLCF: return cast_voidp(cast_sizet(fvalue(o)));
|
||
case LUA_VUSERDATA: case LUA_VLIGHTUSERDATA:
|
||
return touserdata(o);
|
||
default: {
|
||
if (iscollectable(o))
|
||
return gcvalue(o);
|
||
else
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** push functions (C -> stack)
|
||
*/
|
||
|
||
|
||
LUA_API void lua_pushnil (lua_State *L) {
|
||
lua_lock(L);
|
||
setnilvalue(s2v(L->top.p));
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushnumber (lua_State *L, lua_Number n) {
|
||
lua_lock(L);
|
||
setfltvalue(s2v(L->top.p), n);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushinteger (lua_State *L, lua_Integer n) {
|
||
lua_lock(L);
|
||
setivalue(s2v(L->top.p), n);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
/*
|
||
** Pushes on the stack a string with given length. Avoid using 's' when
|
||
** 'len' == 0 (as 's' can be NULL in that case), due to later use of
|
||
** 'memcmp' and 'memcpy'.
|
||
*/
|
||
LUA_API const char *lua_pushlstring (lua_State *L, const char *s, size_t len) {
|
||
TString *ts;
|
||
lua_lock(L);
|
||
ts = (len == 0) ? luaS_new(L, "") : luaS_newlstr(L, s, len);
|
||
setsvalue2s(L, L->top.p, ts);
|
||
api_incr_top(L);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
return getstr(ts);
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_pushstring (lua_State *L, const char *s) {
|
||
lua_lock(L);
|
||
if (s == NULL)
|
||
setnilvalue(s2v(L->top.p));
|
||
else {
|
||
TString *ts;
|
||
ts = luaS_new(L, s);
|
||
setsvalue2s(L, L->top.p, ts);
|
||
s = getstr(ts); /* internal copy's address */
|
||
}
|
||
api_incr_top(L);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
return s;
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_pushvfstring (lua_State *L, const char *fmt,
|
||
va_list argp) {
|
||
const char *ret;
|
||
lua_lock(L);
|
||
ret = luaO_pushvfstring(L, fmt, argp);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
return ret;
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_pushfstring (lua_State *L, const char *fmt, ...) {
|
||
const char *ret;
|
||
va_list argp;
|
||
lua_lock(L);
|
||
va_start(argp, fmt);
|
||
ret = luaO_pushvfstring(L, fmt, argp);
|
||
va_end(argp);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
return ret;
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushcclosure (lua_State *L, lua_CFunction fn, int n) {
|
||
lua_lock(L);
|
||
if (n == 0) {
|
||
setfvalue(s2v(L->top.p), fn);
|
||
api_incr_top(L);
|
||
}
|
||
else {
|
||
CClosure *cl;
|
||
api_checknelems(L, n);
|
||
api_check(L, n <= MAXUPVAL, "upvalue index too large");
|
||
cl = luaF_newCclosure(L, n);
|
||
cl->f = fn;
|
||
L->top.p -= n;
|
||
while (n--) {
|
||
setobj2n(L, &cl->upvalue[n], s2v(L->top.p + n));
|
||
/* does not need barrier because closure is white */
|
||
lua_assert(iswhite(cl));
|
||
}
|
||
setclCvalue(L, s2v(L->top.p), cl);
|
||
api_incr_top(L);
|
||
luaC_checkGC(L);
|
||
}
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushboolean (lua_State *L, int b) {
|
||
lua_lock(L);
|
||
if (b)
|
||
setbtvalue(s2v(L->top.p));
|
||
else
|
||
setbfvalue(s2v(L->top.p));
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_pushlightuserdata (lua_State *L, void *p) {
|
||
lua_lock(L);
|
||
setpvalue(s2v(L->top.p), p);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API int lua_pushthread (lua_State *L) {
|
||
lua_lock(L);
|
||
setthvalue(L, s2v(L->top.p), L);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
return (G(L)->mainthread == L);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** get functions (Lua -> stack)
|
||
*/
|
||
|
||
|
||
l_sinline int auxgetstr (lua_State *L, const TValue *t, const char *k) {
|
||
const TValue *slot;
|
||
TString *str = luaS_new(L, k);
|
||
if (luaV_fastget(L, t, str, slot, luaH_getstr)) {
|
||
setobj2s(L, L->top.p, slot);
|
||
api_incr_top(L);
|
||
}
|
||
else {
|
||
setsvalue2s(L, L->top.p, str);
|
||
api_incr_top(L);
|
||
luaV_finishget(L, t, s2v(L->top.p - 1), L->top.p - 1, slot);
|
||
}
|
||
lua_unlock(L);
|
||
return ttype(s2v(L->top.p - 1));
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the global table in the registry. Since all predefined
|
||
** indices in the registry were inserted right when the registry
|
||
** was created and never removed, they must always be in the array
|
||
** part of the registry.
|
||
*/
|
||
#define getGtable(L) \
|
||
(&hvalue(&G(L)->l_registry)->array[LUA_RIDX_GLOBALS - 1])
|
||
|
||
|
||
LUA_API int lua_getglobal (lua_State *L, const char *name) {
|
||
const TValue *G;
|
||
lua_lock(L);
|
||
G = getGtable(L);
|
||
return auxgetstr(L, G, name);
|
||
}
|
||
|
||
|
||
LUA_API int lua_gettable (lua_State *L, int idx) {
|
||
const TValue *slot;
|
||
TValue *t;
|
||
lua_lock(L);
|
||
t = index2value(L, idx);
|
||
if (luaV_fastget(L, t, s2v(L->top.p - 1), slot, luaH_get)) {
|
||
setobj2s(L, L->top.p - 1, slot);
|
||
}
|
||
else
|
||
luaV_finishget(L, t, s2v(L->top.p - 1), L->top.p - 1, slot);
|
||
lua_unlock(L);
|
||
return ttype(s2v(L->top.p - 1));
|
||
}
|
||
|
||
|
||
LUA_API int lua_getfield (lua_State *L, int idx, const char *k) {
|
||
lua_lock(L);
|
||
return auxgetstr(L, index2value(L, idx), k);
|
||
}
|
||
|
||
|
||
LUA_API int lua_geti (lua_State *L, int idx, lua_Integer n) {
|
||
TValue *t;
|
||
const TValue *slot;
|
||
lua_lock(L);
|
||
t = index2value(L, idx);
|
||
if (luaV_fastgeti(L, t, n, slot)) {
|
||
setobj2s(L, L->top.p, slot);
|
||
}
|
||
else {
|
||
TValue aux;
|
||
setivalue(&aux, n);
|
||
luaV_finishget(L, t, &aux, L->top.p, slot);
|
||
}
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
return ttype(s2v(L->top.p - 1));
|
||
}
|
||
|
||
|
||
l_sinline int finishrawget (lua_State *L, const TValue *val) {
|
||
if (isempty(val)) /* avoid copying empty items to the stack */
|
||
setnilvalue(s2v(L->top.p));
|
||
else
|
||
setobj2s(L, L->top.p, val);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
return ttype(s2v(L->top.p - 1));
|
||
}
|
||
|
||
|
||
static Table *gettable (lua_State *L, int idx) {
|
||
TValue *t = index2value(L, idx);
|
||
api_check(L, ttistable(t), "table expected");
|
||
return hvalue(t);
|
||
}
|
||
|
||
|
||
LUA_API int lua_rawget (lua_State *L, int idx) {
|
||
Table *t;
|
||
const TValue *val;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
t = gettable(L, idx);
|
||
val = luaH_get(t, s2v(L->top.p - 1));
|
||
L->top.p--; /* remove key */
|
||
return finishrawget(L, val);
|
||
}
|
||
|
||
|
||
LUA_API int lua_rawgeti (lua_State *L, int idx, lua_Integer n) {
|
||
Table *t;
|
||
lua_lock(L);
|
||
t = gettable(L, idx);
|
||
return finishrawget(L, luaH_getint(t, n));
|
||
}
|
||
|
||
|
||
LUA_API int lua_rawgetp (lua_State *L, int idx, const void *p) {
|
||
Table *t;
|
||
TValue k;
|
||
lua_lock(L);
|
||
t = gettable(L, idx);
|
||
setpvalue(&k, cast_voidp(p));
|
||
return finishrawget(L, luaH_get(t, &k));
|
||
}
|
||
|
||
|
||
LUA_API void lua_createtable (lua_State *L, int narray, int nrec) {
|
||
Table *t;
|
||
lua_lock(L);
|
||
t = luaH_new(L);
|
||
sethvalue2s(L, L->top.p, t);
|
||
api_incr_top(L);
|
||
if (narray > 0 || nrec > 0)
|
||
luaH_resize(L, t, narray, nrec);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API int lua_getmetatable (lua_State *L, int objindex) {
|
||
const TValue *obj;
|
||
Table *mt;
|
||
int res = 0;
|
||
lua_lock(L);
|
||
obj = index2value(L, objindex);
|
||
switch (ttype(obj)) {
|
||
case LUA_TTABLE:
|
||
mt = hvalue(obj)->metatable;
|
||
break;
|
||
case LUA_TUSERDATA:
|
||
mt = uvalue(obj)->metatable;
|
||
break;
|
||
default:
|
||
mt = G(L)->mt[ttype(obj)];
|
||
break;
|
||
}
|
||
if (mt != NULL) {
|
||
sethvalue2s(L, L->top.p, mt);
|
||
api_incr_top(L);
|
||
res = 1;
|
||
}
|
||
lua_unlock(L);
|
||
return res;
|
||
}
|
||
|
||
|
||
LUA_API int lua_getiuservalue (lua_State *L, int idx, int n) {
|
||
TValue *o;
|
||
int t;
|
||
lua_lock(L);
|
||
o = index2value(L, idx);
|
||
api_check(L, ttisfulluserdata(o), "full userdata expected");
|
||
if (n <= 0 || n > uvalue(o)->nuvalue) {
|
||
setnilvalue(s2v(L->top.p));
|
||
t = LUA_TNONE;
|
||
}
|
||
else {
|
||
setobj2s(L, L->top.p, &uvalue(o)->uv[n - 1].uv);
|
||
t = ttype(s2v(L->top.p));
|
||
}
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
return t;
|
||
}
|
||
|
||
|
||
/*
|
||
** set functions (stack -> Lua)
|
||
*/
|
||
|
||
/*
|
||
** t[k] = value at the top of the stack (where 'k' is a string)
|
||
*/
|
||
static void auxsetstr (lua_State *L, const TValue *t, const char *k) {
|
||
const TValue *slot;
|
||
TString *str = luaS_new(L, k);
|
||
api_checknelems(L, 1);
|
||
if (luaV_fastget(L, t, str, slot, luaH_getstr)) {
|
||
luaV_finishfastset(L, t, slot, s2v(L->top.p - 1));
|
||
L->top.p--; /* pop value */
|
||
}
|
||
else {
|
||
setsvalue2s(L, L->top.p, str); /* push 'str' (to make it a TValue) */
|
||
api_incr_top(L);
|
||
luaV_finishset(L, t, s2v(L->top.p - 1), s2v(L->top.p - 2), slot);
|
||
L->top.p -= 2; /* pop value and key */
|
||
}
|
||
lua_unlock(L); /* lock done by caller */
|
||
}
|
||
|
||
|
||
LUA_API void lua_setglobal (lua_State *L, const char *name) {
|
||
const TValue *G;
|
||
lua_lock(L); /* unlock done in 'auxsetstr' */
|
||
G = getGtable(L);
|
||
auxsetstr(L, G, name);
|
||
}
|
||
|
||
|
||
LUA_API void lua_settable (lua_State *L, int idx) {
|
||
TValue *t;
|
||
const TValue *slot;
|
||
lua_lock(L);
|
||
api_checknelems(L, 2);
|
||
t = index2value(L, idx);
|
||
if (luaV_fastget(L, t, s2v(L->top.p - 2), slot, luaH_get)) {
|
||
luaV_finishfastset(L, t, slot, s2v(L->top.p - 1));
|
||
}
|
||
else
|
||
luaV_finishset(L, t, s2v(L->top.p - 2), s2v(L->top.p - 1), slot);
|
||
L->top.p -= 2; /* pop index and value */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_setfield (lua_State *L, int idx, const char *k) {
|
||
lua_lock(L); /* unlock done in 'auxsetstr' */
|
||
auxsetstr(L, index2value(L, idx), k);
|
||
}
|
||
|
||
|
||
LUA_API void lua_seti (lua_State *L, int idx, lua_Integer n) {
|
||
TValue *t;
|
||
const TValue *slot;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
t = index2value(L, idx);
|
||
if (luaV_fastgeti(L, t, n, slot)) {
|
||
luaV_finishfastset(L, t, slot, s2v(L->top.p - 1));
|
||
}
|
||
else {
|
||
TValue aux;
|
||
setivalue(&aux, n);
|
||
luaV_finishset(L, t, &aux, s2v(L->top.p - 1), slot);
|
||
}
|
||
L->top.p--; /* pop value */
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
static void aux_rawset (lua_State *L, int idx, TValue *key, int n) {
|
||
Table *t;
|
||
lua_lock(L);
|
||
api_checknelems(L, n);
|
||
t = gettable(L, idx);
|
||
luaH_set(L, t, key, s2v(L->top.p - 1));
|
||
invalidateTMcache(t);
|
||
luaC_barrierback(L, obj2gco(t), s2v(L->top.p - 1));
|
||
L->top.p -= n;
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_rawset (lua_State *L, int idx) {
|
||
aux_rawset(L, idx, s2v(L->top.p - 2), 2);
|
||
}
|
||
|
||
|
||
LUA_API void lua_rawsetp (lua_State *L, int idx, const void *p) {
|
||
TValue k;
|
||
setpvalue(&k, cast_voidp(p));
|
||
aux_rawset(L, idx, &k, 1);
|
||
}
|
||
|
||
|
||
LUA_API void lua_rawseti (lua_State *L, int idx, lua_Integer n) {
|
||
Table *t;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
t = gettable(L, idx);
|
||
luaH_setint(L, t, n, s2v(L->top.p - 1));
|
||
luaC_barrierback(L, obj2gco(t), s2v(L->top.p - 1));
|
||
L->top.p--;
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API int lua_setmetatable (lua_State *L, int objindex) {
|
||
TValue *obj;
|
||
Table *mt;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
obj = index2value(L, objindex);
|
||
if (ttisnil(s2v(L->top.p - 1)))
|
||
mt = NULL;
|
||
else {
|
||
api_check(L, ttistable(s2v(L->top.p - 1)), "table expected");
|
||
mt = hvalue(s2v(L->top.p - 1));
|
||
}
|
||
switch (ttype(obj)) {
|
||
case LUA_TTABLE: {
|
||
hvalue(obj)->metatable = mt;
|
||
if (mt) {
|
||
luaC_objbarrier(L, gcvalue(obj), mt);
|
||
luaC_checkfinalizer(L, gcvalue(obj), mt);
|
||
}
|
||
break;
|
||
}
|
||
case LUA_TUSERDATA: {
|
||
uvalue(obj)->metatable = mt;
|
||
if (mt) {
|
||
luaC_objbarrier(L, uvalue(obj), mt);
|
||
luaC_checkfinalizer(L, gcvalue(obj), mt);
|
||
}
|
||
break;
|
||
}
|
||
default: {
|
||
G(L)->mt[ttype(obj)] = mt;
|
||
break;
|
||
}
|
||
}
|
||
L->top.p--;
|
||
lua_unlock(L);
|
||
return 1;
|
||
}
|
||
|
||
|
||
LUA_API int lua_setiuservalue (lua_State *L, int idx, int n) {
|
||
TValue *o;
|
||
int res;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
o = index2value(L, idx);
|
||
api_check(L, ttisfulluserdata(o), "full userdata expected");
|
||
if (!(cast_uint(n) - 1u < cast_uint(uvalue(o)->nuvalue)))
|
||
res = 0; /* 'n' not in [1, uvalue(o)->nuvalue] */
|
||
else {
|
||
setobj(L, &uvalue(o)->uv[n - 1].uv, s2v(L->top.p - 1));
|
||
luaC_barrierback(L, gcvalue(o), s2v(L->top.p - 1));
|
||
res = 1;
|
||
}
|
||
L->top.p--;
|
||
lua_unlock(L);
|
||
return res;
|
||
}
|
||
|
||
|
||
/*
|
||
** 'load' and 'call' functions (run Lua code)
|
||
*/
|
||
|
||
|
||
#define checkresults(L,na,nr) \
|
||
api_check(L, (nr) == LUA_MULTRET \
|
||
|| (L->ci->top.p - L->top.p >= (nr) - (na)), \
|
||
"results from function overflow current stack size")
|
||
|
||
|
||
LUA_API void lua_callk (lua_State *L, int nargs, int nresults,
|
||
lua_KContext ctx, lua_KFunction k) {
|
||
StkId func;
|
||
lua_lock(L);
|
||
api_check(L, k == NULL || !isLua(L->ci),
|
||
"cannot use continuations inside hooks");
|
||
api_checknelems(L, nargs+1);
|
||
api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread");
|
||
checkresults(L, nargs, nresults);
|
||
func = L->top.p - (nargs+1);
|
||
if (k != NULL && yieldable(L)) { /* need to prepare continuation? */
|
||
L->ci->u.c.k = k; /* save continuation */
|
||
L->ci->u.c.ctx = ctx; /* save context */
|
||
luaD_call(L, func, nresults); /* do the call */
|
||
}
|
||
else /* no continuation or no yieldable */
|
||
luaD_callnoyield(L, func, nresults); /* just do the call */
|
||
adjustresults(L, nresults);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** Execute a protected call.
|
||
*/
|
||
struct CallS { /* data to 'f_call' */
|
||
StkId func;
|
||
int nresults;
|
||
};
|
||
|
||
|
||
static void f_call (lua_State *L, void *ud) {
|
||
struct CallS *c = cast(struct CallS *, ud);
|
||
luaD_callnoyield(L, c->func, c->nresults);
|
||
}
|
||
|
||
|
||
|
||
LUA_API int lua_pcallk (lua_State *L, int nargs, int nresults, int errfunc,
|
||
lua_KContext ctx, lua_KFunction k) {
|
||
struct CallS c;
|
||
int status;
|
||
ptrdiff_t func;
|
||
lua_lock(L);
|
||
api_check(L, k == NULL || !isLua(L->ci),
|
||
"cannot use continuations inside hooks");
|
||
api_checknelems(L, nargs+1);
|
||
api_check(L, L->status == LUA_OK, "cannot do calls on non-normal thread");
|
||
checkresults(L, nargs, nresults);
|
||
if (errfunc == 0)
|
||
func = 0;
|
||
else {
|
||
StkId o = index2stack(L, errfunc);
|
||
api_check(L, ttisfunction(s2v(o)), "error handler must be a function");
|
||
func = savestack(L, o);
|
||
}
|
||
c.func = L->top.p - (nargs+1); /* function to be called */
|
||
if (k == NULL || !yieldable(L)) { /* no continuation or no yieldable? */
|
||
c.nresults = nresults; /* do a 'conventional' protected call */
|
||
status = luaD_pcall(L, f_call, &c, savestack(L, c.func), func);
|
||
}
|
||
else { /* prepare continuation (call is already protected by 'resume') */
|
||
CallInfo *ci = L->ci;
|
||
ci->u.c.k = k; /* save continuation */
|
||
ci->u.c.ctx = ctx; /* save context */
|
||
/* save information for error recovery */
|
||
ci->u2.funcidx = cast_int(savestack(L, c.func));
|
||
ci->u.c.old_errfunc = L->errfunc;
|
||
L->errfunc = func;
|
||
setoah(ci->callstatus, L->allowhook); /* save value of 'allowhook' */
|
||
ci->callstatus |= CIST_YPCALL; /* function can do error recovery */
|
||
luaD_call(L, c.func, nresults); /* do the call */
|
||
ci->callstatus &= ~CIST_YPCALL;
|
||
L->errfunc = ci->u.c.old_errfunc;
|
||
status = LUA_OK; /* if it is here, there were no errors */
|
||
}
|
||
adjustresults(L, nresults);
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_load (lua_State *L, lua_Reader reader, void *data,
|
||
const char *chunkname, const char *mode) {
|
||
ZIO z;
|
||
int status;
|
||
lua_lock(L);
|
||
if (!chunkname) chunkname = "?";
|
||
luaZ_init(L, &z, reader, data);
|
||
status = luaD_protectedparser(L, &z, chunkname, mode);
|
||
if (status == LUA_OK) { /* no errors? */
|
||
LClosure *f = clLvalue(s2v(L->top.p - 1)); /* get new function */
|
||
if (f->nupvalues >= 1) { /* does it have an upvalue? */
|
||
/* get global table from registry */
|
||
const TValue *gt = getGtable(L);
|
||
/* set global table as 1st upvalue of 'f' (may be LUA_ENV) */
|
||
setobj(L, f->upvals[0]->v.p, gt);
|
||
luaC_barrier(L, f->upvals[0], gt);
|
||
}
|
||
}
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_dump (lua_State *L, lua_Writer writer, void *data, int strip) {
|
||
int status;
|
||
TValue *o;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
o = s2v(L->top.p - 1);
|
||
if (isLfunction(o))
|
||
status = luaU_dump(L, getproto(o), writer, data, strip);
|
||
else
|
||
status = 1;
|
||
lua_unlock(L);
|
||
return status;
|
||
}
|
||
|
||
|
||
LUA_API int lua_status (lua_State *L) {
|
||
return L->status;
|
||
}
|
||
|
||
|
||
/*
|
||
** Garbage-collection function
|
||
*/
|
||
LUA_API int lua_gc (lua_State *L, int what, ...) {
|
||
va_list argp;
|
||
int res = 0;
|
||
global_State *g = G(L);
|
||
if (g->gcstp & GCSTPGC) /* internal stop? */
|
||
return -1; /* all options are invalid when stopped */
|
||
lua_lock(L);
|
||
va_start(argp, what);
|
||
switch (what) {
|
||
case LUA_GCSTOP: {
|
||
g->gcstp = GCSTPUSR; /* stopped by the user */
|
||
break;
|
||
}
|
||
case LUA_GCRESTART: {
|
||
luaE_setdebt(g, 0);
|
||
g->gcstp = 0; /* (GCSTPGC must be already zero here) */
|
||
break;
|
||
}
|
||
case LUA_GCCOLLECT: {
|
||
luaC_fullgc(L, 0);
|
||
break;
|
||
}
|
||
case LUA_GCCOUNT: {
|
||
/* GC values are expressed in Kbytes: #bytes/2^10 */
|
||
res = cast_int(gettotalbytes(g) >> 10);
|
||
break;
|
||
}
|
||
case LUA_GCCOUNTB: {
|
||
res = cast_int(gettotalbytes(g) & 0x3ff);
|
||
break;
|
||
}
|
||
case LUA_GCSTEP: {
|
||
int data = va_arg(argp, int);
|
||
l_mem debt = 1; /* =1 to signal that it did an actual step */
|
||
lu_byte oldstp = g->gcstp;
|
||
g->gcstp = 0; /* allow GC to run (GCSTPGC must be zero here) */
|
||
if (data == 0) {
|
||
luaE_setdebt(g, 0); /* do a basic step */
|
||
luaC_step(L);
|
||
}
|
||
else { /* add 'data' to total debt */
|
||
debt = cast(l_mem, data) * 1024 + g->GCdebt;
|
||
luaE_setdebt(g, debt);
|
||
luaC_checkGC(L);
|
||
}
|
||
g->gcstp = oldstp; /* restore previous state */
|
||
if (debt > 0 && g->gcstate == GCSpause) /* end of cycle? */
|
||
res = 1; /* signal it */
|
||
break;
|
||
}
|
||
case LUA_GCSETPAUSE: {
|
||
int data = va_arg(argp, int);
|
||
res = getgcparam(g->gcpause);
|
||
setgcparam(g->gcpause, data);
|
||
break;
|
||
}
|
||
case LUA_GCSETSTEPMUL: {
|
||
int data = va_arg(argp, int);
|
||
res = getgcparam(g->gcstepmul);
|
||
setgcparam(g->gcstepmul, data);
|
||
break;
|
||
}
|
||
case LUA_GCISRUNNING: {
|
||
res = gcrunning(g);
|
||
break;
|
||
}
|
||
case LUA_GCGEN: {
|
||
int minormul = va_arg(argp, int);
|
||
int majormul = va_arg(argp, int);
|
||
res = isdecGCmodegen(g) ? LUA_GCGEN : LUA_GCINC;
|
||
if (minormul != 0)
|
||
g->genminormul = minormul;
|
||
if (majormul != 0)
|
||
setgcparam(g->genmajormul, majormul);
|
||
luaC_changemode(L, KGC_GEN);
|
||
break;
|
||
}
|
||
case LUA_GCINC: {
|
||
int pause = va_arg(argp, int);
|
||
int stepmul = va_arg(argp, int);
|
||
int stepsize = va_arg(argp, int);
|
||
res = isdecGCmodegen(g) ? LUA_GCGEN : LUA_GCINC;
|
||
if (pause != 0)
|
||
setgcparam(g->gcpause, pause);
|
||
if (stepmul != 0)
|
||
setgcparam(g->gcstepmul, stepmul);
|
||
if (stepsize != 0)
|
||
g->gcstepsize = stepsize;
|
||
luaC_changemode(L, KGC_INC);
|
||
break;
|
||
}
|
||
default: res = -1; /* invalid option */
|
||
}
|
||
va_end(argp);
|
||
lua_unlock(L);
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** miscellaneous functions
|
||
*/
|
||
|
||
|
||
LUA_API int lua_error (lua_State *L) {
|
||
TValue *errobj;
|
||
lua_lock(L);
|
||
errobj = s2v(L->top.p - 1);
|
||
api_checknelems(L, 1);
|
||
/* error object is the memory error message? */
|
||
if (ttisshrstring(errobj) && eqshrstr(tsvalue(errobj), G(L)->memerrmsg))
|
||
luaM_error(L); /* raise a memory error */
|
||
else
|
||
luaG_errormsg(L); /* raise a regular error */
|
||
/* code unreachable; will unlock when control actually leaves the kernel */
|
||
return 0; /* to avoid warnings */
|
||
}
|
||
|
||
|
||
LUA_API int lua_next (lua_State *L, int idx) {
|
||
Table *t;
|
||
int more;
|
||
lua_lock(L);
|
||
api_checknelems(L, 1);
|
||
t = gettable(L, idx);
|
||
more = luaH_next(L, t, L->top.p - 1);
|
||
if (more) {
|
||
api_incr_top(L);
|
||
}
|
||
else /* no more elements */
|
||
L->top.p -= 1; /* remove key */
|
||
lua_unlock(L);
|
||
return more;
|
||
}
|
||
|
||
|
||
LUA_API void lua_toclose (lua_State *L, int idx) {
|
||
int nresults;
|
||
StkId o;
|
||
lua_lock(L);
|
||
o = index2stack(L, idx);
|
||
nresults = L->ci->nresults;
|
||
api_check(L, L->tbclist.p < o, "given index below or equal a marked one");
|
||
luaF_newtbcupval(L, o); /* create new to-be-closed upvalue */
|
||
if (!hastocloseCfunc(nresults)) /* function not marked yet? */
|
||
L->ci->nresults = codeNresults(nresults); /* mark it */
|
||
lua_assert(hastocloseCfunc(L->ci->nresults));
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_concat (lua_State *L, int n) {
|
||
lua_lock(L);
|
||
api_checknelems(L, n);
|
||
if (n > 0)
|
||
luaV_concat(L, n);
|
||
else { /* nothing to concatenate */
|
||
setsvalue2s(L, L->top.p, luaS_newlstr(L, "", 0)); /* push empty string */
|
||
api_incr_top(L);
|
||
}
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API void lua_len (lua_State *L, int idx) {
|
||
TValue *t;
|
||
lua_lock(L);
|
||
t = index2value(L, idx);
|
||
luaV_objlen(L, L->top.p, t);
|
||
api_incr_top(L);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
LUA_API lua_Alloc lua_getallocf (lua_State *L, void **ud) {
|
||
lua_Alloc f;
|
||
lua_lock(L);
|
||
if (ud) *ud = G(L)->ud;
|
||
f = G(L)->frealloc;
|
||
lua_unlock(L);
|
||
return f;
|
||
}
|
||
|
||
|
||
LUA_API void lua_setallocf (lua_State *L, lua_Alloc f, void *ud) {
|
||
lua_lock(L);
|
||
G(L)->ud = ud;
|
||
G(L)->frealloc = f;
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
void lua_setwarnf (lua_State *L, lua_WarnFunction f, void *ud) {
|
||
lua_lock(L);
|
||
G(L)->ud_warn = ud;
|
||
G(L)->warnf = f;
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
void lua_warning (lua_State *L, const char *msg, int tocont) {
|
||
lua_lock(L);
|
||
luaE_warning(L, msg, tocont);
|
||
lua_unlock(L);
|
||
}
|
||
|
||
|
||
|
||
LUA_API void *lua_newuserdatauv (lua_State *L, size_t size, int nuvalue) {
|
||
Udata *u;
|
||
lua_lock(L);
|
||
api_check(L, 0 <= nuvalue && nuvalue < USHRT_MAX, "invalid value");
|
||
u = luaS_newudata(L, size, nuvalue);
|
||
setuvalue(L, s2v(L->top.p), u);
|
||
api_incr_top(L);
|
||
luaC_checkGC(L);
|
||
lua_unlock(L);
|
||
return getudatamem(u);
|
||
}
|
||
|
||
|
||
|
||
static const char *aux_upvalue (TValue *fi, int n, TValue **val,
|
||
GCObject **owner) {
|
||
switch (ttypetag(fi)) {
|
||
case LUA_VCCL: { /* C closure */
|
||
CClosure *f = clCvalue(fi);
|
||
if (!(cast_uint(n) - 1u < cast_uint(f->nupvalues)))
|
||
return NULL; /* 'n' not in [1, f->nupvalues] */
|
||
*val = &f->upvalue[n-1];
|
||
if (owner) *owner = obj2gco(f);
|
||
return "";
|
||
}
|
||
case LUA_VLCL: { /* Lua closure */
|
||
LClosure *f = clLvalue(fi);
|
||
TString *name;
|
||
Proto *p = f->p;
|
||
if (!(cast_uint(n) - 1u < cast_uint(p->sizeupvalues)))
|
||
return NULL; /* 'n' not in [1, p->sizeupvalues] */
|
||
*val = f->upvals[n-1]->v.p;
|
||
if (owner) *owner = obj2gco(f->upvals[n - 1]);
|
||
name = p->upvalues[n-1].name;
|
||
return (name == NULL) ? "(no name)" : getstr(name);
|
||
}
|
||
default: return NULL; /* not a closure */
|
||
}
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_getupvalue (lua_State *L, int funcindex, int n) {
|
||
const char *name;
|
||
TValue *val = NULL; /* to avoid warnings */
|
||
lua_lock(L);
|
||
name = aux_upvalue(index2value(L, funcindex), n, &val, NULL);
|
||
if (name) {
|
||
setobj2s(L, L->top.p, val);
|
||
api_incr_top(L);
|
||
}
|
||
lua_unlock(L);
|
||
return name;
|
||
}
|
||
|
||
|
||
LUA_API const char *lua_setupvalue (lua_State *L, int funcindex, int n) {
|
||
const char *name;
|
||
TValue *val = NULL; /* to avoid warnings */
|
||
GCObject *owner = NULL; /* to avoid warnings */
|
||
TValue *fi;
|
||
lua_lock(L);
|
||
fi = index2value(L, funcindex);
|
||
api_checknelems(L, 1);
|
||
name = aux_upvalue(fi, n, &val, &owner);
|
||
if (name) {
|
||
L->top.p--;
|
||
setobj(L, val, s2v(L->top.p));
|
||
luaC_barrier(L, owner, val);
|
||
}
|
||
lua_unlock(L);
|
||
return name;
|
||
}
|
||
|
||
|
||
static UpVal **getupvalref (lua_State *L, int fidx, int n, LClosure **pf) {
|
||
static const UpVal *const nullup = NULL;
|
||
LClosure *f;
|
||
TValue *fi = index2value(L, fidx);
|
||
api_check(L, ttisLclosure(fi), "Lua function expected");
|
||
f = clLvalue(fi);
|
||
if (pf) *pf = f;
|
||
if (1 <= n && n <= f->p->sizeupvalues)
|
||
return &f->upvals[n - 1]; /* get its upvalue pointer */
|
||
else
|
||
return (UpVal**)&nullup;
|
||
}
|
||
|
||
|
||
LUA_API void *lua_upvalueid (lua_State *L, int fidx, int n) {
|
||
TValue *fi = index2value(L, fidx);
|
||
switch (ttypetag(fi)) {
|
||
case LUA_VLCL: { /* lua closure */
|
||
return *getupvalref(L, fidx, n, NULL);
|
||
}
|
||
case LUA_VCCL: { /* C closure */
|
||
CClosure *f = clCvalue(fi);
|
||
if (1 <= n && n <= f->nupvalues)
|
||
return &f->upvalue[n - 1];
|
||
/* else */
|
||
} /* FALLTHROUGH */
|
||
case LUA_VLCF:
|
||
return NULL; /* light C functions have no upvalues */
|
||
default: {
|
||
api_check(L, 0, "function expected");
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
LUA_API void lua_upvaluejoin (lua_State *L, int fidx1, int n1,
|
||
int fidx2, int n2) {
|
||
LClosure *f1;
|
||
UpVal **up1 = getupvalref(L, fidx1, n1, &f1);
|
||
UpVal **up2 = getupvalref(L, fidx2, n2, NULL);
|
||
api_check(L, *up1 != NULL && *up2 != NULL, "invalid upvalue index");
|
||
*up1 = *up2;
|
||
luaC_objbarrier(L, f1, *up1);
|
||
}
|
||
|
||
|
||
/*
|
||
** $Id: lauxlib.c $
|
||
** Auxiliary functions for building Lua libraries
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lauxlib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <errno.h>
|
||
#include <stdarg.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
|
||
/*
|
||
** This file uses only the official API of Lua.
|
||
** Any function declared here could be written as an application function.
|
||
*/
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
|
||
|
||
#if !defined(MAX_SIZET)
|
||
/* maximum value for size_t */
|
||
#define MAX_SIZET ((size_t)(~(size_t)0))
|
||
#endif
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Traceback
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
#define LEVELS1 10 /* size of the first part of the stack */
|
||
#define LEVELS2 11 /* size of the second part of the stack */
|
||
|
||
|
||
|
||
/*
|
||
** Search for 'objidx' in table at index -1. ('objidx' must be an
|
||
** absolute index.) Return 1 + string at top if it found a good name.
|
||
*/
|
||
static int findfield (lua_State *L, int objidx, int level) {
|
||
if (level == 0 || !lua_istable(L, -1))
|
||
return 0; /* not found */
|
||
lua_pushnil(L); /* start 'next' loop */
|
||
while (lua_next(L, -2)) { /* for each pair in table */
|
||
if (lua_type(L, -2) == LUA_TSTRING) { /* ignore non-string keys */
|
||
if (lua_rawequal(L, objidx, -1)) { /* found object? */
|
||
lua_pop(L, 1); /* remove value (but keep name) */
|
||
return 1;
|
||
}
|
||
else if (findfield(L, objidx, level - 1)) { /* try recursively */
|
||
/* stack: lib_name, lib_table, field_name (top) */
|
||
lua_pushliteral(L, "."); /* place '.' between the two names */
|
||
lua_replace(L, -3); /* (in the slot occupied by table) */
|
||
lua_concat(L, 3); /* lib_name.field_name */
|
||
return 1;
|
||
}
|
||
}
|
||
lua_pop(L, 1); /* remove value */
|
||
}
|
||
return 0; /* not found */
|
||
}
|
||
|
||
|
||
/*
|
||
** Search for a name for a function in all loaded modules
|
||
*/
|
||
static int pushglobalfuncname (lua_State *L, lua_Debug *ar) {
|
||
int top = lua_gettop(L);
|
||
lua_getinfo(L, "f", ar); /* push function */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE);
|
||
luaL_checkstack(L, 6, "not enough stack"); /* slots for 'findfield' */
|
||
if (findfield(L, top + 1, 2)) {
|
||
const char *name = lua_tostring(L, -1);
|
||
if (strncmp(name, LUA_GNAME ".", 3) == 0) { /* name start with '_G.'? */
|
||
lua_pushstring(L, name + 3); /* push name without prefix */
|
||
lua_remove(L, -2); /* remove original name */
|
||
}
|
||
lua_copy(L, -1, top + 1); /* copy name to proper place */
|
||
lua_settop(L, top + 1); /* remove table "loaded" and name copy */
|
||
return 1;
|
||
}
|
||
else {
|
||
lua_settop(L, top); /* remove function and global table */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
|
||
static void pushfuncname (lua_State *L, lua_Debug *ar) {
|
||
if (pushglobalfuncname(L, ar)) { /* try first a global name */
|
||
lua_pushfstring(L, "function '%s'", lua_tostring(L, -1));
|
||
lua_remove(L, -2); /* remove name */
|
||
}
|
||
else if (*ar->namewhat != '\0') /* is there a name from code? */
|
||
lua_pushfstring(L, "%s '%s'", ar->namewhat, ar->name); /* use it */
|
||
else if (*ar->what == 'm') /* main? */
|
||
lua_pushliteral(L, "main chunk");
|
||
else if (*ar->what != 'C') /* for Lua functions, use <file:line> */
|
||
lua_pushfstring(L, "function <%s:%d>", ar->short_src, ar->linedefined);
|
||
else /* nothing left... */
|
||
lua_pushliteral(L, "?");
|
||
}
|
||
|
||
|
||
static int lastlevel (lua_State *L) {
|
||
lua_Debug ar;
|
||
int li = 1, le = 1;
|
||
/* find an upper bound */
|
||
while (lua_getstack(L, le, &ar)) { li = le; le *= 2; }
|
||
/* do a binary search */
|
||
while (li < le) {
|
||
int m = (li + le)/2;
|
||
if (lua_getstack(L, m, &ar)) li = m + 1;
|
||
else le = m;
|
||
}
|
||
return le - 1;
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_traceback (lua_State *L, lua_State *L1,
|
||
const char *msg, int level) {
|
||
luaL_Buffer b;
|
||
lua_Debug ar;
|
||
int last = lastlevel(L1);
|
||
int limit2show = (last - level > LEVELS1 + LEVELS2) ? LEVELS1 : -1;
|
||
luaL_buffinit(L, &b);
|
||
if (msg) {
|
||
luaL_addstring(&b, msg);
|
||
luaL_addchar(&b, '\n');
|
||
}
|
||
luaL_addstring(&b, "stack traceback:");
|
||
while (lua_getstack(L1, level++, &ar)) {
|
||
if (limit2show-- == 0) { /* too many levels? */
|
||
int n = last - level - LEVELS2 + 1; /* number of levels to skip */
|
||
lua_pushfstring(L, "\n\t...\t(skipping %d levels)", n);
|
||
luaL_addvalue(&b); /* add warning about skip */
|
||
level += n; /* and skip to last levels */
|
||
}
|
||
else {
|
||
lua_getinfo(L1, "Slnt", &ar);
|
||
if (ar.currentline <= 0)
|
||
lua_pushfstring(L, "\n\t%s: in ", ar.short_src);
|
||
else
|
||
lua_pushfstring(L, "\n\t%s:%d: in ", ar.short_src, ar.currentline);
|
||
luaL_addvalue(&b);
|
||
pushfuncname(L, &ar);
|
||
luaL_addvalue(&b);
|
||
if (ar.istailcall)
|
||
luaL_addstring(&b, "\n\t(...tail calls...)");
|
||
}
|
||
}
|
||
luaL_pushresult(&b);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Error-report functions
|
||
** =======================================================
|
||
*/
|
||
|
||
LUALIB_API int luaL_argerror (lua_State *L, int arg, const char *extramsg) {
|
||
lua_Debug ar;
|
||
if (!lua_getstack(L, 0, &ar)) /* no stack frame? */
|
||
return luaL_error(L, "bad argument #%d (%s)", arg, extramsg);
|
||
lua_getinfo(L, "n", &ar);
|
||
if (strcmp(ar.namewhat, "method") == 0) {
|
||
arg--; /* do not count 'self' */
|
||
if (arg == 0) /* error is in the self argument itself? */
|
||
return luaL_error(L, "calling '%s' on bad self (%s)",
|
||
ar.name, extramsg);
|
||
}
|
||
if (ar.name == NULL)
|
||
ar.name = (pushglobalfuncname(L, &ar)) ? lua_tostring(L, -1) : "?";
|
||
return luaL_error(L, "bad argument #%d to '%s' (%s)",
|
||
arg, ar.name, extramsg);
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_typeerror (lua_State *L, int arg, const char *tname) {
|
||
const char *msg;
|
||
const char *typearg; /* name for the type of the actual argument */
|
||
if (luaL_getmetafield(L, arg, "__name") == LUA_TSTRING)
|
||
typearg = lua_tostring(L, -1); /* use the given type name */
|
||
else if (lua_type(L, arg) == LUA_TLIGHTUSERDATA)
|
||
typearg = "light userdata"; /* special name for messages */
|
||
else
|
||
typearg = luaL_typename(L, arg); /* standard name */
|
||
msg = lua_pushfstring(L, "%s expected, got %s", tname, typearg);
|
||
return luaL_argerror(L, arg, msg);
|
||
}
|
||
|
||
|
||
static void tag_error (lua_State *L, int arg, int tag) {
|
||
luaL_typeerror(L, arg, lua_typename(L, tag));
|
||
}
|
||
|
||
|
||
/*
|
||
** The use of 'lua_pushfstring' ensures this function does not
|
||
** need reserved stack space when called.
|
||
*/
|
||
LUALIB_API void luaL_where (lua_State *L, int level) {
|
||
lua_Debug ar;
|
||
if (lua_getstack(L, level, &ar)) { /* check function at level */
|
||
lua_getinfo(L, "Sl", &ar); /* get info about it */
|
||
if (ar.currentline > 0) { /* is there info? */
|
||
lua_pushfstring(L, "%s:%d: ", ar.short_src, ar.currentline);
|
||
return;
|
||
}
|
||
}
|
||
lua_pushfstring(L, ""); /* else, no information available... */
|
||
}
|
||
|
||
|
||
/*
|
||
** Again, the use of 'lua_pushvfstring' ensures this function does
|
||
** not need reserved stack space when called. (At worst, it generates
|
||
** an error with "stack overflow" instead of the given message.)
|
||
*/
|
||
LUALIB_API int luaL_error (lua_State *L, const char *fmt, ...) {
|
||
va_list argp;
|
||
va_start(argp, fmt);
|
||
luaL_where(L, 1);
|
||
lua_pushvfstring(L, fmt, argp);
|
||
va_end(argp);
|
||
lua_concat(L, 2);
|
||
return lua_error(L);
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_fileresult (lua_State *L, int stat, const char *fname) {
|
||
int en = errno; /* calls to Lua API may change this value */
|
||
if (stat) {
|
||
lua_pushboolean(L, 1);
|
||
return 1;
|
||
}
|
||
else {
|
||
const char *msg;
|
||
luaL_pushfail(L);
|
||
msg = (en != 0) ? strerror(en) : "(no extra info)";
|
||
if (fname)
|
||
lua_pushfstring(L, "%s: %s", fname, msg);
|
||
else
|
||
lua_pushstring(L, msg);
|
||
lua_pushinteger(L, en);
|
||
return 3;
|
||
}
|
||
}
|
||
|
||
|
||
#if !defined(l_inspectstat) /* { */
|
||
|
||
#if defined(LUA_USE_POSIX)
|
||
|
||
#include <sys/wait.h>
|
||
|
||
/*
|
||
** use appropriate macros to interpret 'pclose' return status
|
||
*/
|
||
#define l_inspectstat(stat,what) \
|
||
if (WIFEXITED(stat)) { stat = WEXITSTATUS(stat); } \
|
||
else if (WIFSIGNALED(stat)) { stat = WTERMSIG(stat); what = "signal"; }
|
||
|
||
#else
|
||
|
||
#define l_inspectstat(stat,what) /* no op */
|
||
|
||
#endif
|
||
|
||
#endif /* } */
|
||
|
||
|
||
LUALIB_API int luaL_execresult (lua_State *L, int stat) {
|
||
if (stat != 0 && errno != 0) /* error with an 'errno'? */
|
||
return luaL_fileresult(L, 0, NULL);
|
||
else {
|
||
const char *what = "exit"; /* type of termination */
|
||
l_inspectstat(stat, what); /* interpret result */
|
||
if (*what == 'e' && stat == 0) /* successful termination? */
|
||
lua_pushboolean(L, 1);
|
||
else
|
||
luaL_pushfail(L);
|
||
lua_pushstring(L, what);
|
||
lua_pushinteger(L, stat);
|
||
return 3; /* return true/fail,what,code */
|
||
}
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Userdata's metatable manipulation
|
||
** =======================================================
|
||
*/
|
||
|
||
LUALIB_API int luaL_newmetatable (lua_State *L, const char *tname) {
|
||
if (luaL_getmetatable(L, tname) != LUA_TNIL) /* name already in use? */
|
||
return 0; /* leave previous value on top, but return 0 */
|
||
lua_pop(L, 1);
|
||
lua_createtable(L, 0, 2); /* create metatable */
|
||
lua_pushstring(L, tname);
|
||
lua_setfield(L, -2, "__name"); /* metatable.__name = tname */
|
||
lua_pushvalue(L, -1);
|
||
lua_setfield(L, LUA_REGISTRYINDEX, tname); /* registry.name = metatable */
|
||
return 1;
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_setmetatable (lua_State *L, const char *tname) {
|
||
luaL_getmetatable(L, tname);
|
||
lua_setmetatable(L, -2);
|
||
}
|
||
|
||
|
||
LUALIB_API void *luaL_testudata (lua_State *L, int ud, const char *tname) {
|
||
void *p = lua_touserdata(L, ud);
|
||
if (p != NULL) { /* value is a userdata? */
|
||
if (lua_getmetatable(L, ud)) { /* does it have a metatable? */
|
||
luaL_getmetatable(L, tname); /* get correct metatable */
|
||
if (!lua_rawequal(L, -1, -2)) /* not the same? */
|
||
p = NULL; /* value is a userdata with wrong metatable */
|
||
lua_pop(L, 2); /* remove both metatables */
|
||
return p;
|
||
}
|
||
}
|
||
return NULL; /* value is not a userdata with a metatable */
|
||
}
|
||
|
||
|
||
LUALIB_API void *luaL_checkudata (lua_State *L, int ud, const char *tname) {
|
||
void *p = luaL_testudata(L, ud, tname);
|
||
luaL_argexpected(L, p != NULL, ud, tname);
|
||
return p;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Argument check functions
|
||
** =======================================================
|
||
*/
|
||
|
||
LUALIB_API int luaL_checkoption (lua_State *L, int arg, const char *def,
|
||
const char *const lst[]) {
|
||
const char *name = (def) ? luaL_optstring(L, arg, def) :
|
||
luaL_checkstring(L, arg);
|
||
int i;
|
||
for (i=0; lst[i]; i++)
|
||
if (strcmp(lst[i], name) == 0)
|
||
return i;
|
||
return luaL_argerror(L, arg,
|
||
lua_pushfstring(L, "invalid option '%s'", name));
|
||
}
|
||
|
||
|
||
/*
|
||
** Ensures the stack has at least 'space' extra slots, raising an error
|
||
** if it cannot fulfill the request. (The error handling needs a few
|
||
** extra slots to format the error message. In case of an error without
|
||
** this extra space, Lua will generate the same 'stack overflow' error,
|
||
** but without 'msg'.)
|
||
*/
|
||
LUALIB_API void luaL_checkstack (lua_State *L, int space, const char *msg) {
|
||
if (l_unlikely(!lua_checkstack(L, space))) {
|
||
if (msg)
|
||
luaL_error(L, "stack overflow (%s)", msg);
|
||
else
|
||
luaL_error(L, "stack overflow");
|
||
}
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_checktype (lua_State *L, int arg, int t) {
|
||
if (l_unlikely(lua_type(L, arg) != t))
|
||
tag_error(L, arg, t);
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_checkany (lua_State *L, int arg) {
|
||
if (l_unlikely(lua_type(L, arg) == LUA_TNONE))
|
||
luaL_argerror(L, arg, "value expected");
|
||
}
|
||
|
||
|
||
LUALIB_API const char *luaL_checklstring (lua_State *L, int arg, size_t *len) {
|
||
const char *s = lua_tolstring(L, arg, len);
|
||
if (l_unlikely(!s)) tag_error(L, arg, LUA_TSTRING);
|
||
return s;
|
||
}
|
||
|
||
|
||
LUALIB_API const char *luaL_optlstring (lua_State *L, int arg,
|
||
const char *def, size_t *len) {
|
||
if (lua_isnoneornil(L, arg)) {
|
||
if (len)
|
||
*len = (def ? strlen(def) : 0);
|
||
return def;
|
||
}
|
||
else return luaL_checklstring(L, arg, len);
|
||
}
|
||
|
||
|
||
LUALIB_API lua_Number luaL_checknumber (lua_State *L, int arg) {
|
||
int isnum;
|
||
lua_Number d = lua_tonumberx(L, arg, &isnum);
|
||
if (l_unlikely(!isnum))
|
||
tag_error(L, arg, LUA_TNUMBER);
|
||
return d;
|
||
}
|
||
|
||
|
||
LUALIB_API lua_Number luaL_optnumber (lua_State *L, int arg, lua_Number def) {
|
||
return luaL_opt(L, luaL_checknumber, arg, def);
|
||
}
|
||
|
||
|
||
static void interror (lua_State *L, int arg) {
|
||
if (lua_isnumber(L, arg))
|
||
luaL_argerror(L, arg, "number has no integer representation");
|
||
else
|
||
tag_error(L, arg, LUA_TNUMBER);
|
||
}
|
||
|
||
|
||
LUALIB_API lua_Integer luaL_checkinteger (lua_State *L, int arg) {
|
||
int isnum;
|
||
lua_Integer d = lua_tointegerx(L, arg, &isnum);
|
||
if (l_unlikely(!isnum)) {
|
||
interror(L, arg);
|
||
}
|
||
return d;
|
||
}
|
||
|
||
|
||
LUALIB_API lua_Integer luaL_optinteger (lua_State *L, int arg,
|
||
lua_Integer def) {
|
||
return luaL_opt(L, luaL_checkinteger, arg, def);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Generic Buffer manipulation
|
||
** =======================================================
|
||
*/
|
||
|
||
/* userdata to box arbitrary data */
|
||
typedef struct UBox {
|
||
void *box;
|
||
size_t bsize;
|
||
} UBox;
|
||
|
||
|
||
static void *resizebox (lua_State *L, int idx, size_t newsize) {
|
||
void *ud;
|
||
lua_Alloc allocf = lua_getallocf(L, &ud);
|
||
UBox *box = (UBox *)lua_touserdata(L, idx);
|
||
void *temp = allocf(ud, box->box, box->bsize, newsize);
|
||
if (l_unlikely(temp == NULL && newsize > 0)) { /* allocation error? */
|
||
lua_pushliteral(L, "not enough memory");
|
||
lua_error(L); /* raise a memory error */
|
||
}
|
||
box->box = temp;
|
||
box->bsize = newsize;
|
||
return temp;
|
||
}
|
||
|
||
|
||
static int boxgc (lua_State *L) {
|
||
resizebox(L, 1, 0);
|
||
return 0;
|
||
}
|
||
|
||
|
||
static const luaL_Reg boxmt[] = { /* box metamethods */
|
||
{"__gc", boxgc},
|
||
{"__close", boxgc},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
static void newbox (lua_State *L) {
|
||
UBox *box = (UBox *)lua_newuserdatauv(L, sizeof(UBox), 0);
|
||
box->box = NULL;
|
||
box->bsize = 0;
|
||
if (luaL_newmetatable(L, "_UBOX*")) /* creating metatable? */
|
||
luaL_setfuncs(L, boxmt, 0); /* set its metamethods */
|
||
lua_setmetatable(L, -2);
|
||
}
|
||
|
||
|
||
/*
|
||
** check whether buffer is using a userdata on the stack as a temporary
|
||
** buffer
|
||
*/
|
||
#define buffonstack(B) ((B)->b != (B)->init.b)
|
||
|
||
|
||
/*
|
||
** Whenever buffer is accessed, slot 'idx' must either be a box (which
|
||
** cannot be NULL) or it is a placeholder for the buffer.
|
||
*/
|
||
#define checkbufferlevel(B,idx) \
|
||
lua_assert(buffonstack(B) ? lua_touserdata(B->L, idx) != NULL \
|
||
: lua_touserdata(B->L, idx) == (void*)B)
|
||
|
||
|
||
/*
|
||
** Compute new size for buffer 'B', enough to accommodate extra 'sz'
|
||
** bytes. (The test for "not big enough" also gets the case when the
|
||
** computation of 'newsize' overflows.)
|
||
*/
|
||
static size_t newbuffsize (luaL_Buffer *B, size_t sz) {
|
||
size_t newsize = (B->size / 2) * 3; /* buffer size * 1.5 */
|
||
if (l_unlikely(MAX_SIZET - sz < B->n)) /* overflow in (B->n + sz)? */
|
||
return luaL_error(B->L, "buffer too large");
|
||
if (newsize < B->n + sz) /* not big enough? */
|
||
newsize = B->n + sz;
|
||
return newsize;
|
||
}
|
||
|
||
|
||
/*
|
||
** Returns a pointer to a free area with at least 'sz' bytes in buffer
|
||
** 'B'. 'boxidx' is the relative position in the stack where is the
|
||
** buffer's box or its placeholder.
|
||
*/
|
||
static char *prepbuffsize (luaL_Buffer *B, size_t sz, int boxidx) {
|
||
checkbufferlevel(B, boxidx);
|
||
if (B->size - B->n >= sz) /* enough space? */
|
||
return B->b + B->n;
|
||
else {
|
||
lua_State *L = B->L;
|
||
char *newbuff;
|
||
size_t newsize = newbuffsize(B, sz);
|
||
/* create larger buffer */
|
||
if (buffonstack(B)) /* buffer already has a box? */
|
||
newbuff = (char *)resizebox(L, boxidx, newsize); /* resize it */
|
||
else { /* no box yet */
|
||
lua_remove(L, boxidx); /* remove placeholder */
|
||
newbox(L); /* create a new box */
|
||
lua_insert(L, boxidx); /* move box to its intended position */
|
||
lua_toclose(L, boxidx);
|
||
newbuff = (char *)resizebox(L, boxidx, newsize);
|
||
memcpy(newbuff, B->b, B->n * sizeof(char)); /* copy original content */
|
||
}
|
||
B->b = newbuff;
|
||
B->size = newsize;
|
||
return newbuff + B->n;
|
||
}
|
||
}
|
||
|
||
/*
|
||
** returns a pointer to a free area with at least 'sz' bytes
|
||
*/
|
||
LUALIB_API char *luaL_prepbuffsize (luaL_Buffer *B, size_t sz) {
|
||
return prepbuffsize(B, sz, -1);
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_addlstring (luaL_Buffer *B, const char *s, size_t l) {
|
||
if (l > 0) { /* avoid 'memcpy' when 's' can be NULL */
|
||
char *b = prepbuffsize(B, l, -1);
|
||
memcpy(b, s, l * sizeof(char));
|
||
luaL_addsize(B, l);
|
||
}
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_addstring (luaL_Buffer *B, const char *s) {
|
||
luaL_addlstring(B, s, strlen(s));
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_pushresult (luaL_Buffer *B) {
|
||
lua_State *L = B->L;
|
||
checkbufferlevel(B, -1);
|
||
lua_pushlstring(L, B->b, B->n);
|
||
if (buffonstack(B))
|
||
lua_closeslot(L, -2); /* close the box */
|
||
lua_remove(L, -2); /* remove box or placeholder from the stack */
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_pushresultsize (luaL_Buffer *B, size_t sz) {
|
||
luaL_addsize(B, sz);
|
||
luaL_pushresult(B);
|
||
}
|
||
|
||
|
||
/*
|
||
** 'luaL_addvalue' is the only function in the Buffer system where the
|
||
** box (if existent) is not on the top of the stack. So, instead of
|
||
** calling 'luaL_addlstring', it replicates the code using -2 as the
|
||
** last argument to 'prepbuffsize', signaling that the box is (or will
|
||
** be) below the string being added to the buffer. (Box creation can
|
||
** trigger an emergency GC, so we should not remove the string from the
|
||
** stack before we have the space guaranteed.)
|
||
*/
|
||
LUALIB_API void luaL_addvalue (luaL_Buffer *B) {
|
||
lua_State *L = B->L;
|
||
size_t len;
|
||
const char *s = lua_tolstring(L, -1, &len);
|
||
char *b = prepbuffsize(B, len, -2);
|
||
memcpy(b, s, len * sizeof(char));
|
||
luaL_addsize(B, len);
|
||
lua_pop(L, 1); /* pop string */
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_buffinit (lua_State *L, luaL_Buffer *B) {
|
||
B->L = L;
|
||
B->b = B->init.b;
|
||
B->n = 0;
|
||
B->size = LUAL_BUFFERSIZE;
|
||
lua_pushlightuserdata(L, (void*)B); /* push placeholder */
|
||
}
|
||
|
||
|
||
LUALIB_API char *luaL_buffinitsize (lua_State *L, luaL_Buffer *B, size_t sz) {
|
||
luaL_buffinit(L, B);
|
||
return prepbuffsize(B, sz, -1);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Reference system
|
||
** =======================================================
|
||
*/
|
||
|
||
/* index of free-list header (after the predefined values) */
|
||
#define freelist (LUA_RIDX_LAST + 1)
|
||
|
||
/*
|
||
** The previously freed references form a linked list:
|
||
** t[freelist] is the index of a first free index, or zero if list is
|
||
** empty; t[t[freelist]] is the index of the second element; etc.
|
||
*/
|
||
LUALIB_API int luaL_ref (lua_State *L, int t) {
|
||
int ref;
|
||
if (lua_isnil(L, -1)) {
|
||
lua_pop(L, 1); /* remove from stack */
|
||
return LUA_REFNIL; /* 'nil' has a unique fixed reference */
|
||
}
|
||
t = lua_absindex(L, t);
|
||
if (lua_rawgeti(L, t, freelist) == LUA_TNIL) { /* first access? */
|
||
ref = 0; /* list is empty */
|
||
lua_pushinteger(L, 0); /* initialize as an empty list */
|
||
lua_rawseti(L, t, freelist); /* ref = t[freelist] = 0 */
|
||
}
|
||
else { /* already initialized */
|
||
lua_assert(lua_isinteger(L, -1));
|
||
ref = (int)lua_tointeger(L, -1); /* ref = t[freelist] */
|
||
}
|
||
lua_pop(L, 1); /* remove element from stack */
|
||
if (ref != 0) { /* any free element? */
|
||
lua_rawgeti(L, t, ref); /* remove it from list */
|
||
lua_rawseti(L, t, freelist); /* (t[freelist] = t[ref]) */
|
||
}
|
||
else /* no free elements */
|
||
ref = (int)lua_rawlen(L, t) + 1; /* get a new reference */
|
||
lua_rawseti(L, t, ref);
|
||
return ref;
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_unref (lua_State *L, int t, int ref) {
|
||
if (ref >= 0) {
|
||
t = lua_absindex(L, t);
|
||
lua_rawgeti(L, t, freelist);
|
||
lua_assert(lua_isinteger(L, -1));
|
||
lua_rawseti(L, t, ref); /* t[ref] = t[freelist] */
|
||
lua_pushinteger(L, ref);
|
||
lua_rawseti(L, t, freelist); /* t[freelist] = ref */
|
||
}
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Load functions
|
||
** =======================================================
|
||
*/
|
||
|
||
typedef struct LoadF {
|
||
int n; /* number of pre-read characters */
|
||
FILE *f; /* file being read */
|
||
char buff[BUFSIZ]; /* area for reading file */
|
||
} LoadF;
|
||
|
||
|
||
static const char *getF (lua_State *L, void *ud, size_t *size) {
|
||
LoadF *lf = (LoadF *)ud;
|
||
(void)L; /* not used */
|
||
if (lf->n > 0) { /* are there pre-read characters to be read? */
|
||
*size = lf->n; /* return them (chars already in buffer) */
|
||
lf->n = 0; /* no more pre-read characters */
|
||
}
|
||
else { /* read a block from file */
|
||
/* 'fread' can return > 0 *and* set the EOF flag. If next call to
|
||
'getF' called 'fread', it might still wait for user input.
|
||
The next check avoids this problem. */
|
||
if (feof(lf->f)) return NULL;
|
||
*size = fread(lf->buff, 1, sizeof(lf->buff), lf->f); /* read block */
|
||
}
|
||
return lf->buff;
|
||
}
|
||
|
||
|
||
static int errfile (lua_State *L, const char *what, int fnameindex) {
|
||
int err = errno;
|
||
const char *filename = lua_tostring(L, fnameindex) + 1;
|
||
if (err != 0)
|
||
lua_pushfstring(L, "cannot %s %s: %s", what, filename, strerror(err));
|
||
else
|
||
lua_pushfstring(L, "cannot %s %s", what, filename);
|
||
lua_remove(L, fnameindex);
|
||
return LUA_ERRFILE;
|
||
}
|
||
|
||
|
||
/*
|
||
** Skip an optional BOM at the start of a stream. If there is an
|
||
** incomplete BOM (the first character is correct but the rest is
|
||
** not), returns the first character anyway to force an error
|
||
** (as no chunk can start with 0xEF).
|
||
*/
|
||
static int skipBOM (FILE *f) {
|
||
int c = getc(f); /* read first character */
|
||
if (c == 0xEF && getc(f) == 0xBB && getc(f) == 0xBF) /* correct BOM? */
|
||
return getc(f); /* ignore BOM and return next char */
|
||
else /* no (valid) BOM */
|
||
return c; /* return first character */
|
||
}
|
||
|
||
|
||
/*
|
||
** reads the first character of file 'f' and skips an optional BOM mark
|
||
** in its beginning plus its first line if it starts with '#'. Returns
|
||
** true if it skipped the first line. In any case, '*cp' has the
|
||
** first "valid" character of the file (after the optional BOM and
|
||
** a first-line comment).
|
||
*/
|
||
static int skipcomment (FILE *f, int *cp) {
|
||
int c = *cp = skipBOM(f);
|
||
if (c == '#') { /* first line is a comment (Unix exec. file)? */
|
||
do { /* skip first line */
|
||
c = getc(f);
|
||
} while (c != EOF && c != '\n');
|
||
*cp = getc(f); /* next character after comment, if present */
|
||
return 1; /* there was a comment */
|
||
}
|
||
else return 0; /* no comment */
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_loadfilex (lua_State *L, const char *filename,
|
||
const char *mode) {
|
||
LoadF lf;
|
||
int status, readstatus;
|
||
int c;
|
||
int fnameindex = lua_gettop(L) + 1; /* index of filename on the stack */
|
||
if (filename == NULL) {
|
||
lua_pushliteral(L, "=stdin");
|
||
lf.f = stdin;
|
||
}
|
||
else {
|
||
lua_pushfstring(L, "@%s", filename);
|
||
errno = 0;
|
||
lf.f = fopen(filename, "r");
|
||
if (lf.f == NULL) return errfile(L, "open", fnameindex);
|
||
}
|
||
lf.n = 0;
|
||
if (skipcomment(lf.f, &c)) /* read initial portion */
|
||
lf.buff[lf.n++] = '\n'; /* add newline to correct line numbers */
|
||
if (c == LUA_SIGNATURE[0]) { /* binary file? */
|
||
lf.n = 0; /* remove possible newline */
|
||
if (filename) { /* "real" file? */
|
||
errno = 0;
|
||
lf.f = freopen(filename, "rb", lf.f); /* reopen in binary mode */
|
||
if (lf.f == NULL) return errfile(L, "reopen", fnameindex);
|
||
skipcomment(lf.f, &c); /* re-read initial portion */
|
||
}
|
||
}
|
||
if (c != EOF)
|
||
lf.buff[lf.n++] = c; /* 'c' is the first character of the stream */
|
||
errno = 0;
|
||
status = lua_load(L, getF, &lf, lua_tostring(L, -1), mode);
|
||
readstatus = ferror(lf.f);
|
||
if (filename) fclose(lf.f); /* close file (even in case of errors) */
|
||
if (readstatus) {
|
||
lua_settop(L, fnameindex); /* ignore results from 'lua_load' */
|
||
return errfile(L, "read", fnameindex);
|
||
}
|
||
lua_remove(L, fnameindex);
|
||
return status;
|
||
}
|
||
|
||
|
||
typedef struct LoadS {
|
||
const char *s;
|
||
size_t size;
|
||
} LoadS;
|
||
|
||
|
||
static const char *getS (lua_State *L, void *ud, size_t *size) {
|
||
LoadS *ls = (LoadS *)ud;
|
||
(void)L; /* not used */
|
||
if (ls->size == 0) return NULL;
|
||
*size = ls->size;
|
||
ls->size = 0;
|
||
return ls->s;
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_loadbufferx (lua_State *L, const char *buff, size_t size,
|
||
const char *name, const char *mode) {
|
||
LoadS ls;
|
||
ls.s = buff;
|
||
ls.size = size;
|
||
return lua_load(L, getS, &ls, name, mode);
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_loadstring (lua_State *L, const char *s) {
|
||
return luaL_loadbuffer(L, s, strlen(s), s);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
LUALIB_API int luaL_getmetafield (lua_State *L, int obj, const char *event) {
|
||
if (!lua_getmetatable(L, obj)) /* no metatable? */
|
||
return LUA_TNIL;
|
||
else {
|
||
int tt;
|
||
lua_pushstring(L, event);
|
||
tt = lua_rawget(L, -2);
|
||
if (tt == LUA_TNIL) /* is metafield nil? */
|
||
lua_pop(L, 2); /* remove metatable and metafield */
|
||
else
|
||
lua_remove(L, -2); /* remove only metatable */
|
||
return tt; /* return metafield type */
|
||
}
|
||
}
|
||
|
||
|
||
LUALIB_API int luaL_callmeta (lua_State *L, int obj, const char *event) {
|
||
obj = lua_absindex(L, obj);
|
||
if (luaL_getmetafield(L, obj, event) == LUA_TNIL) /* no metafield? */
|
||
return 0;
|
||
lua_pushvalue(L, obj);
|
||
lua_call(L, 1, 1);
|
||
return 1;
|
||
}
|
||
|
||
|
||
LUALIB_API lua_Integer luaL_len (lua_State *L, int idx) {
|
||
lua_Integer l;
|
||
int isnum;
|
||
lua_len(L, idx);
|
||
l = lua_tointegerx(L, -1, &isnum);
|
||
if (l_unlikely(!isnum))
|
||
luaL_error(L, "object length is not an integer");
|
||
lua_pop(L, 1); /* remove object */
|
||
return l;
|
||
}
|
||
|
||
|
||
LUALIB_API const char *luaL_tolstring (lua_State *L, int idx, size_t *len) {
|
||
idx = lua_absindex(L,idx);
|
||
if (luaL_callmeta(L, idx, "__tostring")) { /* metafield? */
|
||
if (!lua_isstring(L, -1))
|
||
luaL_error(L, "'__tostring' must return a string");
|
||
}
|
||
else {
|
||
switch (lua_type(L, idx)) {
|
||
case LUA_TNUMBER: {
|
||
if (lua_isinteger(L, idx))
|
||
lua_pushfstring(L, "%I", (LUAI_UACINT)lua_tointeger(L, idx));
|
||
else
|
||
lua_pushfstring(L, "%f", (LUAI_UACNUMBER)lua_tonumber(L, idx));
|
||
break;
|
||
}
|
||
case LUA_TSTRING:
|
||
lua_pushvalue(L, idx);
|
||
break;
|
||
case LUA_TBOOLEAN:
|
||
lua_pushstring(L, (lua_toboolean(L, idx) ? "true" : "false"));
|
||
break;
|
||
case LUA_TNIL:
|
||
lua_pushliteral(L, "nil");
|
||
break;
|
||
default: {
|
||
int tt = luaL_getmetafield(L, idx, "__name"); /* try name */
|
||
const char *kind = (tt == LUA_TSTRING) ? lua_tostring(L, -1) :
|
||
luaL_typename(L, idx);
|
||
lua_pushfstring(L, "%s: %p", kind, lua_topointer(L, idx));
|
||
if (tt != LUA_TNIL)
|
||
lua_remove(L, -2); /* remove '__name' */
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
return lua_tolstring(L, -1, len);
|
||
}
|
||
|
||
|
||
/*
|
||
** set functions from list 'l' into table at top - 'nup'; each
|
||
** function gets the 'nup' elements at the top as upvalues.
|
||
** Returns with only the table at the stack.
|
||
*/
|
||
LUALIB_API void luaL_setfuncs (lua_State *L, const luaL_Reg *l, int nup) {
|
||
luaL_checkstack(L, nup, "too many upvalues");
|
||
for (; l->name != NULL; l++) { /* fill the table with given functions */
|
||
if (l->func == NULL) /* placeholder? */
|
||
lua_pushboolean(L, 0);
|
||
else {
|
||
int i;
|
||
for (i = 0; i < nup; i++) /* copy upvalues to the top */
|
||
lua_pushvalue(L, -nup);
|
||
lua_pushcclosure(L, l->func, nup); /* closure with those upvalues */
|
||
}
|
||
lua_setfield(L, -(nup + 2), l->name);
|
||
}
|
||
lua_pop(L, nup); /* remove upvalues */
|
||
}
|
||
|
||
|
||
/*
|
||
** ensure that stack[idx][fname] has a table and push that table
|
||
** into the stack
|
||
*/
|
||
LUALIB_API int luaL_getsubtable (lua_State *L, int idx, const char *fname) {
|
||
if (lua_getfield(L, idx, fname) == LUA_TTABLE)
|
||
return 1; /* table already there */
|
||
else {
|
||
lua_pop(L, 1); /* remove previous result */
|
||
idx = lua_absindex(L, idx);
|
||
lua_newtable(L);
|
||
lua_pushvalue(L, -1); /* copy to be left at top */
|
||
lua_setfield(L, idx, fname); /* assign new table to field */
|
||
return 0; /* false, because did not find table there */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Stripped-down 'require': After checking "loaded" table, calls 'openf'
|
||
** to open a module, registers the result in 'package.loaded' table and,
|
||
** if 'glb' is true, also registers the result in the global table.
|
||
** Leaves resulting module on the top.
|
||
*/
|
||
LUALIB_API void luaL_requiref (lua_State *L, const char *modname,
|
||
lua_CFunction openf, int glb) {
|
||
luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE);
|
||
lua_getfield(L, -1, modname); /* LOADED[modname] */
|
||
if (!lua_toboolean(L, -1)) { /* package not already loaded? */
|
||
lua_pop(L, 1); /* remove field */
|
||
lua_pushcfunction(L, openf);
|
||
lua_pushstring(L, modname); /* argument to open function */
|
||
lua_call(L, 1, 1); /* call 'openf' to open module */
|
||
lua_pushvalue(L, -1); /* make copy of module (call result) */
|
||
lua_setfield(L, -3, modname); /* LOADED[modname] = module */
|
||
}
|
||
lua_remove(L, -2); /* remove LOADED table */
|
||
if (glb) {
|
||
lua_pushvalue(L, -1); /* copy of module */
|
||
lua_setglobal(L, modname); /* _G[modname] = module */
|
||
}
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_addgsub (luaL_Buffer *b, const char *s,
|
||
const char *p, const char *r) {
|
||
const char *wild;
|
||
size_t l = strlen(p);
|
||
while ((wild = strstr(s, p)) != NULL) {
|
||
luaL_addlstring(b, s, wild - s); /* push prefix */
|
||
luaL_addstring(b, r); /* push replacement in place of pattern */
|
||
s = wild + l; /* continue after 'p' */
|
||
}
|
||
luaL_addstring(b, s); /* push last suffix */
|
||
}
|
||
|
||
|
||
LUALIB_API const char *luaL_gsub (lua_State *L, const char *s,
|
||
const char *p, const char *r) {
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
luaL_addgsub(&b, s, p, r);
|
||
luaL_pushresult(&b);
|
||
return lua_tostring(L, -1);
|
||
}
|
||
|
||
|
||
static void *l_alloc (void *ud, void *ptr, size_t osize, size_t nsize) {
|
||
(void)ud; (void)osize; /* not used */
|
||
if (nsize == 0) {
|
||
free(ptr);
|
||
return NULL;
|
||
}
|
||
else
|
||
return realloc(ptr, nsize);
|
||
}
|
||
|
||
|
||
/*
|
||
** Standard panic funcion just prints an error message. The test
|
||
** with 'lua_type' avoids possible memory errors in 'lua_tostring'.
|
||
*/
|
||
static int panic (lua_State *L) {
|
||
const char *msg = (lua_type(L, -1) == LUA_TSTRING)
|
||
? lua_tostring(L, -1)
|
||
: "error object is not a string";
|
||
lua_writestringerror("PANIC: unprotected error in call to Lua API (%s)\n",
|
||
msg);
|
||
return 0; /* return to Lua to abort */
|
||
}
|
||
|
||
|
||
/*
|
||
** Warning functions:
|
||
** warnfoff: warning system is off
|
||
** warnfon: ready to start a new message
|
||
** warnfcont: previous message is to be continued
|
||
*/
|
||
static void warnfoff (void *ud, const char *message, int tocont);
|
||
static void warnfon (void *ud, const char *message, int tocont);
|
||
static void warnfcont (void *ud, const char *message, int tocont);
|
||
|
||
|
||
/*
|
||
** Check whether message is a control message. If so, execute the
|
||
** control or ignore it if unknown.
|
||
*/
|
||
static int checkcontrol (lua_State *L, const char *message, int tocont) {
|
||
if (tocont || *(message++) != '@') /* not a control message? */
|
||
return 0;
|
||
else {
|
||
if (strcmp(message, "off") == 0)
|
||
lua_setwarnf(L, warnfoff, L); /* turn warnings off */
|
||
else if (strcmp(message, "on") == 0)
|
||
lua_setwarnf(L, warnfon, L); /* turn warnings on */
|
||
return 1; /* it was a control message */
|
||
}
|
||
}
|
||
|
||
|
||
static void warnfoff (void *ud, const char *message, int tocont) {
|
||
checkcontrol((lua_State *)ud, message, tocont);
|
||
}
|
||
|
||
|
||
/*
|
||
** Writes the message and handle 'tocont', finishing the message
|
||
** if needed and setting the next warn function.
|
||
*/
|
||
static void warnfcont (void *ud, const char *message, int tocont) {
|
||
lua_State *L = (lua_State *)ud;
|
||
lua_writestringerror("%s", message); /* write message */
|
||
if (tocont) /* not the last part? */
|
||
lua_setwarnf(L, warnfcont, L); /* to be continued */
|
||
else { /* last part */
|
||
lua_writestringerror("%s", "\n"); /* finish message with end-of-line */
|
||
lua_setwarnf(L, warnfon, L); /* next call is a new message */
|
||
}
|
||
}
|
||
|
||
|
||
static void warnfon (void *ud, const char *message, int tocont) {
|
||
if (checkcontrol((lua_State *)ud, message, tocont)) /* control message? */
|
||
return; /* nothing else to be done */
|
||
lua_writestringerror("%s", "Lua warning: "); /* start a new warning */
|
||
warnfcont(ud, message, tocont); /* finish processing */
|
||
}
|
||
|
||
|
||
LUALIB_API lua_State *luaL_newstate (void) {
|
||
lua_State *L = lua_newstate(l_alloc, NULL);
|
||
if (l_likely(L)) {
|
||
lua_atpanic(L, &panic);
|
||
lua_setwarnf(L, warnfoff, L); /* default is warnings off */
|
||
}
|
||
return L;
|
||
}
|
||
|
||
|
||
LUALIB_API void luaL_checkversion_ (lua_State *L, lua_Number ver, size_t sz) {
|
||
lua_Number v = lua_version(L);
|
||
if (sz != LUAL_NUMSIZES) /* check numeric types */
|
||
luaL_error(L, "core and library have incompatible numeric types");
|
||
else if (v != ver)
|
||
luaL_error(L, "version mismatch: app. needs %f, Lua core provides %f",
|
||
(LUAI_UACNUMBER)ver, (LUAI_UACNUMBER)v);
|
||
}
|
||
|
||
/*
|
||
** $Id: lbaselib.c $
|
||
** Basic library
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lbaselib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <ctype.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
static int luaB_print (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
int i;
|
||
for (i = 1; i <= n; i++) { /* for each argument */
|
||
size_t l;
|
||
const char *s = luaL_tolstring(L, i, &l); /* convert it to string */
|
||
if (i > 1) /* not the first element? */
|
||
lua_writestring("\t", 1); /* add a tab before it */
|
||
lua_writestring(s, l); /* print it */
|
||
lua_pop(L, 1); /* pop result */
|
||
}
|
||
lua_writeline();
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Creates a warning with all given arguments.
|
||
** Check first for errors; otherwise an error may interrupt
|
||
** the composition of a warning, leaving it unfinished.
|
||
*/
|
||
static int luaB_warn (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
int i;
|
||
luaL_checkstring(L, 1); /* at least one argument */
|
||
for (i = 2; i <= n; i++)
|
||
luaL_checkstring(L, i); /* make sure all arguments are strings */
|
||
for (i = 1; i < n; i++) /* compose warning */
|
||
lua_warning(L, lua_tostring(L, i), 1);
|
||
lua_warning(L, lua_tostring(L, n), 0); /* close warning */
|
||
return 0;
|
||
}
|
||
|
||
|
||
#define SPACECHARS " \f\n\r\t\v"
|
||
|
||
static const char *b_str2int (const char *s, int base, lua_Integer *pn) {
|
||
lua_Unsigned n = 0;
|
||
int neg = 0;
|
||
s += strspn(s, SPACECHARS); /* skip initial spaces */
|
||
if (*s == '-') { s++; neg = 1; } /* handle sign */
|
||
else if (*s == '+') s++;
|
||
if (!isalnum((unsigned char)*s)) /* no digit? */
|
||
return NULL;
|
||
do {
|
||
int digit = (isdigit((unsigned char)*s)) ? *s - '0'
|
||
: (toupper((unsigned char)*s) - 'A') + 10;
|
||
if (digit >= base) return NULL; /* invalid numeral */
|
||
n = n * base + digit;
|
||
s++;
|
||
} while (isalnum((unsigned char)*s));
|
||
s += strspn(s, SPACECHARS); /* skip trailing spaces */
|
||
*pn = (lua_Integer)((neg) ? (0u - n) : n);
|
||
return s;
|
||
}
|
||
|
||
|
||
static int luaB_tonumber (lua_State *L) {
|
||
if (lua_isnoneornil(L, 2)) { /* standard conversion? */
|
||
if (lua_type(L, 1) == LUA_TNUMBER) { /* already a number? */
|
||
lua_settop(L, 1); /* yes; return it */
|
||
return 1;
|
||
}
|
||
else {
|
||
size_t l;
|
||
const char *s = lua_tolstring(L, 1, &l);
|
||
if (s != NULL && lua_stringtonumber(L, s) == l + 1)
|
||
return 1; /* successful conversion to number */
|
||
/* else not a number */
|
||
luaL_checkany(L, 1); /* (but there must be some parameter) */
|
||
}
|
||
}
|
||
else {
|
||
size_t l;
|
||
const char *s;
|
||
lua_Integer n = 0; /* to avoid warnings */
|
||
lua_Integer base = luaL_checkinteger(L, 2);
|
||
luaL_checktype(L, 1, LUA_TSTRING); /* no numbers as strings */
|
||
s = lua_tolstring(L, 1, &l);
|
||
luaL_argcheck(L, 2 <= base && base <= 36, 2, "base out of range");
|
||
if (b_str2int(s, (int)base, &n) == s + l) {
|
||
lua_pushinteger(L, n);
|
||
return 1;
|
||
} /* else not a number */
|
||
} /* else not a number */
|
||
luaL_pushfail(L); /* not a number */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_error (lua_State *L) {
|
||
int level = (int)luaL_optinteger(L, 2, 1);
|
||
lua_settop(L, 1);
|
||
if (lua_type(L, 1) == LUA_TSTRING && level > 0) {
|
||
luaL_where(L, level); /* add extra information */
|
||
lua_pushvalue(L, 1);
|
||
lua_concat(L, 2);
|
||
}
|
||
return lua_error(L);
|
||
}
|
||
|
||
|
||
static int luaB_getmetatable (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
if (!lua_getmetatable(L, 1)) {
|
||
lua_pushnil(L);
|
||
return 1; /* no metatable */
|
||
}
|
||
luaL_getmetafield(L, 1, "__metatable");
|
||
return 1; /* returns either __metatable field (if present) or metatable */
|
||
}
|
||
|
||
|
||
static int luaB_setmetatable (lua_State *L) {
|
||
int t = lua_type(L, 2);
|
||
luaL_checktype(L, 1, LUA_TTABLE);
|
||
luaL_argexpected(L, t == LUA_TNIL || t == LUA_TTABLE, 2, "nil or table");
|
||
if (l_unlikely(luaL_getmetafield(L, 1, "__metatable") != LUA_TNIL))
|
||
return luaL_error(L, "cannot change a protected metatable");
|
||
lua_settop(L, 2);
|
||
lua_setmetatable(L, 1);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_rawequal (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
luaL_checkany(L, 2);
|
||
lua_pushboolean(L, lua_rawequal(L, 1, 2));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_rawlen (lua_State *L) {
|
||
int t = lua_type(L, 1);
|
||
luaL_argexpected(L, t == LUA_TTABLE || t == LUA_TSTRING, 1,
|
||
"table or string");
|
||
lua_pushinteger(L, lua_rawlen(L, 1));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_rawget (lua_State *L) {
|
||
luaL_checktype(L, 1, LUA_TTABLE);
|
||
luaL_checkany(L, 2);
|
||
lua_settop(L, 2);
|
||
lua_rawget(L, 1);
|
||
return 1;
|
||
}
|
||
|
||
static int luaB_rawset (lua_State *L) {
|
||
luaL_checktype(L, 1, LUA_TTABLE);
|
||
luaL_checkany(L, 2);
|
||
luaL_checkany(L, 3);
|
||
lua_settop(L, 3);
|
||
lua_rawset(L, 1);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int pushmode (lua_State *L, int oldmode) {
|
||
if (oldmode == -1)
|
||
luaL_pushfail(L); /* invalid call to 'lua_gc' */
|
||
else
|
||
lua_pushstring(L, (oldmode == LUA_GCINC) ? "incremental"
|
||
: "generational");
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** check whether call to 'lua_gc' was valid (not inside a finalizer)
|
||
*/
|
||
#define checkvalres(res) { if (res == -1) break; }
|
||
|
||
static int luaB_collectgarbage (lua_State *L) {
|
||
static const char *const opts[] = {"stop", "restart", "collect",
|
||
"count", "step", "setpause", "setstepmul",
|
||
"isrunning", "generational", "incremental", NULL};
|
||
static const int optsnum[] = {LUA_GCSTOP, LUA_GCRESTART, LUA_GCCOLLECT,
|
||
LUA_GCCOUNT, LUA_GCSTEP, LUA_GCSETPAUSE, LUA_GCSETSTEPMUL,
|
||
LUA_GCISRUNNING, LUA_GCGEN, LUA_GCINC};
|
||
int o = optsnum[luaL_checkoption(L, 1, "collect", opts)];
|
||
switch (o) {
|
||
case LUA_GCCOUNT: {
|
||
int k = lua_gc(L, o);
|
||
int b = lua_gc(L, LUA_GCCOUNTB);
|
||
checkvalres(k);
|
||
lua_pushnumber(L, (lua_Number)k + ((lua_Number)b/1024));
|
||
return 1;
|
||
}
|
||
case LUA_GCSTEP: {
|
||
int step = (int)luaL_optinteger(L, 2, 0);
|
||
int res = lua_gc(L, o, step);
|
||
checkvalres(res);
|
||
lua_pushboolean(L, res);
|
||
return 1;
|
||
}
|
||
case LUA_GCSETPAUSE:
|
||
case LUA_GCSETSTEPMUL: {
|
||
int p = (int)luaL_optinteger(L, 2, 0);
|
||
int previous = lua_gc(L, o, p);
|
||
checkvalres(previous);
|
||
lua_pushinteger(L, previous);
|
||
return 1;
|
||
}
|
||
case LUA_GCISRUNNING: {
|
||
int res = lua_gc(L, o);
|
||
checkvalres(res);
|
||
lua_pushboolean(L, res);
|
||
return 1;
|
||
}
|
||
case LUA_GCGEN: {
|
||
int minormul = (int)luaL_optinteger(L, 2, 0);
|
||
int majormul = (int)luaL_optinteger(L, 3, 0);
|
||
return pushmode(L, lua_gc(L, o, minormul, majormul));
|
||
}
|
||
case LUA_GCINC: {
|
||
int pause = (int)luaL_optinteger(L, 2, 0);
|
||
int stepmul = (int)luaL_optinteger(L, 3, 0);
|
||
int stepsize = (int)luaL_optinteger(L, 4, 0);
|
||
return pushmode(L, lua_gc(L, o, pause, stepmul, stepsize));
|
||
}
|
||
default: {
|
||
int res = lua_gc(L, o);
|
||
checkvalres(res);
|
||
lua_pushinteger(L, res);
|
||
return 1;
|
||
}
|
||
}
|
||
luaL_pushfail(L); /* invalid call (inside a finalizer) */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_type (lua_State *L) {
|
||
int t = lua_type(L, 1);
|
||
luaL_argcheck(L, t != LUA_TNONE, 1, "value expected");
|
||
lua_pushstring(L, lua_typename(L, t));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_next (lua_State *L) {
|
||
luaL_checktype(L, 1, LUA_TTABLE);
|
||
lua_settop(L, 2); /* create a 2nd argument if there isn't one */
|
||
if (lua_next(L, 1))
|
||
return 2;
|
||
else {
|
||
lua_pushnil(L);
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
static int pairscont (lua_State *L, int status, lua_KContext k) {
|
||
(void)L; (void)status; (void)k; /* unused */
|
||
return 3;
|
||
}
|
||
|
||
static int luaB_pairs (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
if (luaL_getmetafield(L, 1, "__pairs") == LUA_TNIL) { /* no metamethod? */
|
||
lua_pushcfunction(L, luaB_next); /* will return generator, */
|
||
lua_pushvalue(L, 1); /* state, */
|
||
lua_pushnil(L); /* and initial value */
|
||
}
|
||
else {
|
||
lua_pushvalue(L, 1); /* argument 'self' to metamethod */
|
||
lua_callk(L, 1, 3, 0, pairscont); /* get 3 values from metamethod */
|
||
}
|
||
return 3;
|
||
}
|
||
|
||
|
||
/*
|
||
** Traversal function for 'ipairs'
|
||
*/
|
||
static int ipairsaux (lua_State *L) {
|
||
lua_Integer i = luaL_checkinteger(L, 2);
|
||
i = luaL_intop(+, i, 1);
|
||
lua_pushinteger(L, i);
|
||
return (lua_geti(L, 1, i) == LUA_TNIL) ? 1 : 2;
|
||
}
|
||
|
||
|
||
/*
|
||
** 'ipairs' function. Returns 'ipairsaux', given "table", 0.
|
||
** (The given "table" may not be a table.)
|
||
*/
|
||
static int luaB_ipairs (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
lua_pushcfunction(L, ipairsaux); /* iteration function */
|
||
lua_pushvalue(L, 1); /* state */
|
||
lua_pushinteger(L, 0); /* initial value */
|
||
return 3;
|
||
}
|
||
|
||
|
||
static int load_aux (lua_State *L, int status, int envidx) {
|
||
if (l_likely(status == LUA_OK)) {
|
||
if (envidx != 0) { /* 'env' parameter? */
|
||
lua_pushvalue(L, envidx); /* environment for loaded function */
|
||
if (!lua_setupvalue(L, -2, 1)) /* set it as 1st upvalue */
|
||
lua_pop(L, 1); /* remove 'env' if not used by previous call */
|
||
}
|
||
return 1;
|
||
}
|
||
else { /* error (message is on top of the stack) */
|
||
luaL_pushfail(L);
|
||
lua_insert(L, -2); /* put before error message */
|
||
return 2; /* return fail plus error message */
|
||
}
|
||
}
|
||
|
||
|
||
static int luaB_loadfile (lua_State *L) {
|
||
const char *fname = luaL_optstring(L, 1, NULL);
|
||
const char *mode = luaL_optstring(L, 2, NULL);
|
||
int env = (!lua_isnone(L, 3) ? 3 : 0); /* 'env' index or 0 if no 'env' */
|
||
int status = luaL_loadfilex(L, fname, mode);
|
||
return load_aux(L, status, env);
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Generic Read function
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/*
|
||
** reserved slot, above all arguments, to hold a copy of the returned
|
||
** string to avoid it being collected while parsed. 'load' has four
|
||
** optional arguments (chunk, source name, mode, and environment).
|
||
*/
|
||
#define RESERVEDSLOT 5
|
||
|
||
|
||
/*
|
||
** Reader for generic 'load' function: 'lua_load' uses the
|
||
** stack for internal stuff, so the reader cannot change the
|
||
** stack top. Instead, it keeps its resulting string in a
|
||
** reserved slot inside the stack.
|
||
*/
|
||
static const char *generic_reader (lua_State *L, void *ud, size_t *size) {
|
||
(void)(ud); /* not used */
|
||
luaL_checkstack(L, 2, "too many nested functions");
|
||
lua_pushvalue(L, 1); /* get function */
|
||
lua_call(L, 0, 1); /* call it */
|
||
if (lua_isnil(L, -1)) {
|
||
lua_pop(L, 1); /* pop result */
|
||
*size = 0;
|
||
return NULL;
|
||
}
|
||
else if (l_unlikely(!lua_isstring(L, -1)))
|
||
luaL_error(L, "reader function must return a string");
|
||
lua_replace(L, RESERVEDSLOT); /* save string in reserved slot */
|
||
return lua_tolstring(L, RESERVEDSLOT, size);
|
||
}
|
||
|
||
|
||
static int luaB_load (lua_State *L) {
|
||
int status;
|
||
size_t l;
|
||
const char *s = lua_tolstring(L, 1, &l);
|
||
const char *mode = luaL_optstring(L, 3, "bt");
|
||
int env = (!lua_isnone(L, 4) ? 4 : 0); /* 'env' index or 0 if no 'env' */
|
||
if (s != NULL) { /* loading a string? */
|
||
const char *chunkname = luaL_optstring(L, 2, s);
|
||
status = luaL_loadbufferx(L, s, l, chunkname, mode);
|
||
}
|
||
else { /* loading from a reader function */
|
||
const char *chunkname = luaL_optstring(L, 2, "=(load)");
|
||
luaL_checktype(L, 1, LUA_TFUNCTION);
|
||
lua_settop(L, RESERVEDSLOT); /* create reserved slot */
|
||
status = lua_load(L, generic_reader, NULL, chunkname, mode);
|
||
}
|
||
return load_aux(L, status, env);
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
static int dofilecont (lua_State *L, int d1, lua_KContext d2) {
|
||
(void)d1; (void)d2; /* only to match 'lua_Kfunction' prototype */
|
||
return lua_gettop(L) - 1;
|
||
}
|
||
|
||
|
||
static int luaB_dofile (lua_State *L) {
|
||
const char *fname = luaL_optstring(L, 1, NULL);
|
||
lua_settop(L, 1);
|
||
if (l_unlikely(luaL_loadfile(L, fname) != LUA_OK))
|
||
return lua_error(L);
|
||
lua_callk(L, 0, LUA_MULTRET, 0, dofilecont);
|
||
return dofilecont(L, 0, 0);
|
||
}
|
||
|
||
|
||
static int luaB_assert (lua_State *L) {
|
||
if (l_likely(lua_toboolean(L, 1))) /* condition is true? */
|
||
return lua_gettop(L); /* return all arguments */
|
||
else { /* error */
|
||
luaL_checkany(L, 1); /* there must be a condition */
|
||
lua_remove(L, 1); /* remove it */
|
||
lua_pushliteral(L, "assertion failed!"); /* default message */
|
||
lua_settop(L, 1); /* leave only message (default if no other one) */
|
||
return luaB_error(L); /* call 'error' */
|
||
}
|
||
}
|
||
|
||
|
||
static int luaB_select (lua_State *L) {
|
||
int n = lua_gettop(L);
|
||
if (lua_type(L, 1) == LUA_TSTRING && *lua_tostring(L, 1) == '#') {
|
||
lua_pushinteger(L, n-1);
|
||
return 1;
|
||
}
|
||
else {
|
||
lua_Integer i = luaL_checkinteger(L, 1);
|
||
if (i < 0) i = n + i;
|
||
else if (i > n) i = n;
|
||
luaL_argcheck(L, 1 <= i, 1, "index out of range");
|
||
return n - (int)i;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Continuation function for 'pcall' and 'xpcall'. Both functions
|
||
** already pushed a 'true' before doing the call, so in case of success
|
||
** 'finishpcall' only has to return everything in the stack minus
|
||
** 'extra' values (where 'extra' is exactly the number of items to be
|
||
** ignored).
|
||
*/
|
||
static int finishpcall (lua_State *L, int status, lua_KContext extra) {
|
||
if (l_unlikely(status != LUA_OK && status != LUA_YIELD)) { /* error? */
|
||
lua_pushboolean(L, 0); /* first result (false) */
|
||
lua_pushvalue(L, -2); /* error message */
|
||
return 2; /* return false, msg */
|
||
}
|
||
else
|
||
return lua_gettop(L) - (int)extra; /* return all results */
|
||
}
|
||
|
||
|
||
static int luaB_pcall (lua_State *L) {
|
||
int status;
|
||
luaL_checkany(L, 1);
|
||
lua_pushboolean(L, 1); /* first result if no errors */
|
||
lua_insert(L, 1); /* put it in place */
|
||
status = lua_pcallk(L, lua_gettop(L) - 2, LUA_MULTRET, 0, 0, finishpcall);
|
||
return finishpcall(L, status, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Do a protected call with error handling. After 'lua_rotate', the
|
||
** stack will have <f, err, true, f, [args...]>; so, the function passes
|
||
** 2 to 'finishpcall' to skip the 2 first values when returning results.
|
||
*/
|
||
static int luaB_xpcall (lua_State *L) {
|
||
int status;
|
||
int n = lua_gettop(L);
|
||
luaL_checktype(L, 2, LUA_TFUNCTION); /* check error function */
|
||
lua_pushboolean(L, 1); /* first result */
|
||
lua_pushvalue(L, 1); /* function */
|
||
lua_rotate(L, 3, 2); /* move them below function's arguments */
|
||
status = lua_pcallk(L, n - 2, LUA_MULTRET, 2, 2, finishpcall);
|
||
return finishpcall(L, status, 2);
|
||
}
|
||
|
||
|
||
static int luaB_tostring (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
luaL_tolstring(L, 1, NULL);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static const luaL_Reg base_funcs[] = {
|
||
{"assert", luaB_assert},
|
||
{"collectgarbage", luaB_collectgarbage},
|
||
{"dofile", luaB_dofile},
|
||
{"error", luaB_error},
|
||
{"getmetatable", luaB_getmetatable},
|
||
{"ipairs", luaB_ipairs},
|
||
{"loadfile", luaB_loadfile},
|
||
{"load", luaB_load},
|
||
{"next", luaB_next},
|
||
{"pairs", luaB_pairs},
|
||
{"pcall", luaB_pcall},
|
||
{"print", luaB_print},
|
||
{"warn", luaB_warn},
|
||
{"rawequal", luaB_rawequal},
|
||
{"rawlen", luaB_rawlen},
|
||
{"rawget", luaB_rawget},
|
||
{"rawset", luaB_rawset},
|
||
{"select", luaB_select},
|
||
{"setmetatable", luaB_setmetatable},
|
||
{"tonumber", luaB_tonumber},
|
||
{"tostring", luaB_tostring},
|
||
{"type", luaB_type},
|
||
{"xpcall", luaB_xpcall},
|
||
/* placeholders */
|
||
{LUA_GNAME, NULL},
|
||
{"_VERSION", NULL},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
LUAMOD_API int luaopen_base (lua_State *L) {
|
||
/* open lib into global table */
|
||
lua_pushglobaltable(L);
|
||
luaL_setfuncs(L, base_funcs, 0);
|
||
/* set global _G */
|
||
lua_pushvalue(L, -1);
|
||
lua_setfield(L, -2, LUA_GNAME);
|
||
/* set global _VERSION */
|
||
lua_pushliteral(L, LUA_VERSION);
|
||
lua_setfield(L, -2, "_VERSION");
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: lcorolib.c $
|
||
** Coroutine Library
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lcorolib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stdlib.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
static lua_State *getco (lua_State *L) {
|
||
lua_State *co = lua_tothread(L, 1);
|
||
luaL_argexpected(L, co, 1, "thread");
|
||
return co;
|
||
}
|
||
|
||
|
||
/*
|
||
** Resumes a coroutine. Returns the number of results for non-error
|
||
** cases or -1 for errors.
|
||
*/
|
||
static int auxresume (lua_State *L, lua_State *co, int narg) {
|
||
int status, nres;
|
||
if (l_unlikely(!lua_checkstack(co, narg))) {
|
||
lua_pushliteral(L, "too many arguments to resume");
|
||
return -1; /* error flag */
|
||
}
|
||
lua_xmove(L, co, narg);
|
||
status = lua_resume(co, L, narg, &nres);
|
||
if (l_likely(status == LUA_OK || status == LUA_YIELD)) {
|
||
if (l_unlikely(!lua_checkstack(L, nres + 1))) {
|
||
lua_pop(co, nres); /* remove results anyway */
|
||
lua_pushliteral(L, "too many results to resume");
|
||
return -1; /* error flag */
|
||
}
|
||
lua_xmove(co, L, nres); /* move yielded values */
|
||
return nres;
|
||
}
|
||
else {
|
||
lua_xmove(co, L, 1); /* move error message */
|
||
return -1; /* error flag */
|
||
}
|
||
}
|
||
|
||
|
||
static int luaB_coresume (lua_State *L) {
|
||
lua_State *co = getco(L);
|
||
int r;
|
||
r = auxresume(L, co, lua_gettop(L) - 1);
|
||
if (l_unlikely(r < 0)) {
|
||
lua_pushboolean(L, 0);
|
||
lua_insert(L, -2);
|
||
return 2; /* return false + error message */
|
||
}
|
||
else {
|
||
lua_pushboolean(L, 1);
|
||
lua_insert(L, -(r + 1));
|
||
return r + 1; /* return true + 'resume' returns */
|
||
}
|
||
}
|
||
|
||
|
||
static int luaB_auxwrap (lua_State *L) {
|
||
lua_State *co = lua_tothread(L, lua_upvalueindex(1));
|
||
int r = auxresume(L, co, lua_gettop(L));
|
||
if (l_unlikely(r < 0)) { /* error? */
|
||
int stat = lua_status(co);
|
||
if (stat != LUA_OK && stat != LUA_YIELD) { /* error in the coroutine? */
|
||
stat = lua_closethread(co, L); /* close its tbc variables */
|
||
lua_assert(stat != LUA_OK);
|
||
lua_xmove(co, L, 1); /* move error message to the caller */
|
||
}
|
||
if (stat != LUA_ERRMEM && /* not a memory error and ... */
|
||
lua_type(L, -1) == LUA_TSTRING) { /* ... error object is a string? */
|
||
luaL_where(L, 1); /* add extra info, if available */
|
||
lua_insert(L, -2);
|
||
lua_concat(L, 2);
|
||
}
|
||
return lua_error(L); /* propagate error */
|
||
}
|
||
return r;
|
||
}
|
||
|
||
|
||
static int luaB_cocreate (lua_State *L) {
|
||
lua_State *NL;
|
||
luaL_checktype(L, 1, LUA_TFUNCTION);
|
||
NL = lua_newthread(L);
|
||
lua_pushvalue(L, 1); /* move function to top */
|
||
lua_xmove(L, NL, 1); /* move function from L to NL */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_cowrap (lua_State *L) {
|
||
luaB_cocreate(L);
|
||
lua_pushcclosure(L, luaB_auxwrap, 1);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_yield (lua_State *L) {
|
||
return lua_yield(L, lua_gettop(L));
|
||
}
|
||
|
||
|
||
#define COS_RUN 0
|
||
#define COS_DEAD 1
|
||
#define COS_YIELD 2
|
||
#define COS_NORM 3
|
||
|
||
|
||
static const char *const statname[] =
|
||
{"running", "dead", "suspended", "normal"};
|
||
|
||
|
||
static int auxstatus (lua_State *L, lua_State *co) {
|
||
if (L == co) return COS_RUN;
|
||
else {
|
||
switch (lua_status(co)) {
|
||
case LUA_YIELD:
|
||
return COS_YIELD;
|
||
case LUA_OK: {
|
||
lua_Debug ar;
|
||
if (lua_getstack(co, 0, &ar)) /* does it have frames? */
|
||
return COS_NORM; /* it is running */
|
||
else if (lua_gettop(co) == 0)
|
||
return COS_DEAD;
|
||
else
|
||
return COS_YIELD; /* initial state */
|
||
}
|
||
default: /* some error occurred */
|
||
return COS_DEAD;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static int luaB_costatus (lua_State *L) {
|
||
lua_State *co = getco(L);
|
||
lua_pushstring(L, statname[auxstatus(L, co)]);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_yieldable (lua_State *L) {
|
||
lua_State *co = lua_isnone(L, 1) ? L : getco(L);
|
||
lua_pushboolean(L, lua_isyieldable(co));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int luaB_corunning (lua_State *L) {
|
||
int ismain = lua_pushthread(L);
|
||
lua_pushboolean(L, ismain);
|
||
return 2;
|
||
}
|
||
|
||
|
||
static int luaB_close (lua_State *L) {
|
||
lua_State *co = getco(L);
|
||
int status = auxstatus(L, co);
|
||
switch (status) {
|
||
case COS_DEAD: case COS_YIELD: {
|
||
status = lua_closethread(co, L);
|
||
if (status == LUA_OK) {
|
||
lua_pushboolean(L, 1);
|
||
return 1;
|
||
}
|
||
else {
|
||
lua_pushboolean(L, 0);
|
||
lua_xmove(co, L, 1); /* move error message */
|
||
return 2;
|
||
}
|
||
}
|
||
default: /* normal or running coroutine */
|
||
return luaL_error(L, "cannot close a %s coroutine", statname[status]);
|
||
}
|
||
}
|
||
|
||
|
||
static const luaL_Reg co_funcs[] = {
|
||
{"create", luaB_cocreate},
|
||
{"resume", luaB_coresume},
|
||
{"running", luaB_corunning},
|
||
{"status", luaB_costatus},
|
||
{"wrap", luaB_cowrap},
|
||
{"yield", luaB_yield},
|
||
{"isyieldable", luaB_yieldable},
|
||
{"close", luaB_close},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
|
||
LUAMOD_API int luaopen_coroutine (lua_State *L) {
|
||
luaL_newlib(L, co_funcs);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: ldblib.c $
|
||
** Interface from Lua to its debug API
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ldblib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
/*
|
||
** The hook table at registry[HOOKKEY] maps threads to their current
|
||
** hook function.
|
||
*/
|
||
static const char *const HOOKKEY = "_HOOKKEY";
|
||
|
||
|
||
/*
|
||
** If L1 != L, L1 can be in any state, and therefore there are no
|
||
** guarantees about its stack space; any push in L1 must be
|
||
** checked.
|
||
*/
|
||
static void checkstack (lua_State *L, lua_State *L1, int n) {
|
||
if (l_unlikely(L != L1 && !lua_checkstack(L1, n)))
|
||
luaL_error(L, "stack overflow");
|
||
}
|
||
|
||
|
||
static int db_getregistry (lua_State *L) {
|
||
lua_pushvalue(L, LUA_REGISTRYINDEX);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int db_getmetatable (lua_State *L) {
|
||
luaL_checkany(L, 1);
|
||
if (!lua_getmetatable(L, 1)) {
|
||
lua_pushnil(L); /* no metatable */
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int db_setmetatable (lua_State *L) {
|
||
int t = lua_type(L, 2);
|
||
luaL_argexpected(L, t == LUA_TNIL || t == LUA_TTABLE, 2, "nil or table");
|
||
lua_settop(L, 2);
|
||
lua_setmetatable(L, 1);
|
||
return 1; /* return 1st argument */
|
||
}
|
||
|
||
|
||
static int db_getuservalue (lua_State *L) {
|
||
int n = (int)luaL_optinteger(L, 2, 1);
|
||
if (lua_type(L, 1) != LUA_TUSERDATA)
|
||
luaL_pushfail(L);
|
||
else if (lua_getiuservalue(L, 1, n) != LUA_TNONE) {
|
||
lua_pushboolean(L, 1);
|
||
return 2;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int db_setuservalue (lua_State *L) {
|
||
int n = (int)luaL_optinteger(L, 3, 1);
|
||
luaL_checktype(L, 1, LUA_TUSERDATA);
|
||
luaL_checkany(L, 2);
|
||
lua_settop(L, 2);
|
||
if (!lua_setiuservalue(L, 1, n))
|
||
luaL_pushfail(L);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Auxiliary function used by several library functions: check for
|
||
** an optional thread as function's first argument and set 'arg' with
|
||
** 1 if this argument is present (so that functions can skip it to
|
||
** access their other arguments)
|
||
*/
|
||
static lua_State *getthread (lua_State *L, int *arg) {
|
||
if (lua_isthread(L, 1)) {
|
||
*arg = 1;
|
||
return lua_tothread(L, 1);
|
||
}
|
||
else {
|
||
*arg = 0;
|
||
return L; /* function will operate over current thread */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Variations of 'lua_settable', used by 'db_getinfo' to put results
|
||
** from 'lua_getinfo' into result table. Key is always a string;
|
||
** value can be a string, an int, or a boolean.
|
||
*/
|
||
static void settabss (lua_State *L, const char *k, const char *v) {
|
||
lua_pushstring(L, v);
|
||
lua_setfield(L, -2, k);
|
||
}
|
||
|
||
static void settabsi (lua_State *L, const char *k, int v) {
|
||
lua_pushinteger(L, v);
|
||
lua_setfield(L, -2, k);
|
||
}
|
||
|
||
static void settabsb (lua_State *L, const char *k, int v) {
|
||
lua_pushboolean(L, v);
|
||
lua_setfield(L, -2, k);
|
||
}
|
||
|
||
|
||
/*
|
||
** In function 'db_getinfo', the call to 'lua_getinfo' may push
|
||
** results on the stack; later it creates the result table to put
|
||
** these objects. Function 'treatstackoption' puts the result from
|
||
** 'lua_getinfo' on top of the result table so that it can call
|
||
** 'lua_setfield'.
|
||
*/
|
||
static void treatstackoption (lua_State *L, lua_State *L1, const char *fname) {
|
||
if (L == L1)
|
||
lua_rotate(L, -2, 1); /* exchange object and table */
|
||
else
|
||
lua_xmove(L1, L, 1); /* move object to the "main" stack */
|
||
lua_setfield(L, -2, fname); /* put object into table */
|
||
}
|
||
|
||
|
||
/*
|
||
** Calls 'lua_getinfo' and collects all results in a new table.
|
||
** L1 needs stack space for an optional input (function) plus
|
||
** two optional outputs (function and line table) from function
|
||
** 'lua_getinfo'.
|
||
*/
|
||
static int db_getinfo (lua_State *L) {
|
||
lua_Debug ar;
|
||
int arg;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
const char *options = luaL_optstring(L, arg+2, "flnSrtu");
|
||
checkstack(L, L1, 3);
|
||
luaL_argcheck(L, options[0] != '>', arg + 2, "invalid option '>'");
|
||
if (lua_isfunction(L, arg + 1)) { /* info about a function? */
|
||
options = lua_pushfstring(L, ">%s", options); /* add '>' to 'options' */
|
||
lua_pushvalue(L, arg + 1); /* move function to 'L1' stack */
|
||
lua_xmove(L, L1, 1);
|
||
}
|
||
else { /* stack level */
|
||
if (!lua_getstack(L1, (int)luaL_checkinteger(L, arg + 1), &ar)) {
|
||
luaL_pushfail(L); /* level out of range */
|
||
return 1;
|
||
}
|
||
}
|
||
if (!lua_getinfo(L1, options, &ar))
|
||
return luaL_argerror(L, arg+2, "invalid option");
|
||
lua_newtable(L); /* table to collect results */
|
||
if (strchr(options, 'S')) {
|
||
lua_pushlstring(L, ar.source, ar.srclen);
|
||
lua_setfield(L, -2, "source");
|
||
settabss(L, "short_src", ar.short_src);
|
||
settabsi(L, "linedefined", ar.linedefined);
|
||
settabsi(L, "lastlinedefined", ar.lastlinedefined);
|
||
settabss(L, "what", ar.what);
|
||
}
|
||
if (strchr(options, 'l'))
|
||
settabsi(L, "currentline", ar.currentline);
|
||
if (strchr(options, 'u')) {
|
||
settabsi(L, "nups", ar.nups);
|
||
settabsi(L, "nparams", ar.nparams);
|
||
settabsb(L, "isvararg", ar.isvararg);
|
||
}
|
||
if (strchr(options, 'n')) {
|
||
settabss(L, "name", ar.name);
|
||
settabss(L, "namewhat", ar.namewhat);
|
||
}
|
||
if (strchr(options, 'r')) {
|
||
settabsi(L, "ftransfer", ar.ftransfer);
|
||
settabsi(L, "ntransfer", ar.ntransfer);
|
||
}
|
||
if (strchr(options, 't'))
|
||
settabsb(L, "istailcall", ar.istailcall);
|
||
if (strchr(options, 'L'))
|
||
treatstackoption(L, L1, "activelines");
|
||
if (strchr(options, 'f'))
|
||
treatstackoption(L, L1, "func");
|
||
return 1; /* return table */
|
||
}
|
||
|
||
|
||
static int db_getlocal (lua_State *L) {
|
||
int arg;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
int nvar = (int)luaL_checkinteger(L, arg + 2); /* local-variable index */
|
||
if (lua_isfunction(L, arg + 1)) { /* function argument? */
|
||
lua_pushvalue(L, arg + 1); /* push function */
|
||
lua_pushstring(L, lua_getlocal(L, NULL, nvar)); /* push local name */
|
||
return 1; /* return only name (there is no value) */
|
||
}
|
||
else { /* stack-level argument */
|
||
lua_Debug ar;
|
||
const char *name;
|
||
int level = (int)luaL_checkinteger(L, arg + 1);
|
||
if (l_unlikely(!lua_getstack(L1, level, &ar))) /* out of range? */
|
||
return luaL_argerror(L, arg+1, "level out of range");
|
||
checkstack(L, L1, 1);
|
||
name = lua_getlocal(L1, &ar, nvar);
|
||
if (name) {
|
||
lua_xmove(L1, L, 1); /* move local value */
|
||
lua_pushstring(L, name); /* push name */
|
||
lua_rotate(L, -2, 1); /* re-order */
|
||
return 2;
|
||
}
|
||
else {
|
||
luaL_pushfail(L); /* no name (nor value) */
|
||
return 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static int db_setlocal (lua_State *L) {
|
||
int arg;
|
||
const char *name;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
lua_Debug ar;
|
||
int level = (int)luaL_checkinteger(L, arg + 1);
|
||
int nvar = (int)luaL_checkinteger(L, arg + 2);
|
||
if (l_unlikely(!lua_getstack(L1, level, &ar))) /* out of range? */
|
||
return luaL_argerror(L, arg+1, "level out of range");
|
||
luaL_checkany(L, arg+3);
|
||
lua_settop(L, arg+3);
|
||
checkstack(L, L1, 1);
|
||
lua_xmove(L, L1, 1);
|
||
name = lua_setlocal(L1, &ar, nvar);
|
||
if (name == NULL)
|
||
lua_pop(L1, 1); /* pop value (if not popped by 'lua_setlocal') */
|
||
lua_pushstring(L, name);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** get (if 'get' is true) or set an upvalue from a closure
|
||
*/
|
||
static int auxupvalue (lua_State *L, int get) {
|
||
const char *name;
|
||
int n = (int)luaL_checkinteger(L, 2); /* upvalue index */
|
||
luaL_checktype(L, 1, LUA_TFUNCTION); /* closure */
|
||
name = get ? lua_getupvalue(L, 1, n) : lua_setupvalue(L, 1, n);
|
||
if (name == NULL) return 0;
|
||
lua_pushstring(L, name);
|
||
lua_insert(L, -(get+1)); /* no-op if get is false */
|
||
return get + 1;
|
||
}
|
||
|
||
|
||
static int db_getupvalue (lua_State *L) {
|
||
return auxupvalue(L, 1);
|
||
}
|
||
|
||
|
||
static int db_setupvalue (lua_State *L) {
|
||
luaL_checkany(L, 3);
|
||
return auxupvalue(L, 0);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether a given upvalue from a given closure exists and
|
||
** returns its index
|
||
*/
|
||
static void *checkupval (lua_State *L, int argf, int argnup, int *pnup) {
|
||
void *id;
|
||
int nup = (int)luaL_checkinteger(L, argnup); /* upvalue index */
|
||
luaL_checktype(L, argf, LUA_TFUNCTION); /* closure */
|
||
id = lua_upvalueid(L, argf, nup);
|
||
if (pnup) {
|
||
luaL_argcheck(L, id != NULL, argnup, "invalid upvalue index");
|
||
*pnup = nup;
|
||
}
|
||
return id;
|
||
}
|
||
|
||
|
||
static int db_upvalueid (lua_State *L) {
|
||
void *id = checkupval(L, 1, 2, NULL);
|
||
if (id != NULL)
|
||
lua_pushlightuserdata(L, id);
|
||
else
|
||
luaL_pushfail(L);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int db_upvaluejoin (lua_State *L) {
|
||
int n1, n2;
|
||
checkupval(L, 1, 2, &n1);
|
||
checkupval(L, 3, 4, &n2);
|
||
luaL_argcheck(L, !lua_iscfunction(L, 1), 1, "Lua function expected");
|
||
luaL_argcheck(L, !lua_iscfunction(L, 3), 3, "Lua function expected");
|
||
lua_upvaluejoin(L, 1, n1, 3, n2);
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Call hook function registered at hook table for the current
|
||
** thread (if there is one)
|
||
*/
|
||
static void hookf (lua_State *L, lua_Debug *ar) {
|
||
static const char *const hooknames[] =
|
||
{"call", "return", "line", "count", "tail call"};
|
||
lua_getfield(L, LUA_REGISTRYINDEX, HOOKKEY);
|
||
lua_pushthread(L);
|
||
if (lua_rawget(L, -2) == LUA_TFUNCTION) { /* is there a hook function? */
|
||
lua_pushstring(L, hooknames[(int)ar->event]); /* push event name */
|
||
if (ar->currentline >= 0)
|
||
lua_pushinteger(L, ar->currentline); /* push current line */
|
||
else lua_pushnil(L);
|
||
lua_assert(lua_getinfo(L, "lS", ar));
|
||
lua_call(L, 2, 0); /* call hook function */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a string mask (for 'sethook') into a bit mask
|
||
*/
|
||
static int makemask (const char *smask, int count) {
|
||
int mask = 0;
|
||
if (strchr(smask, 'c')) mask |= LUA_MASKCALL;
|
||
if (strchr(smask, 'r')) mask |= LUA_MASKRET;
|
||
if (strchr(smask, 'l')) mask |= LUA_MASKLINE;
|
||
if (count > 0) mask |= LUA_MASKCOUNT;
|
||
return mask;
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert a bit mask (for 'gethook') into a string mask
|
||
*/
|
||
static char *unmakemask (int mask, char *smask) {
|
||
int i = 0;
|
||
if (mask & LUA_MASKCALL) smask[i++] = 'c';
|
||
if (mask & LUA_MASKRET) smask[i++] = 'r';
|
||
if (mask & LUA_MASKLINE) smask[i++] = 'l';
|
||
smask[i] = '\0';
|
||
return smask;
|
||
}
|
||
|
||
|
||
static int db_sethook (lua_State *L) {
|
||
int arg, mask, count;
|
||
lua_Hook func;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
if (lua_isnoneornil(L, arg+1)) { /* no hook? */
|
||
lua_settop(L, arg+1);
|
||
func = NULL; mask = 0; count = 0; /* turn off hooks */
|
||
}
|
||
else {
|
||
const char *smask = luaL_checkstring(L, arg+2);
|
||
luaL_checktype(L, arg+1, LUA_TFUNCTION);
|
||
count = (int)luaL_optinteger(L, arg + 3, 0);
|
||
func = hookf; mask = makemask(smask, count);
|
||
}
|
||
if (!luaL_getsubtable(L, LUA_REGISTRYINDEX, HOOKKEY)) {
|
||
/* table just created; initialize it */
|
||
lua_pushliteral(L, "k");
|
||
lua_setfield(L, -2, "__mode"); /** hooktable.__mode = "k" */
|
||
lua_pushvalue(L, -1);
|
||
lua_setmetatable(L, -2); /* metatable(hooktable) = hooktable */
|
||
}
|
||
checkstack(L, L1, 1);
|
||
lua_pushthread(L1); lua_xmove(L1, L, 1); /* key (thread) */
|
||
lua_pushvalue(L, arg + 1); /* value (hook function) */
|
||
lua_rawset(L, -3); /* hooktable[L1] = new Lua hook */
|
||
lua_sethook(L1, func, mask, count);
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int db_gethook (lua_State *L) {
|
||
int arg;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
char buff[5];
|
||
int mask = lua_gethookmask(L1);
|
||
lua_Hook hook = lua_gethook(L1);
|
||
if (hook == NULL) { /* no hook? */
|
||
luaL_pushfail(L);
|
||
return 1;
|
||
}
|
||
else if (hook != hookf) /* external hook? */
|
||
lua_pushliteral(L, "external hook");
|
||
else { /* hook table must exist */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, HOOKKEY);
|
||
checkstack(L, L1, 1);
|
||
lua_pushthread(L1); lua_xmove(L1, L, 1);
|
||
lua_rawget(L, -2); /* 1st result = hooktable[L1] */
|
||
lua_remove(L, -2); /* remove hook table */
|
||
}
|
||
lua_pushstring(L, unmakemask(mask, buff)); /* 2nd result = mask */
|
||
lua_pushinteger(L, lua_gethookcount(L1)); /* 3rd result = count */
|
||
return 3;
|
||
}
|
||
|
||
|
||
static int db_debug (lua_State *L) {
|
||
for (;;) {
|
||
char buffer[250];
|
||
lua_writestringerror("%s", "lua_debug> ");
|
||
if (fgets(buffer, sizeof(buffer), stdin) == NULL ||
|
||
strcmp(buffer, "cont\n") == 0)
|
||
return 0;
|
||
if (luaL_loadbuffer(L, buffer, strlen(buffer), "=(debug command)") ||
|
||
lua_pcall(L, 0, 0, 0))
|
||
lua_writestringerror("%s\n", luaL_tolstring(L, -1, NULL));
|
||
lua_settop(L, 0); /* remove eventual returns */
|
||
}
|
||
}
|
||
|
||
|
||
static int db_traceback (lua_State *L) {
|
||
int arg;
|
||
lua_State *L1 = getthread(L, &arg);
|
||
const char *msg = lua_tostring(L, arg + 1);
|
||
if (msg == NULL && !lua_isnoneornil(L, arg + 1)) /* non-string 'msg'? */
|
||
lua_pushvalue(L, arg + 1); /* return it untouched */
|
||
else {
|
||
int level = (int)luaL_optinteger(L, arg + 2, (L == L1) ? 1 : 0);
|
||
luaL_traceback(L, L1, msg, level);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int db_setcstacklimit (lua_State *L) {
|
||
int limit = (int)luaL_checkinteger(L, 1);
|
||
int res = lua_setcstacklimit(L, limit);
|
||
lua_pushinteger(L, res);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static const luaL_Reg dblib[] = {
|
||
{"debug", db_debug},
|
||
{"getuservalue", db_getuservalue},
|
||
{"gethook", db_gethook},
|
||
{"getinfo", db_getinfo},
|
||
{"getlocal", db_getlocal},
|
||
{"getregistry", db_getregistry},
|
||
{"getmetatable", db_getmetatable},
|
||
{"getupvalue", db_getupvalue},
|
||
{"upvaluejoin", db_upvaluejoin},
|
||
{"upvalueid", db_upvalueid},
|
||
{"setuservalue", db_setuservalue},
|
||
{"sethook", db_sethook},
|
||
{"setlocal", db_setlocal},
|
||
{"setmetatable", db_setmetatable},
|
||
{"setupvalue", db_setupvalue},
|
||
{"traceback", db_traceback},
|
||
{"setcstacklimit", db_setcstacklimit},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
LUAMOD_API int luaopen_debug (lua_State *L) {
|
||
luaL_newlib(L, dblib);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: liolib.c $
|
||
** Standard I/O (and system) library
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define liolib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <ctype.h>
|
||
#include <errno.h>
|
||
#include <locale.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
|
||
|
||
/*
|
||
** Change this macro to accept other modes for 'fopen' besides
|
||
** the standard ones.
|
||
*/
|
||
#if !defined(l_checkmode)
|
||
|
||
/* accepted extensions to 'mode' in 'fopen' */
|
||
#if !defined(L_MODEEXT)
|
||
#define L_MODEEXT "b"
|
||
#endif
|
||
|
||
/* Check whether 'mode' matches '[rwa]%+?[L_MODEEXT]*' */
|
||
static int l_checkmode (const char *mode) {
|
||
return (*mode != '\0' && strchr("rwa", *(mode++)) != NULL &&
|
||
(*mode != '+' || ((void)(++mode), 1)) && /* skip if char is '+' */
|
||
(strspn(mode, L_MODEEXT) == strlen(mode))); /* check extensions */
|
||
}
|
||
|
||
#endif
|
||
|
||
/*
|
||
** {======================================================
|
||
** l_popen spawns a new process connected to the current
|
||
** one through the file streams.
|
||
** =======================================================
|
||
*/
|
||
|
||
#if !defined(l_popen) /* { */
|
||
|
||
#if defined(LUA_USE_POSIX) /* { */
|
||
|
||
#define l_popen(L,c,m) (fflush(NULL), popen(c,m))
|
||
#define l_pclose(L,file) (pclose(file))
|
||
|
||
#elif defined(LUA_USE_WINDOWS) /* }{ */
|
||
|
||
#define l_popen(L,c,m) (_popen(c,m))
|
||
#define l_pclose(L,file) (_pclose(file))
|
||
|
||
#if !defined(l_checkmodep)
|
||
/* Windows accepts "[rw][bt]?" as valid modes */
|
||
#define l_checkmodep(m) ((m[0] == 'r' || m[0] == 'w') && \
|
||
(m[1] == '\0' || ((m[1] == 'b' || m[1] == 't') && m[2] == '\0')))
|
||
#endif
|
||
|
||
#else /* }{ */
|
||
|
||
/* ISO C definitions */
|
||
#define l_popen(L,c,m) \
|
||
((void)c, (void)m, \
|
||
luaL_error(L, "'popen' not supported"), \
|
||
(FILE*)0)
|
||
#define l_pclose(L,file) ((void)L, (void)file, -1)
|
||
|
||
#endif /* } */
|
||
|
||
#endif /* } */
|
||
|
||
|
||
#if !defined(l_checkmodep)
|
||
/* By default, Lua accepts only "r" or "w" as valid modes */
|
||
#define l_checkmodep(m) ((m[0] == 'r' || m[0] == 'w') && m[1] == '\0')
|
||
#endif
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
#if !defined(l_getc) /* { */
|
||
|
||
#if defined(LUA_USE_POSIX)
|
||
#define l_getc(f) getc_unlocked(f)
|
||
#define l_lockfile(f) flockfile(f)
|
||
#define l_unlockfile(f) funlockfile(f)
|
||
#else
|
||
#define l_getc(f) getc(f)
|
||
#define l_lockfile(f) ((void)0)
|
||
#define l_unlockfile(f) ((void)0)
|
||
#endif
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** l_fseek: configuration for longer offsets
|
||
** =======================================================
|
||
*/
|
||
|
||
#if !defined(l_fseek) /* { */
|
||
|
||
#if defined(LUA_USE_POSIX) /* { */
|
||
|
||
#include <sys/types.h>
|
||
|
||
#define l_fseek(f,o,w) fseeko(f,o,w)
|
||
#define l_ftell(f) ftello(f)
|
||
#define l_seeknum off_t
|
||
|
||
#elif defined(LUA_USE_WINDOWS) && !defined(_CRTIMP_TYPEINFO) \
|
||
&& defined(_MSC_VER) && (_MSC_VER >= 1400) /* }{ */
|
||
|
||
/* Windows (but not DDK) and Visual C++ 2005 or higher */
|
||
#define l_fseek(f,o,w) _fseeki64(f,o,w)
|
||
#define l_ftell(f) _ftelli64(f)
|
||
#define l_seeknum __int64
|
||
|
||
#else /* }{ */
|
||
|
||
/* ISO C definitions */
|
||
#define l_fseek(f,o,w) fseek(f,o,w)
|
||
#define l_ftell(f) ftell(f)
|
||
#define l_seeknum long
|
||
|
||
#endif /* } */
|
||
|
||
#endif /* } */
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
#define IO_PREFIX "_IO_"
|
||
#define IOPREF_LEN (sizeof(IO_PREFIX)/sizeof(char) - 1)
|
||
#define IO_INPUT (IO_PREFIX "input")
|
||
#define IO_OUTPUT (IO_PREFIX "output")
|
||
|
||
|
||
typedef luaL_Stream LStream;
|
||
|
||
|
||
#define tolstream(L) ((LStream *)luaL_checkudata(L, 1, LUA_FILEHANDLE))
|
||
|
||
#define isclosed(p) ((p)->closef == NULL)
|
||
|
||
|
||
static int io_type (lua_State *L) {
|
||
LStream *p;
|
||
luaL_checkany(L, 1);
|
||
p = (LStream *)luaL_testudata(L, 1, LUA_FILEHANDLE);
|
||
if (p == NULL)
|
||
luaL_pushfail(L); /* not a file */
|
||
else if (isclosed(p))
|
||
lua_pushliteral(L, "closed file");
|
||
else
|
||
lua_pushliteral(L, "file");
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int f_tostring (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
if (isclosed(p))
|
||
lua_pushliteral(L, "file (closed)");
|
||
else
|
||
lua_pushfstring(L, "file (%p)", p->f);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static FILE *tofile (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
if (l_unlikely(isclosed(p)))
|
||
luaL_error(L, "attempt to use a closed file");
|
||
lua_assert(p->f);
|
||
return p->f;
|
||
}
|
||
|
||
|
||
/*
|
||
** When creating file handles, always creates a 'closed' file handle
|
||
** before opening the actual file; so, if there is a memory error, the
|
||
** handle is in a consistent state.
|
||
*/
|
||
static LStream *newprefile (lua_State *L) {
|
||
LStream *p = (LStream *)lua_newuserdatauv(L, sizeof(LStream), 0);
|
||
p->closef = NULL; /* mark file handle as 'closed' */
|
||
luaL_setmetatable(L, LUA_FILEHANDLE);
|
||
return p;
|
||
}
|
||
|
||
|
||
/*
|
||
** Calls the 'close' function from a file handle. The 'volatile' avoids
|
||
** a bug in some versions of the Clang compiler (e.g., clang 3.0 for
|
||
** 32 bits).
|
||
*/
|
||
static int aux_close (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
volatile lua_CFunction cf = p->closef;
|
||
p->closef = NULL; /* mark stream as closed */
|
||
return (*cf)(L); /* close it */
|
||
}
|
||
|
||
|
||
static int f_close (lua_State *L) {
|
||
tofile(L); /* make sure argument is an open stream */
|
||
return aux_close(L);
|
||
}
|
||
|
||
|
||
static int io_close (lua_State *L) {
|
||
if (lua_isnone(L, 1)) /* no argument? */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, IO_OUTPUT); /* use default output */
|
||
return f_close(L);
|
||
}
|
||
|
||
|
||
static int f_gc (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
if (!isclosed(p) && p->f != NULL)
|
||
aux_close(L); /* ignore closed and incompletely open files */
|
||
return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** function to close regular files
|
||
*/
|
||
static int io_fclose (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
errno = 0;
|
||
return luaL_fileresult(L, (fclose(p->f) == 0), NULL);
|
||
}
|
||
|
||
|
||
static LStream *newfile (lua_State *L) {
|
||
LStream *p = newprefile(L);
|
||
p->f = NULL;
|
||
p->closef = &io_fclose;
|
||
return p;
|
||
}
|
||
|
||
|
||
static void opencheck (lua_State *L, const char *fname, const char *mode) {
|
||
LStream *p = newfile(L);
|
||
p->f = fopen(fname, mode);
|
||
if (l_unlikely(p->f == NULL))
|
||
luaL_error(L, "cannot open file '%s' (%s)", fname, strerror(errno));
|
||
}
|
||
|
||
|
||
static int io_open (lua_State *L) {
|
||
const char *filename = luaL_checkstring(L, 1);
|
||
const char *mode = luaL_optstring(L, 2, "r");
|
||
LStream *p = newfile(L);
|
||
const char *md = mode; /* to traverse/check mode */
|
||
luaL_argcheck(L, l_checkmode(md), 2, "invalid mode");
|
||
errno = 0;
|
||
p->f = fopen(filename, mode);
|
||
return (p->f == NULL) ? luaL_fileresult(L, 0, filename) : 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** function to close 'popen' files
|
||
*/
|
||
static int io_pclose (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
errno = 0;
|
||
return luaL_execresult(L, l_pclose(L, p->f));
|
||
}
|
||
|
||
|
||
static int io_popen (lua_State *L) {
|
||
const char *filename = luaL_checkstring(L, 1);
|
||
const char *mode = luaL_optstring(L, 2, "r");
|
||
LStream *p = newprefile(L);
|
||
luaL_argcheck(L, l_checkmodep(mode), 2, "invalid mode");
|
||
errno = 0;
|
||
p->f = l_popen(L, filename, mode);
|
||
p->closef = &io_pclose;
|
||
return (p->f == NULL) ? luaL_fileresult(L, 0, filename) : 1;
|
||
}
|
||
|
||
|
||
static int io_tmpfile (lua_State *L) {
|
||
LStream *p = newfile(L);
|
||
errno = 0;
|
||
p->f = tmpfile();
|
||
return (p->f == NULL) ? luaL_fileresult(L, 0, NULL) : 1;
|
||
}
|
||
|
||
|
||
static FILE *getiofile (lua_State *L, const char *findex) {
|
||
LStream *p;
|
||
lua_getfield(L, LUA_REGISTRYINDEX, findex);
|
||
p = (LStream *)lua_touserdata(L, -1);
|
||
if (l_unlikely(isclosed(p)))
|
||
luaL_error(L, "default %s file is closed", findex + IOPREF_LEN);
|
||
return p->f;
|
||
}
|
||
|
||
|
||
static int g_iofile (lua_State *L, const char *f, const char *mode) {
|
||
if (!lua_isnoneornil(L, 1)) {
|
||
const char *filename = lua_tostring(L, 1);
|
||
if (filename)
|
||
opencheck(L, filename, mode);
|
||
else {
|
||
tofile(L); /* check that it's a valid file handle */
|
||
lua_pushvalue(L, 1);
|
||
}
|
||
lua_setfield(L, LUA_REGISTRYINDEX, f);
|
||
}
|
||
/* return current value */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, f);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int io_input (lua_State *L) {
|
||
return g_iofile(L, IO_INPUT, "r");
|
||
}
|
||
|
||
|
||
static int io_output (lua_State *L) {
|
||
return g_iofile(L, IO_OUTPUT, "w");
|
||
}
|
||
|
||
|
||
static int io_readline (lua_State *L);
|
||
|
||
|
||
/*
|
||
** maximum number of arguments to 'f:lines'/'io.lines' (it + 3 must fit
|
||
** in the limit for upvalues of a closure)
|
||
*/
|
||
#define MAXARGLINE 250
|
||
|
||
/*
|
||
** Auxiliary function to create the iteration function for 'lines'.
|
||
** The iteration function is a closure over 'io_readline', with
|
||
** the following upvalues:
|
||
** 1) The file being read (first value in the stack)
|
||
** 2) the number of arguments to read
|
||
** 3) a boolean, true iff file has to be closed when finished ('toclose')
|
||
** *) a variable number of format arguments (rest of the stack)
|
||
*/
|
||
static void aux_lines (lua_State *L, int toclose) {
|
||
int n = lua_gettop(L) - 1; /* number of arguments to read */
|
||
luaL_argcheck(L, n <= MAXARGLINE, MAXARGLINE + 2, "too many arguments");
|
||
lua_pushvalue(L, 1); /* file */
|
||
lua_pushinteger(L, n); /* number of arguments to read */
|
||
lua_pushboolean(L, toclose); /* close/not close file when finished */
|
||
lua_rotate(L, 2, 3); /* move the three values to their positions */
|
||
lua_pushcclosure(L, io_readline, 3 + n);
|
||
}
|
||
|
||
|
||
static int f_lines (lua_State *L) {
|
||
tofile(L); /* check that it's a valid file handle */
|
||
aux_lines(L, 0);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Return an iteration function for 'io.lines'. If file has to be
|
||
** closed, also returns the file itself as a second result (to be
|
||
** closed as the state at the exit of a generic for).
|
||
*/
|
||
static int io_lines (lua_State *L) {
|
||
int toclose;
|
||
if (lua_isnone(L, 1)) lua_pushnil(L); /* at least one argument */
|
||
if (lua_isnil(L, 1)) { /* no file name? */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, IO_INPUT); /* get default input */
|
||
lua_replace(L, 1); /* put it at index 1 */
|
||
tofile(L); /* check that it's a valid file handle */
|
||
toclose = 0; /* do not close it after iteration */
|
||
}
|
||
else { /* open a new file */
|
||
const char *filename = luaL_checkstring(L, 1);
|
||
opencheck(L, filename, "r");
|
||
lua_replace(L, 1); /* put file at index 1 */
|
||
toclose = 1; /* close it after iteration */
|
||
}
|
||
aux_lines(L, toclose); /* push iteration function */
|
||
if (toclose) {
|
||
lua_pushnil(L); /* state */
|
||
lua_pushnil(L); /* control */
|
||
lua_pushvalue(L, 1); /* file is the to-be-closed variable (4th result) */
|
||
return 4;
|
||
}
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** READ
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/* maximum length of a numeral */
|
||
#if !defined (L_MAXLENNUM)
|
||
#define L_MAXLENNUM 200
|
||
#endif
|
||
|
||
|
||
/* auxiliary structure used by 'read_number' */
|
||
typedef struct {
|
||
FILE *f; /* file being read */
|
||
int c; /* current character (look ahead) */
|
||
int n; /* number of elements in buffer 'buff' */
|
||
char buff[L_MAXLENNUM + 1]; /* +1 for ending '\0' */
|
||
} RN;
|
||
|
||
|
||
/*
|
||
** Add current char to buffer (if not out of space) and read next one
|
||
*/
|
||
static int nextc (RN *rn) {
|
||
if (l_unlikely(rn->n >= L_MAXLENNUM)) { /* buffer overflow? */
|
||
rn->buff[0] = '\0'; /* invalidate result */
|
||
return 0; /* fail */
|
||
}
|
||
else {
|
||
rn->buff[rn->n++] = rn->c; /* save current char */
|
||
rn->c = l_getc(rn->f); /* read next one */
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Accept current char if it is in 'set' (of size 2)
|
||
*/
|
||
static int test2 (RN *rn, const char *set) {
|
||
if (rn->c == set[0] || rn->c == set[1])
|
||
return nextc(rn);
|
||
else return 0;
|
||
}
|
||
|
||
|
||
/*
|
||
** Read a sequence of (hex)digits
|
||
*/
|
||
static int readdigits (RN *rn, int hex) {
|
||
int count = 0;
|
||
while ((hex ? isxdigit(rn->c) : isdigit(rn->c)) && nextc(rn))
|
||
count++;
|
||
return count;
|
||
}
|
||
|
||
|
||
/*
|
||
** Read a number: first reads a valid prefix of a numeral into a buffer.
|
||
** Then it calls 'lua_stringtonumber' to check whether the format is
|
||
** correct and to convert it to a Lua number.
|
||
*/
|
||
static int read_number (lua_State *L, FILE *f) {
|
||
RN rn;
|
||
int count = 0;
|
||
int hex = 0;
|
||
char decp[2];
|
||
rn.f = f; rn.n = 0;
|
||
decp[0] = lua_getlocaledecpoint(); /* get decimal point from locale */
|
||
decp[1] = '.'; /* always accept a dot */
|
||
l_lockfile(rn.f);
|
||
do { rn.c = l_getc(rn.f); } while (isspace(rn.c)); /* skip spaces */
|
||
test2(&rn, "-+"); /* optional sign */
|
||
if (test2(&rn, "00")) {
|
||
if (test2(&rn, "xX")) hex = 1; /* numeral is hexadecimal */
|
||
else count = 1; /* count initial '0' as a valid digit */
|
||
}
|
||
count += readdigits(&rn, hex); /* integral part */
|
||
if (test2(&rn, decp)) /* decimal point? */
|
||
count += readdigits(&rn, hex); /* fractional part */
|
||
if (count > 0 && test2(&rn, (hex ? "pP" : "eE"))) { /* exponent mark? */
|
||
test2(&rn, "-+"); /* exponent sign */
|
||
readdigits(&rn, 0); /* exponent digits */
|
||
}
|
||
ungetc(rn.c, rn.f); /* unread look-ahead char */
|
||
l_unlockfile(rn.f);
|
||
rn.buff[rn.n] = '\0'; /* finish string */
|
||
if (l_likely(lua_stringtonumber(L, rn.buff)))
|
||
return 1; /* ok, it is a valid number */
|
||
else { /* invalid format */
|
||
lua_pushnil(L); /* "result" to be removed */
|
||
return 0; /* read fails */
|
||
}
|
||
}
|
||
|
||
|
||
static int test_eof (lua_State *L, FILE *f) {
|
||
int c = getc(f);
|
||
ungetc(c, f); /* no-op when c == EOF */
|
||
lua_pushliteral(L, "");
|
||
return (c != EOF);
|
||
}
|
||
|
||
|
||
static int read_line (lua_State *L, FILE *f, int chop) {
|
||
luaL_Buffer b;
|
||
int c;
|
||
luaL_buffinit(L, &b);
|
||
do { /* may need to read several chunks to get whole line */
|
||
char *buff = luaL_prepbuffer(&b); /* preallocate buffer space */
|
||
int i = 0;
|
||
l_lockfile(f); /* no memory errors can happen inside the lock */
|
||
while (i < LUAL_BUFFERSIZE && (c = l_getc(f)) != EOF && c != '\n')
|
||
buff[i++] = c; /* read up to end of line or buffer limit */
|
||
l_unlockfile(f);
|
||
luaL_addsize(&b, i);
|
||
} while (c != EOF && c != '\n'); /* repeat until end of line */
|
||
if (!chop && c == '\n') /* want a newline and have one? */
|
||
luaL_addchar(&b, c); /* add ending newline to result */
|
||
luaL_pushresult(&b); /* close buffer */
|
||
/* return ok if read something (either a newline or something else) */
|
||
return (c == '\n' || lua_rawlen(L, -1) > 0);
|
||
}
|
||
|
||
|
||
static void read_all (lua_State *L, FILE *f) {
|
||
size_t nr;
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
do { /* read file in chunks of LUAL_BUFFERSIZE bytes */
|
||
char *p = luaL_prepbuffer(&b);
|
||
nr = fread(p, sizeof(char), LUAL_BUFFERSIZE, f);
|
||
luaL_addsize(&b, nr);
|
||
} while (nr == LUAL_BUFFERSIZE);
|
||
luaL_pushresult(&b); /* close buffer */
|
||
}
|
||
|
||
|
||
static int read_chars (lua_State *L, FILE *f, size_t n) {
|
||
size_t nr; /* number of chars actually read */
|
||
char *p;
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
p = luaL_prepbuffsize(&b, n); /* prepare buffer to read whole block */
|
||
nr = fread(p, sizeof(char), n, f); /* try to read 'n' chars */
|
||
luaL_addsize(&b, nr);
|
||
luaL_pushresult(&b); /* close buffer */
|
||
return (nr > 0); /* true iff read something */
|
||
}
|
||
|
||
|
||
static int g_read (lua_State *L, FILE *f, int first) {
|
||
int nargs = lua_gettop(L) - 1;
|
||
int n, success;
|
||
clearerr(f);
|
||
errno = 0;
|
||
if (nargs == 0) { /* no arguments? */
|
||
success = read_line(L, f, 1);
|
||
n = first + 1; /* to return 1 result */
|
||
}
|
||
else {
|
||
/* ensure stack space for all results and for auxlib's buffer */
|
||
luaL_checkstack(L, nargs+LUA_MINSTACK, "too many arguments");
|
||
success = 1;
|
||
for (n = first; nargs-- && success; n++) {
|
||
if (lua_type(L, n) == LUA_TNUMBER) {
|
||
size_t l = (size_t)luaL_checkinteger(L, n);
|
||
success = (l == 0) ? test_eof(L, f) : read_chars(L, f, l);
|
||
}
|
||
else {
|
||
const char *p = luaL_checkstring(L, n);
|
||
if (*p == '*') p++; /* skip optional '*' (for compatibility) */
|
||
switch (*p) {
|
||
case 'n': /* number */
|
||
success = read_number(L, f);
|
||
break;
|
||
case 'l': /* line */
|
||
success = read_line(L, f, 1);
|
||
break;
|
||
case 'L': /* line with end-of-line */
|
||
success = read_line(L, f, 0);
|
||
break;
|
||
case 'a': /* file */
|
||
read_all(L, f); /* read entire file */
|
||
success = 1; /* always success */
|
||
break;
|
||
default:
|
||
return luaL_argerror(L, n, "invalid format");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (ferror(f))
|
||
return luaL_fileresult(L, 0, NULL);
|
||
if (!success) {
|
||
lua_pop(L, 1); /* remove last result */
|
||
luaL_pushfail(L); /* push nil instead */
|
||
}
|
||
return n - first;
|
||
}
|
||
|
||
|
||
static int io_read (lua_State *L) {
|
||
return g_read(L, getiofile(L, IO_INPUT), 1);
|
||
}
|
||
|
||
|
||
static int f_read (lua_State *L) {
|
||
return g_read(L, tofile(L), 2);
|
||
}
|
||
|
||
|
||
/*
|
||
** Iteration function for 'lines'.
|
||
*/
|
||
static int io_readline (lua_State *L) {
|
||
LStream *p = (LStream *)lua_touserdata(L, lua_upvalueindex(1));
|
||
int i;
|
||
int n = (int)lua_tointeger(L, lua_upvalueindex(2));
|
||
if (isclosed(p)) /* file is already closed? */
|
||
return luaL_error(L, "file is already closed");
|
||
lua_settop(L , 1);
|
||
luaL_checkstack(L, n, "too many arguments");
|
||
for (i = 1; i <= n; i++) /* push arguments to 'g_read' */
|
||
lua_pushvalue(L, lua_upvalueindex(3 + i));
|
||
n = g_read(L, p->f, 2); /* 'n' is number of results */
|
||
lua_assert(n > 0); /* should return at least a nil */
|
||
if (lua_toboolean(L, -n)) /* read at least one value? */
|
||
return n; /* return them */
|
||
else { /* first result is false: EOF or error */
|
||
if (n > 1) { /* is there error information? */
|
||
/* 2nd result is error message */
|
||
return luaL_error(L, "%s", lua_tostring(L, -n + 1));
|
||
}
|
||
if (lua_toboolean(L, lua_upvalueindex(3))) { /* generator created file? */
|
||
lua_settop(L, 0); /* clear stack */
|
||
lua_pushvalue(L, lua_upvalueindex(1)); /* push file at index 1 */
|
||
aux_close(L); /* close it */
|
||
}
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
static int g_write (lua_State *L, FILE *f, int arg) {
|
||
int nargs = lua_gettop(L) - arg;
|
||
int status = 1;
|
||
errno = 0;
|
||
for (; nargs--; arg++) {
|
||
if (lua_type(L, arg) == LUA_TNUMBER) {
|
||
/* optimization: could be done exactly as for strings */
|
||
int len = lua_isinteger(L, arg)
|
||
? fprintf(f, LUA_INTEGER_FMT,
|
||
(LUAI_UACINT)lua_tointeger(L, arg))
|
||
: fprintf(f, LUA_NUMBER_FMT,
|
||
(LUAI_UACNUMBER)lua_tonumber(L, arg));
|
||
status = status && (len > 0);
|
||
}
|
||
else {
|
||
size_t l;
|
||
const char *s = luaL_checklstring(L, arg, &l);
|
||
status = status && (fwrite(s, sizeof(char), l, f) == l);
|
||
}
|
||
}
|
||
if (l_likely(status))
|
||
return 1; /* file handle already on stack top */
|
||
else
|
||
return luaL_fileresult(L, status, NULL);
|
||
}
|
||
|
||
|
||
static int io_write (lua_State *L) {
|
||
return g_write(L, getiofile(L, IO_OUTPUT), 1);
|
||
}
|
||
|
||
|
||
static int f_write (lua_State *L) {
|
||
FILE *f = tofile(L);
|
||
lua_pushvalue(L, 1); /* push file at the stack top (to be returned) */
|
||
return g_write(L, f, 2);
|
||
}
|
||
|
||
|
||
static int f_seek (lua_State *L) {
|
||
static const int mode[] = {SEEK_SET, SEEK_CUR, SEEK_END};
|
||
static const char *const modenames[] = {"set", "cur", "end", NULL};
|
||
FILE *f = tofile(L);
|
||
int op = luaL_checkoption(L, 2, "cur", modenames);
|
||
lua_Integer p3 = luaL_optinteger(L, 3, 0);
|
||
l_seeknum offset = (l_seeknum)p3;
|
||
luaL_argcheck(L, (lua_Integer)offset == p3, 3,
|
||
"not an integer in proper range");
|
||
errno = 0;
|
||
op = l_fseek(f, offset, mode[op]);
|
||
if (l_unlikely(op))
|
||
return luaL_fileresult(L, 0, NULL); /* error */
|
||
else {
|
||
lua_pushinteger(L, (lua_Integer)l_ftell(f));
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
static int f_setvbuf (lua_State *L) {
|
||
static const int mode[] = {_IONBF, _IOFBF, _IOLBF};
|
||
static const char *const modenames[] = {"no", "full", "line", NULL};
|
||
FILE *f = tofile(L);
|
||
int op = luaL_checkoption(L, 2, NULL, modenames);
|
||
lua_Integer sz = luaL_optinteger(L, 3, LUAL_BUFFERSIZE);
|
||
int res;
|
||
errno = 0;
|
||
res = setvbuf(f, NULL, mode[op], (size_t)sz);
|
||
return luaL_fileresult(L, res == 0, NULL);
|
||
}
|
||
|
||
|
||
|
||
static int io_flush (lua_State *L) {
|
||
FILE *f = getiofile(L, IO_OUTPUT);
|
||
errno = 0;
|
||
return luaL_fileresult(L, fflush(f) == 0, NULL);
|
||
}
|
||
|
||
|
||
static int f_flush (lua_State *L) {
|
||
FILE *f = tofile(L);
|
||
errno = 0;
|
||
return luaL_fileresult(L, fflush(f) == 0, NULL);
|
||
}
|
||
|
||
|
||
/*
|
||
** functions for 'io' library
|
||
*/
|
||
static const luaL_Reg iolib[] = {
|
||
{"close", io_close},
|
||
{"flush", io_flush},
|
||
{"input", io_input},
|
||
{"lines", io_lines},
|
||
{"open", io_open},
|
||
{"output", io_output},
|
||
{"popen", io_popen},
|
||
{"read", io_read},
|
||
{"tmpfile", io_tmpfile},
|
||
{"type", io_type},
|
||
{"write", io_write},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
/*
|
||
** methods for file handles
|
||
*/
|
||
static const luaL_Reg meth[] = {
|
||
{"read", f_read},
|
||
{"write", f_write},
|
||
{"lines", f_lines},
|
||
{"flush", f_flush},
|
||
{"seek", f_seek},
|
||
{"close", f_close},
|
||
{"setvbuf", f_setvbuf},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
/*
|
||
** metamethods for file handles
|
||
*/
|
||
static const luaL_Reg metameth[] = {
|
||
{"__index", NULL}, /* placeholder */
|
||
{"__gc", f_gc},
|
||
{"__close", f_gc},
|
||
{"__tostring", f_tostring},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
static void createmeta (lua_State *L) {
|
||
luaL_newmetatable(L, LUA_FILEHANDLE); /* metatable for file handles */
|
||
luaL_setfuncs(L, metameth, 0); /* add metamethods to new metatable */
|
||
luaL_newlibtable(L, meth); /* create method table */
|
||
luaL_setfuncs(L, meth, 0); /* add file methods to method table */
|
||
lua_setfield(L, -2, "__index"); /* metatable.__index = method table */
|
||
lua_pop(L, 1); /* pop metatable */
|
||
}
|
||
|
||
|
||
/*
|
||
** function to (not) close the standard files stdin, stdout, and stderr
|
||
*/
|
||
static int io_noclose (lua_State *L) {
|
||
LStream *p = tolstream(L);
|
||
p->closef = &io_noclose; /* keep file opened */
|
||
luaL_pushfail(L);
|
||
lua_pushliteral(L, "cannot close standard file");
|
||
return 2;
|
||
}
|
||
|
||
|
||
static void createstdfile (lua_State *L, FILE *f, const char *k,
|
||
const char *fname) {
|
||
LStream *p = newprefile(L);
|
||
p->f = f;
|
||
p->closef = &io_noclose;
|
||
if (k != NULL) {
|
||
lua_pushvalue(L, -1);
|
||
lua_setfield(L, LUA_REGISTRYINDEX, k); /* add file to registry */
|
||
}
|
||
lua_setfield(L, -2, fname); /* add file to module */
|
||
}
|
||
|
||
|
||
LUAMOD_API int luaopen_io (lua_State *L) {
|
||
luaL_newlib(L, iolib); /* new module */
|
||
createmeta(L);
|
||
/* create (and set) default files */
|
||
createstdfile(L, stdin, IO_INPUT, "stdin");
|
||
createstdfile(L, stdout, IO_OUTPUT, "stdout");
|
||
createstdfile(L, stderr, NULL, "stderr");
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: lmathlib.c $
|
||
** Standard mathematical library
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lmathlib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <float.h>
|
||
#include <limits.h>
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <time.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
#undef PI
|
||
#define PI (l_mathop(3.141592653589793238462643383279502884))
|
||
|
||
|
||
static int math_abs (lua_State *L) {
|
||
if (lua_isinteger(L, 1)) {
|
||
lua_Integer n = lua_tointeger(L, 1);
|
||
if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n);
|
||
lua_pushinteger(L, n);
|
||
}
|
||
else
|
||
lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_sin (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_cos (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_tan (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_asin (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_acos (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_atan (lua_State *L) {
|
||
lua_Number y = luaL_checknumber(L, 1);
|
||
lua_Number x = luaL_optnumber(L, 2, 1);
|
||
lua_pushnumber(L, l_mathop(atan2)(y, x));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_toint (lua_State *L) {
|
||
int valid;
|
||
lua_Integer n = lua_tointegerx(L, 1, &valid);
|
||
if (l_likely(valid))
|
||
lua_pushinteger(L, n);
|
||
else {
|
||
luaL_checkany(L, 1);
|
||
luaL_pushfail(L); /* value is not convertible to integer */
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void pushnumint (lua_State *L, lua_Number d) {
|
||
lua_Integer n;
|
||
if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */
|
||
lua_pushinteger(L, n); /* result is integer */
|
||
else
|
||
lua_pushnumber(L, d); /* result is float */
|
||
}
|
||
|
||
|
||
static int math_floor (lua_State *L) {
|
||
if (lua_isinteger(L, 1))
|
||
lua_settop(L, 1); /* integer is its own floor */
|
||
else {
|
||
lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1));
|
||
pushnumint(L, d);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_ceil (lua_State *L) {
|
||
if (lua_isinteger(L, 1))
|
||
lua_settop(L, 1); /* integer is its own ceil */
|
||
else {
|
||
lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1));
|
||
pushnumint(L, d);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_fmod (lua_State *L) {
|
||
if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) {
|
||
lua_Integer d = lua_tointeger(L, 2);
|
||
if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */
|
||
luaL_argcheck(L, d != 0, 2, "zero");
|
||
lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */
|
||
}
|
||
else
|
||
lua_pushinteger(L, lua_tointeger(L, 1) % d);
|
||
}
|
||
else
|
||
lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1),
|
||
luaL_checknumber(L, 2)));
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** next function does not use 'modf', avoiding problems with 'double*'
|
||
** (which is not compatible with 'float*') when lua_Number is not
|
||
** 'double'.
|
||
*/
|
||
static int math_modf (lua_State *L) {
|
||
if (lua_isinteger(L ,1)) {
|
||
lua_settop(L, 1); /* number is its own integer part */
|
||
lua_pushnumber(L, 0); /* no fractional part */
|
||
}
|
||
else {
|
||
lua_Number n = luaL_checknumber(L, 1);
|
||
/* integer part (rounds toward zero) */
|
||
lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n);
|
||
pushnumint(L, ip);
|
||
/* fractional part (test needed for inf/-inf) */
|
||
lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip));
|
||
}
|
||
return 2;
|
||
}
|
||
|
||
|
||
static int math_sqrt (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_ult (lua_State *L) {
|
||
lua_Integer a = luaL_checkinteger(L, 1);
|
||
lua_Integer b = luaL_checkinteger(L, 2);
|
||
lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b);
|
||
return 1;
|
||
}
|
||
|
||
static int math_log (lua_State *L) {
|
||
lua_Number x = luaL_checknumber(L, 1);
|
||
lua_Number res;
|
||
if (lua_isnoneornil(L, 2))
|
||
res = l_mathop(log)(x);
|
||
else {
|
||
lua_Number base = luaL_checknumber(L, 2);
|
||
#if !defined(LUA_USE_C89)
|
||
if (base == l_mathop(2.0))
|
||
res = l_mathop(log2)(x);
|
||
else
|
||
#endif
|
||
if (base == l_mathop(10.0))
|
||
res = l_mathop(log10)(x);
|
||
else
|
||
res = l_mathop(log)(x)/l_mathop(log)(base);
|
||
}
|
||
lua_pushnumber(L, res);
|
||
return 1;
|
||
}
|
||
|
||
static int math_exp (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_deg (lua_State *L) {
|
||
lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI));
|
||
return 1;
|
||
}
|
||
|
||
static int math_rad (lua_State *L) {
|
||
lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0)));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_min (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
int imin = 1; /* index of current minimum value */
|
||
int i;
|
||
luaL_argcheck(L, n >= 1, 1, "value expected");
|
||
for (i = 2; i <= n; i++) {
|
||
if (lua_compare(L, i, imin, LUA_OPLT))
|
||
imin = i;
|
||
}
|
||
lua_pushvalue(L, imin);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_max (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
int imax = 1; /* index of current maximum value */
|
||
int i;
|
||
luaL_argcheck(L, n >= 1, 1, "value expected");
|
||
for (i = 2; i <= n; i++) {
|
||
if (lua_compare(L, imax, i, LUA_OPLT))
|
||
imax = i;
|
||
}
|
||
lua_pushvalue(L, imax);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int math_type (lua_State *L) {
|
||
if (lua_type(L, 1) == LUA_TNUMBER)
|
||
lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float");
|
||
else {
|
||
luaL_checkany(L, 1);
|
||
luaL_pushfail(L);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Pseudo-Random Number Generator based on 'xoshiro256**'.
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** This code uses lots of shifts. ANSI C does not allow shifts greater
|
||
** than or equal to the width of the type being shifted, so some shifts
|
||
** are written in convoluted ways to match that restriction. For
|
||
** preprocessor tests, it assumes a width of 32 bits, so the maximum
|
||
** shift there is 31 bits.
|
||
*/
|
||
|
||
|
||
/* number of binary digits in the mantissa of a float */
|
||
#define FIGS l_floatatt(MANT_DIG)
|
||
|
||
#if FIGS > 64
|
||
/* there are only 64 random bits; use them all */
|
||
#undef FIGS
|
||
#define FIGS 64
|
||
#endif
|
||
|
||
|
||
/*
|
||
** LUA_RAND32 forces the use of 32-bit integers in the implementation
|
||
** of the PRN generator (mainly for testing).
|
||
*/
|
||
#if !defined(LUA_RAND32) && !defined(Rand64)
|
||
|
||
/* try to find an integer type with at least 64 bits */
|
||
|
||
#if ((ULONG_MAX >> 31) >> 31) >= 3
|
||
|
||
/* 'long' has at least 64 bits */
|
||
#define Rand64 unsigned long
|
||
#define SRand64 long
|
||
|
||
#elif !defined(LUA_USE_C89) && defined(LLONG_MAX)
|
||
|
||
/* there is a 'long long' type (which must have at least 64 bits) */
|
||
#define Rand64 unsigned long long
|
||
#define SRand64 long long
|
||
|
||
#elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3
|
||
|
||
/* 'lua_Unsigned' has at least 64 bits */
|
||
#define Rand64 lua_Unsigned
|
||
#define SRand64 lua_Integer
|
||
|
||
#endif
|
||
|
||
#endif
|
||
|
||
|
||
#if defined(Rand64) /* { */
|
||
|
||
/*
|
||
** Standard implementation, using 64-bit integers.
|
||
** If 'Rand64' has more than 64 bits, the extra bits do not interfere
|
||
** with the 64 initial bits, except in a right shift. Moreover, the
|
||
** final result has to discard the extra bits.
|
||
*/
|
||
|
||
/* avoid using extra bits when needed */
|
||
#define trim64(x) ((x) & 0xffffffffffffffffu)
|
||
|
||
|
||
/* rotate left 'x' by 'n' bits */
|
||
static Rand64 rotl (Rand64 x, int n) {
|
||
return (x << n) | (trim64(x) >> (64 - n));
|
||
}
|
||
|
||
static Rand64 nextrand (Rand64 *state) {
|
||
Rand64 state0 = state[0];
|
||
Rand64 state1 = state[1];
|
||
Rand64 state2 = state[2] ^ state0;
|
||
Rand64 state3 = state[3] ^ state1;
|
||
Rand64 res = rotl(state1 * 5, 7) * 9;
|
||
state[0] = state0 ^ state3;
|
||
state[1] = state1 ^ state2;
|
||
state[2] = state2 ^ (state1 << 17);
|
||
state[3] = rotl(state3, 45);
|
||
return res;
|
||
}
|
||
|
||
|
||
/*
|
||
** Convert bits from a random integer into a float in the
|
||
** interval [0,1), getting the higher FIG bits from the
|
||
** random unsigned integer and converting that to a float.
|
||
** Some old Microsoft compilers cannot cast an unsigned long
|
||
** to a floating-point number, so we use a signed long as an
|
||
** intermediary. When lua_Number is float or double, the shift ensures
|
||
** that 'sx' is non negative; in that case, a good compiler will remove
|
||
** the correction.
|
||
*/
|
||
|
||
/* must throw out the extra (64 - FIGS) bits */
|
||
#define shift64_FIG (64 - FIGS)
|
||
|
||
/* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */
|
||
#define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1)))
|
||
|
||
static lua_Number I2d (Rand64 x) {
|
||
SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG);
|
||
lua_Number res = (lua_Number)(sx) * scaleFIG;
|
||
if (sx < 0)
|
||
res += l_mathop(1.0); /* correct the two's complement if negative */
|
||
lua_assert(0 <= res && res < 1);
|
||
return res;
|
||
}
|
||
|
||
/* convert a 'Rand64' to a 'lua_Unsigned' */
|
||
#define I2UInt(x) ((lua_Unsigned)trim64(x))
|
||
|
||
/* convert a 'lua_Unsigned' to a 'Rand64' */
|
||
#define Int2I(x) ((Rand64)(x))
|
||
|
||
|
||
#else /* no 'Rand64' }{ */
|
||
|
||
/* get an integer with at least 32 bits */
|
||
#if LUAI_IS32INT
|
||
typedef unsigned int lu_int32;
|
||
#else
|
||
typedef unsigned long lu_int32;
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Use two 32-bit integers to represent a 64-bit quantity.
|
||
*/
|
||
typedef struct Rand64 {
|
||
lu_int32 h; /* higher half */
|
||
lu_int32 l; /* lower half */
|
||
} Rand64;
|
||
|
||
|
||
/*
|
||
** If 'lu_int32' has more than 32 bits, the extra bits do not interfere
|
||
** with the 32 initial bits, except in a right shift and comparisons.
|
||
** Moreover, the final result has to discard the extra bits.
|
||
*/
|
||
|
||
/* avoid using extra bits when needed */
|
||
#define trim32(x) ((x) & 0xffffffffu)
|
||
|
||
|
||
/*
|
||
** basic operations on 'Rand64' values
|
||
*/
|
||
|
||
/* build a new Rand64 value */
|
||
static Rand64 packI (lu_int32 h, lu_int32 l) {
|
||
Rand64 result;
|
||
result.h = h;
|
||
result.l = l;
|
||
return result;
|
||
}
|
||
|
||
/* return i << n */
|
||
static Rand64 Ishl (Rand64 i, int n) {
|
||
lua_assert(n > 0 && n < 32);
|
||
return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n);
|
||
}
|
||
|
||
/* i1 ^= i2 */
|
||
static void Ixor (Rand64 *i1, Rand64 i2) {
|
||
i1->h ^= i2.h;
|
||
i1->l ^= i2.l;
|
||
}
|
||
|
||
/* return i1 + i2 */
|
||
static Rand64 Iadd (Rand64 i1, Rand64 i2) {
|
||
Rand64 result = packI(i1.h + i2.h, i1.l + i2.l);
|
||
if (trim32(result.l) < trim32(i1.l)) /* carry? */
|
||
result.h++;
|
||
return result;
|
||
}
|
||
|
||
/* return i * 5 */
|
||
static Rand64 times5 (Rand64 i) {
|
||
return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */
|
||
}
|
||
|
||
/* return i * 9 */
|
||
static Rand64 times9 (Rand64 i) {
|
||
return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */
|
||
}
|
||
|
||
/* return 'i' rotated left 'n' bits */
|
||
static Rand64 rotl (Rand64 i, int n) {
|
||
lua_assert(n > 0 && n < 32);
|
||
return packI((i.h << n) | (trim32(i.l) >> (32 - n)),
|
||
(trim32(i.h) >> (32 - n)) | (i.l << n));
|
||
}
|
||
|
||
/* for offsets larger than 32, rotate right by 64 - offset */
|
||
static Rand64 rotl1 (Rand64 i, int n) {
|
||
lua_assert(n > 32 && n < 64);
|
||
n = 64 - n;
|
||
return packI((trim32(i.h) >> n) | (i.l << (32 - n)),
|
||
(i.h << (32 - n)) | (trim32(i.l) >> n));
|
||
}
|
||
|
||
/*
|
||
** implementation of 'xoshiro256**' algorithm on 'Rand64' values
|
||
*/
|
||
static Rand64 nextrand (Rand64 *state) {
|
||
Rand64 res = times9(rotl(times5(state[1]), 7));
|
||
Rand64 t = Ishl(state[1], 17);
|
||
Ixor(&state[2], state[0]);
|
||
Ixor(&state[3], state[1]);
|
||
Ixor(&state[1], state[2]);
|
||
Ixor(&state[0], state[3]);
|
||
Ixor(&state[2], t);
|
||
state[3] = rotl1(state[3], 45);
|
||
return res;
|
||
}
|
||
|
||
|
||
/*
|
||
** Converts a 'Rand64' into a float.
|
||
*/
|
||
|
||
/* an unsigned 1 with proper type */
|
||
#define UONE ((lu_int32)1)
|
||
|
||
|
||
#if FIGS <= 32
|
||
|
||
/* 2^(-FIGS) */
|
||
#define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1)))
|
||
|
||
/*
|
||
** get up to 32 bits from higher half, shifting right to
|
||
** throw out the extra bits.
|
||
*/
|
||
static lua_Number I2d (Rand64 x) {
|
||
lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS));
|
||
return h * scaleFIG;
|
||
}
|
||
|
||
#else /* 32 < FIGS <= 64 */
|
||
|
||
/* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */
|
||
#define scaleFIG \
|
||
(l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33)))
|
||
|
||
/*
|
||
** use FIGS - 32 bits from lower half, throwing out the other
|
||
** (32 - (FIGS - 32)) = (64 - FIGS) bits
|
||
*/
|
||
#define shiftLOW (64 - FIGS)
|
||
|
||
/*
|
||
** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32)
|
||
*/
|
||
#define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0))
|
||
|
||
|
||
static lua_Number I2d (Rand64 x) {
|
||
lua_Number h = (lua_Number)trim32(x.h) * shiftHI;
|
||
lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW);
|
||
return (h + l) * scaleFIG;
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
/* convert a 'Rand64' to a 'lua_Unsigned' */
|
||
static lua_Unsigned I2UInt (Rand64 x) {
|
||
return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l);
|
||
}
|
||
|
||
/* convert a 'lua_Unsigned' to a 'Rand64' */
|
||
static Rand64 Int2I (lua_Unsigned n) {
|
||
return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n);
|
||
}
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** A state uses four 'Rand64' values.
|
||
*/
|
||
typedef struct {
|
||
Rand64 s[4];
|
||
} RanState;
|
||
|
||
|
||
/*
|
||
** Project the random integer 'ran' into the interval [0, n].
|
||
** Because 'ran' has 2^B possible values, the projection can only be
|
||
** uniform when the size of the interval is a power of 2 (exact
|
||
** division). Otherwise, to get a uniform projection into [0, n], we
|
||
** first compute 'lim', the smallest Mersenne number not smaller than
|
||
** 'n'. We then project 'ran' into the interval [0, lim]. If the result
|
||
** is inside [0, n], we are done. Otherwise, we try with another 'ran',
|
||
** until we have a result inside the interval.
|
||
*/
|
||
static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n,
|
||
RanState *state) {
|
||
if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */
|
||
return ran & n; /* no bias */
|
||
else {
|
||
lua_Unsigned lim = n;
|
||
/* compute the smallest (2^b - 1) not smaller than 'n' */
|
||
lim |= (lim >> 1);
|
||
lim |= (lim >> 2);
|
||
lim |= (lim >> 4);
|
||
lim |= (lim >> 8);
|
||
lim |= (lim >> 16);
|
||
#if (LUA_MAXUNSIGNED >> 31) >= 3
|
||
lim |= (lim >> 32); /* integer type has more than 32 bits */
|
||
#endif
|
||
lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */
|
||
&& lim >= n /* not smaller than 'n', */
|
||
&& (lim >> 1) < n); /* and it is the smallest one */
|
||
while ((ran &= lim) > n) /* project 'ran' into [0..lim] */
|
||
ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */
|
||
return ran;
|
||
}
|
||
}
|
||
|
||
|
||
static int math_random (lua_State *L) {
|
||
lua_Integer low, up;
|
||
lua_Unsigned p;
|
||
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
|
||
Rand64 rv = nextrand(state->s); /* next pseudo-random value */
|
||
switch (lua_gettop(L)) { /* check number of arguments */
|
||
case 0: { /* no arguments */
|
||
lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */
|
||
return 1;
|
||
}
|
||
case 1: { /* only upper limit */
|
||
low = 1;
|
||
up = luaL_checkinteger(L, 1);
|
||
if (up == 0) { /* single 0 as argument? */
|
||
lua_pushinteger(L, I2UInt(rv)); /* full random integer */
|
||
return 1;
|
||
}
|
||
break;
|
||
}
|
||
case 2: { /* lower and upper limits */
|
||
low = luaL_checkinteger(L, 1);
|
||
up = luaL_checkinteger(L, 2);
|
||
break;
|
||
}
|
||
default: return luaL_error(L, "wrong number of arguments");
|
||
}
|
||
/* random integer in the interval [low, up] */
|
||
luaL_argcheck(L, low <= up, 1, "interval is empty");
|
||
/* project random integer into the interval [0, up - low] */
|
||
p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state);
|
||
lua_pushinteger(L, p + (lua_Unsigned)low);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void setseed (lua_State *L, Rand64 *state,
|
||
lua_Unsigned n1, lua_Unsigned n2) {
|
||
int i;
|
||
state[0] = Int2I(n1);
|
||
state[1] = Int2I(0xff); /* avoid a zero state */
|
||
state[2] = Int2I(n2);
|
||
state[3] = Int2I(0);
|
||
for (i = 0; i < 16; i++)
|
||
nextrand(state); /* discard initial values to "spread" seed */
|
||
lua_pushinteger(L, n1);
|
||
lua_pushinteger(L, n2);
|
||
}
|
||
|
||
|
||
/*
|
||
** Set a "random" seed. To get some randomness, use the current time
|
||
** and the address of 'L' (in case the machine does address space layout
|
||
** randomization).
|
||
*/
|
||
static void randseed (lua_State *L, RanState *state) {
|
||
lua_Unsigned seed1 = (lua_Unsigned)time(NULL);
|
||
lua_Unsigned seed2 = (lua_Unsigned)(size_t)L;
|
||
setseed(L, state->s, seed1, seed2);
|
||
}
|
||
|
||
|
||
static int math_randomseed (lua_State *L) {
|
||
RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1));
|
||
if (lua_isnone(L, 1)) {
|
||
randseed(L, state);
|
||
}
|
||
else {
|
||
lua_Integer n1 = luaL_checkinteger(L, 1);
|
||
lua_Integer n2 = luaL_optinteger(L, 2, 0);
|
||
setseed(L, state->s, n1, n2);
|
||
}
|
||
return 2; /* return seeds */
|
||
}
|
||
|
||
|
||
static const luaL_Reg randfuncs[] = {
|
||
{"random", math_random},
|
||
{"randomseed", math_randomseed},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
/*
|
||
** Register the random functions and initialize their state.
|
||
*/
|
||
static void setrandfunc (lua_State *L) {
|
||
RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0);
|
||
randseed(L, state); /* initialize with a "random" seed */
|
||
lua_pop(L, 2); /* remove pushed seeds */
|
||
luaL_setfuncs(L, randfuncs, 1);
|
||
}
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Deprecated functions (for compatibility only)
|
||
** ===================================================================
|
||
*/
|
||
#if defined(LUA_COMPAT_MATHLIB)
|
||
|
||
static int math_cosh (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_sinh (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_tanh (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
static int math_pow (lua_State *L) {
|
||
lua_Number x = luaL_checknumber(L, 1);
|
||
lua_Number y = luaL_checknumber(L, 2);
|
||
lua_pushnumber(L, l_mathop(pow)(x, y));
|
||
return 1;
|
||
}
|
||
|
||
static int math_frexp (lua_State *L) {
|
||
int e;
|
||
lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e));
|
||
lua_pushinteger(L, e);
|
||
return 2;
|
||
}
|
||
|
||
static int math_ldexp (lua_State *L) {
|
||
lua_Number x = luaL_checknumber(L, 1);
|
||
int ep = (int)luaL_checkinteger(L, 2);
|
||
lua_pushnumber(L, l_mathop(ldexp)(x, ep));
|
||
return 1;
|
||
}
|
||
|
||
static int math_log10 (lua_State *L) {
|
||
lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1)));
|
||
return 1;
|
||
}
|
||
|
||
#endif
|
||
/* }================================================================== */
|
||
|
||
|
||
|
||
static const luaL_Reg mathlib[] = {
|
||
{"abs", math_abs},
|
||
{"acos", math_acos},
|
||
{"asin", math_asin},
|
||
{"atan", math_atan},
|
||
{"ceil", math_ceil},
|
||
{"cos", math_cos},
|
||
{"deg", math_deg},
|
||
{"exp", math_exp},
|
||
{"tointeger", math_toint},
|
||
{"floor", math_floor},
|
||
{"fmod", math_fmod},
|
||
{"ult", math_ult},
|
||
{"log", math_log},
|
||
{"max", math_max},
|
||
{"min", math_min},
|
||
{"modf", math_modf},
|
||
{"rad", math_rad},
|
||
{"sin", math_sin},
|
||
{"sqrt", math_sqrt},
|
||
{"tan", math_tan},
|
||
{"type", math_type},
|
||
#if defined(LUA_COMPAT_MATHLIB)
|
||
{"atan2", math_atan},
|
||
{"cosh", math_cosh},
|
||
{"sinh", math_sinh},
|
||
{"tanh", math_tanh},
|
||
{"pow", math_pow},
|
||
{"frexp", math_frexp},
|
||
{"ldexp", math_ldexp},
|
||
{"log10", math_log10},
|
||
#endif
|
||
/* placeholders */
|
||
{"random", NULL},
|
||
{"randomseed", NULL},
|
||
{"pi", NULL},
|
||
{"huge", NULL},
|
||
{"maxinteger", NULL},
|
||
{"mininteger", NULL},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
/*
|
||
** Open math library
|
||
*/
|
||
LUAMOD_API int luaopen_math (lua_State *L) {
|
||
luaL_newlib(L, mathlib);
|
||
lua_pushnumber(L, PI);
|
||
lua_setfield(L, -2, "pi");
|
||
lua_pushnumber(L, (lua_Number)HUGE_VAL);
|
||
lua_setfield(L, -2, "huge");
|
||
lua_pushinteger(L, LUA_MAXINTEGER);
|
||
lua_setfield(L, -2, "maxinteger");
|
||
lua_pushinteger(L, LUA_MININTEGER);
|
||
lua_setfield(L, -2, "mininteger");
|
||
setrandfunc(L);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: loadlib.c $
|
||
** Dynamic library loader for Lua
|
||
** See Copyright Notice in lua.h
|
||
**
|
||
** This module contains an implementation of loadlib for Unix systems
|
||
** that have dlfcn, an implementation for Windows, and a stub for other
|
||
** systems.
|
||
*/
|
||
|
||
#define loadlib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
/*
|
||
** LUA_CSUBSEP is the character that replaces dots in submodule names
|
||
** when searching for a C loader.
|
||
** LUA_LSUBSEP is the character that replaces dots in submodule names
|
||
** when searching for a Lua loader.
|
||
*/
|
||
#if !defined(LUA_CSUBSEP)
|
||
#define LUA_CSUBSEP LUA_DIRSEP
|
||
#endif
|
||
|
||
#if !defined(LUA_LSUBSEP)
|
||
#define LUA_LSUBSEP LUA_DIRSEP
|
||
#endif
|
||
|
||
|
||
/* prefix for open functions in C libraries */
|
||
#define LUA_POF "luaopen_"
|
||
|
||
/* separator for open functions in C libraries */
|
||
#define LUA_OFSEP "_"
|
||
|
||
|
||
/*
|
||
** key for table in the registry that keeps handles
|
||
** for all loaded C libraries
|
||
*/
|
||
static const char *const CLIBS = "_CLIBS";
|
||
|
||
#define LIB_FAIL "open"
|
||
|
||
|
||
#define setprogdir(L) ((void)0)
|
||
|
||
|
||
/*
|
||
** Special type equivalent to '(void*)' for functions in gcc
|
||
** (to suppress warnings when converting function pointers)
|
||
*/
|
||
typedef void (*voidf)(void);
|
||
|
||
|
||
/*
|
||
** system-dependent functions
|
||
*/
|
||
|
||
/*
|
||
** unload library 'lib'
|
||
*/
|
||
static void lsys_unloadlib (void *lib);
|
||
|
||
/*
|
||
** load C library in file 'path'. If 'seeglb', load with all names in
|
||
** the library global.
|
||
** Returns the library; in case of error, returns NULL plus an
|
||
** error string in the stack.
|
||
*/
|
||
static void *lsys_load (lua_State *L, const char *path, int seeglb);
|
||
|
||
/*
|
||
** Try to find a function named 'sym' in library 'lib'.
|
||
** Returns the function; in case of error, returns NULL plus an
|
||
** error string in the stack.
|
||
*/
|
||
static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym);
|
||
|
||
|
||
|
||
|
||
#if defined(LUA_USE_DLOPEN) /* { */
|
||
/*
|
||
** {========================================================================
|
||
** This is an implementation of loadlib based on the dlfcn interface.
|
||
** The dlfcn interface is available in Linux, SunOS, Solaris, IRIX, FreeBSD,
|
||
** NetBSD, AIX 4.2, HPUX 11, and probably most other Unix flavors, at least
|
||
** as an emulation layer on top of native functions.
|
||
** =========================================================================
|
||
*/
|
||
|
||
#include <dlfcn.h>
|
||
|
||
/*
|
||
** Macro to convert pointer-to-void* to pointer-to-function. This cast
|
||
** is undefined according to ISO C, but POSIX assumes that it works.
|
||
** (The '__extension__' in gnu compilers is only to avoid warnings.)
|
||
*/
|
||
#if defined(__GNUC__)
|
||
#define cast_func(p) (__extension__ (lua_CFunction)(p))
|
||
#else
|
||
#define cast_func(p) ((lua_CFunction)(p))
|
||
#endif
|
||
|
||
|
||
static void lsys_unloadlib (void *lib) {
|
||
dlclose(lib);
|
||
}
|
||
|
||
|
||
static void *lsys_load (lua_State *L, const char *path, int seeglb) {
|
||
void *lib = dlopen(path, RTLD_NOW | (seeglb ? RTLD_GLOBAL : RTLD_LOCAL));
|
||
if (l_unlikely(lib == NULL))
|
||
lua_pushstring(L, dlerror());
|
||
return lib;
|
||
}
|
||
|
||
|
||
static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) {
|
||
lua_CFunction f = cast_func(dlsym(lib, sym));
|
||
if (l_unlikely(f == NULL))
|
||
lua_pushstring(L, dlerror());
|
||
return f;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
#elif defined(LUA_DL_DLL) /* }{ */
|
||
/*
|
||
** {======================================================================
|
||
** This is an implementation of loadlib for Windows using native functions.
|
||
** =======================================================================
|
||
*/
|
||
|
||
#include <windows.h>
|
||
|
||
|
||
/*
|
||
** optional flags for LoadLibraryEx
|
||
*/
|
||
#if !defined(LUA_LLE_FLAGS)
|
||
#define LUA_LLE_FLAGS 0
|
||
#endif
|
||
|
||
|
||
#undef setprogdir
|
||
|
||
|
||
/*
|
||
** Replace in the path (on the top of the stack) any occurrence
|
||
** of LUA_EXEC_DIR with the executable's path.
|
||
*/
|
||
static void setprogdir (lua_State *L) {
|
||
char buff[MAX_PATH + 1];
|
||
char *lb;
|
||
DWORD nsize = sizeof(buff)/sizeof(char);
|
||
DWORD n = GetModuleFileNameA(NULL, buff, nsize); /* get exec. name */
|
||
if (n == 0 || n == nsize || (lb = strrchr(buff, '\\')) == NULL)
|
||
luaL_error(L, "unable to get ModuleFileName");
|
||
else {
|
||
*lb = '\0'; /* cut name on the last '\\' to get the path */
|
||
luaL_gsub(L, lua_tostring(L, -1), LUA_EXEC_DIR, buff);
|
||
lua_remove(L, -2); /* remove original string */
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
static void pusherror (lua_State *L) {
|
||
int error = GetLastError();
|
||
char buffer[128];
|
||
if (FormatMessageA(FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_FROM_SYSTEM,
|
||
NULL, error, 0, buffer, sizeof(buffer)/sizeof(char), NULL))
|
||
lua_pushstring(L, buffer);
|
||
else
|
||
lua_pushfstring(L, "system error %d\n", error);
|
||
}
|
||
|
||
static void lsys_unloadlib (void *lib) {
|
||
FreeLibrary((HMODULE)lib);
|
||
}
|
||
|
||
|
||
static void *lsys_load (lua_State *L, const char *path, int seeglb) {
|
||
HMODULE lib = LoadLibraryExA(path, NULL, LUA_LLE_FLAGS);
|
||
(void)(seeglb); /* not used: symbols are 'global' by default */
|
||
if (lib == NULL) pusherror(L);
|
||
return lib;
|
||
}
|
||
|
||
|
||
static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) {
|
||
lua_CFunction f = (lua_CFunction)(voidf)GetProcAddress((HMODULE)lib, sym);
|
||
if (f == NULL) pusherror(L);
|
||
return f;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
#else /* }{ */
|
||
/*
|
||
** {======================================================
|
||
** Fallback for other systems
|
||
** =======================================================
|
||
*/
|
||
|
||
#undef LIB_FAIL
|
||
#define LIB_FAIL "absent"
|
||
|
||
|
||
#define DLMSG "dynamic libraries not enabled; check your Lua installation"
|
||
|
||
|
||
static void lsys_unloadlib (void *lib) {
|
||
(void)(lib); /* not used */
|
||
}
|
||
|
||
|
||
static void *lsys_load (lua_State *L, const char *path, int seeglb) {
|
||
(void)(path); (void)(seeglb); /* not used */
|
||
lua_pushliteral(L, DLMSG);
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static lua_CFunction lsys_sym (lua_State *L, void *lib, const char *sym) {
|
||
(void)(lib); (void)(sym); /* not used */
|
||
lua_pushliteral(L, DLMSG);
|
||
return NULL;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Set Paths
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** LUA_PATH_VAR and LUA_CPATH_VAR are the names of the environment
|
||
** variables that Lua check to set its paths.
|
||
*/
|
||
#if !defined(LUA_PATH_VAR)
|
||
#define LUA_PATH_VAR "LUA_PATH"
|
||
#endif
|
||
|
||
#if !defined(LUA_CPATH_VAR)
|
||
#define LUA_CPATH_VAR "LUA_CPATH"
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
** return registry.LUA_NOENV as a boolean
|
||
*/
|
||
static int noenv (lua_State *L) {
|
||
int b;
|
||
lua_getfield(L, LUA_REGISTRYINDEX, "LUA_NOENV");
|
||
b = lua_toboolean(L, -1);
|
||
lua_pop(L, 1); /* remove value */
|
||
return b;
|
||
}
|
||
|
||
|
||
/*
|
||
** Set a path
|
||
*/
|
||
static void setpath (lua_State *L, const char *fieldname,
|
||
const char *envname,
|
||
const char *dft) {
|
||
const char *dftmark;
|
||
const char *nver = lua_pushfstring(L, "%s%s", envname, LUA_VERSUFFIX);
|
||
const char *path = getenv(nver); /* try versioned name */
|
||
if (path == NULL) /* no versioned environment variable? */
|
||
path = getenv(envname); /* try unversioned name */
|
||
if (path == NULL || noenv(L)) /* no environment variable? */
|
||
lua_pushstring(L, dft); /* use default */
|
||
else if ((dftmark = strstr(path, LUA_PATH_SEP LUA_PATH_SEP)) == NULL)
|
||
lua_pushstring(L, path); /* nothing to change */
|
||
else { /* path contains a ";;": insert default path in its place */
|
||
size_t len = strlen(path);
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
if (path < dftmark) { /* is there a prefix before ';;'? */
|
||
luaL_addlstring(&b, path, dftmark - path); /* add it */
|
||
luaL_addchar(&b, *LUA_PATH_SEP);
|
||
}
|
||
luaL_addstring(&b, dft); /* add default */
|
||
if (dftmark < path + len - 2) { /* is there a suffix after ';;'? */
|
||
luaL_addchar(&b, *LUA_PATH_SEP);
|
||
luaL_addlstring(&b, dftmark + 2, (path + len - 2) - dftmark);
|
||
}
|
||
luaL_pushresult(&b);
|
||
}
|
||
setprogdir(L);
|
||
lua_setfield(L, -3, fieldname); /* package[fieldname] = path value */
|
||
lua_pop(L, 1); /* pop versioned variable name ('nver') */
|
||
}
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** return registry.CLIBS[path]
|
||
*/
|
||
static void *checkclib (lua_State *L, const char *path) {
|
||
void *plib;
|
||
lua_getfield(L, LUA_REGISTRYINDEX, CLIBS);
|
||
lua_getfield(L, -1, path);
|
||
plib = lua_touserdata(L, -1); /* plib = CLIBS[path] */
|
||
lua_pop(L, 2); /* pop CLIBS table and 'plib' */
|
||
return plib;
|
||
}
|
||
|
||
|
||
/*
|
||
** registry.CLIBS[path] = plib -- for queries
|
||
** registry.CLIBS[#CLIBS + 1] = plib -- also keep a list of all libraries
|
||
*/
|
||
static void addtoclib (lua_State *L, const char *path, void *plib) {
|
||
lua_getfield(L, LUA_REGISTRYINDEX, CLIBS);
|
||
lua_pushlightuserdata(L, plib);
|
||
lua_pushvalue(L, -1);
|
||
lua_setfield(L, -3, path); /* CLIBS[path] = plib */
|
||
lua_rawseti(L, -2, luaL_len(L, -2) + 1); /* CLIBS[#CLIBS + 1] = plib */
|
||
lua_pop(L, 1); /* pop CLIBS table */
|
||
}
|
||
|
||
|
||
/*
|
||
** __gc tag method for CLIBS table: calls 'lsys_unloadlib' for all lib
|
||
** handles in list CLIBS
|
||
*/
|
||
static int gctm (lua_State *L) {
|
||
lua_Integer n = luaL_len(L, 1);
|
||
for (; n >= 1; n--) { /* for each handle, in reverse order */
|
||
lua_rawgeti(L, 1, n); /* get handle CLIBS[n] */
|
||
lsys_unloadlib(lua_touserdata(L, -1));
|
||
lua_pop(L, 1); /* pop handle */
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
|
||
|
||
/* error codes for 'lookforfunc' */
|
||
#define ERRLIB 1
|
||
#define ERRFUNC 2
|
||
|
||
/*
|
||
** Look for a C function named 'sym' in a dynamically loaded library
|
||
** 'path'.
|
||
** First, check whether the library is already loaded; if not, try
|
||
** to load it.
|
||
** Then, if 'sym' is '*', return true (as library has been loaded).
|
||
** Otherwise, look for symbol 'sym' in the library and push a
|
||
** C function with that symbol.
|
||
** Return 0 and 'true' or a function in the stack; in case of
|
||
** errors, return an error code and an error message in the stack.
|
||
*/
|
||
static int lookforfunc (lua_State *L, const char *path, const char *sym) {
|
||
void *reg = checkclib(L, path); /* check loaded C libraries */
|
||
if (reg == NULL) { /* must load library? */
|
||
reg = lsys_load(L, path, *sym == '*'); /* global symbols if 'sym'=='*' */
|
||
if (reg == NULL) return ERRLIB; /* unable to load library */
|
||
addtoclib(L, path, reg);
|
||
}
|
||
if (*sym == '*') { /* loading only library (no function)? */
|
||
lua_pushboolean(L, 1); /* return 'true' */
|
||
return 0; /* no errors */
|
||
}
|
||
else {
|
||
lua_CFunction f = lsys_sym(L, reg, sym);
|
||
if (f == NULL)
|
||
return ERRFUNC; /* unable to find function */
|
||
lua_pushcfunction(L, f); /* else create new function */
|
||
return 0; /* no errors */
|
||
}
|
||
}
|
||
|
||
|
||
static int ll_loadlib (lua_State *L) {
|
||
const char *path = luaL_checkstring(L, 1);
|
||
const char *init = luaL_checkstring(L, 2);
|
||
int stat = lookforfunc(L, path, init);
|
||
if (l_likely(stat == 0)) /* no errors? */
|
||
return 1; /* return the loaded function */
|
||
else { /* error; error message is on stack top */
|
||
luaL_pushfail(L);
|
||
lua_insert(L, -2);
|
||
lua_pushstring(L, (stat == ERRLIB) ? LIB_FAIL : "init");
|
||
return 3; /* return fail, error message, and where */
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** 'require' function
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
static int readable (const char *filename) {
|
||
FILE *f = fopen(filename, "r"); /* try to open file */
|
||
if (f == NULL) return 0; /* open failed */
|
||
fclose(f);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Get the next name in '*path' = 'name1;name2;name3;...', changing
|
||
** the ending ';' to '\0' to create a zero-terminated string. Return
|
||
** NULL when list ends.
|
||
*/
|
||
static const char *getnextfilename (char **path, char *end) {
|
||
char *sep;
|
||
char *name = *path;
|
||
if (name == end)
|
||
return NULL; /* no more names */
|
||
else if (*name == '\0') { /* from previous iteration? */
|
||
*name = *LUA_PATH_SEP; /* restore separator */
|
||
name++; /* skip it */
|
||
}
|
||
sep = strchr(name, *LUA_PATH_SEP); /* find next separator */
|
||
if (sep == NULL) /* separator not found? */
|
||
sep = end; /* name goes until the end */
|
||
*sep = '\0'; /* finish file name */
|
||
*path = sep; /* will start next search from here */
|
||
return name;
|
||
}
|
||
|
||
|
||
/*
|
||
** Given a path such as ";blabla.so;blublu.so", pushes the string
|
||
**
|
||
** no file 'blabla.so'
|
||
** no file 'blublu.so'
|
||
*/
|
||
static void pusherrornotfound (lua_State *L, const char *path) {
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
luaL_addstring(&b, "no file '");
|
||
luaL_addgsub(&b, path, LUA_PATH_SEP, "'\n\tno file '");
|
||
luaL_addstring(&b, "'");
|
||
luaL_pushresult(&b);
|
||
}
|
||
|
||
|
||
static const char *searchpath (lua_State *L, const char *name,
|
||
const char *path,
|
||
const char *sep,
|
||
const char *dirsep) {
|
||
luaL_Buffer buff;
|
||
char *pathname; /* path with name inserted */
|
||
char *endpathname; /* its end */
|
||
const char *filename;
|
||
/* separator is non-empty and appears in 'name'? */
|
||
if (*sep != '\0' && strchr(name, *sep) != NULL)
|
||
name = luaL_gsub(L, name, sep, dirsep); /* replace it by 'dirsep' */
|
||
luaL_buffinit(L, &buff);
|
||
/* add path to the buffer, replacing marks ('?') with the file name */
|
||
luaL_addgsub(&buff, path, LUA_PATH_MARK, name);
|
||
luaL_addchar(&buff, '\0');
|
||
pathname = luaL_buffaddr(&buff); /* writable list of file names */
|
||
endpathname = pathname + luaL_bufflen(&buff) - 1;
|
||
while ((filename = getnextfilename(&pathname, endpathname)) != NULL) {
|
||
if (readable(filename)) /* does file exist and is readable? */
|
||
return lua_pushstring(L, filename); /* save and return name */
|
||
}
|
||
luaL_pushresult(&buff); /* push path to create error message */
|
||
pusherrornotfound(L, lua_tostring(L, -1)); /* create error message */
|
||
return NULL; /* not found */
|
||
}
|
||
|
||
|
||
static int ll_searchpath (lua_State *L) {
|
||
const char *f = searchpath(L, luaL_checkstring(L, 1),
|
||
luaL_checkstring(L, 2),
|
||
luaL_optstring(L, 3, "."),
|
||
luaL_optstring(L, 4, LUA_DIRSEP));
|
||
if (f != NULL) return 1;
|
||
else { /* error message is on top of the stack */
|
||
luaL_pushfail(L);
|
||
lua_insert(L, -2);
|
||
return 2; /* return fail + error message */
|
||
}
|
||
}
|
||
|
||
|
||
static const char *findfile (lua_State *L, const char *name,
|
||
const char *pname,
|
||
const char *dirsep) {
|
||
const char *path;
|
||
lua_getfield(L, lua_upvalueindex(1), pname);
|
||
path = lua_tostring(L, -1);
|
||
if (l_unlikely(path == NULL))
|
||
luaL_error(L, "'package.%s' must be a string", pname);
|
||
return searchpath(L, name, path, ".", dirsep);
|
||
}
|
||
|
||
|
||
static int checkload (lua_State *L, int stat, const char *filename) {
|
||
if (l_likely(stat)) { /* module loaded successfully? */
|
||
lua_pushstring(L, filename); /* will be 2nd argument to module */
|
||
return 2; /* return open function and file name */
|
||
}
|
||
else
|
||
return luaL_error(L, "error loading module '%s' from file '%s':\n\t%s",
|
||
lua_tostring(L, 1), filename, lua_tostring(L, -1));
|
||
}
|
||
|
||
|
||
static int searcher_Lua (lua_State *L) {
|
||
const char *filename;
|
||
const char *name = luaL_checkstring(L, 1);
|
||
filename = findfile(L, name, "path", LUA_LSUBSEP);
|
||
if (filename == NULL) return 1; /* module not found in this path */
|
||
return checkload(L, (luaL_loadfile(L, filename) == LUA_OK), filename);
|
||
}
|
||
|
||
|
||
/*
|
||
** Try to find a load function for module 'modname' at file 'filename'.
|
||
** First, change '.' to '_' in 'modname'; then, if 'modname' has
|
||
** the form X-Y (that is, it has an "ignore mark"), build a function
|
||
** name "luaopen_X" and look for it. (For compatibility, if that
|
||
** fails, it also tries "luaopen_Y".) If there is no ignore mark,
|
||
** look for a function named "luaopen_modname".
|
||
*/
|
||
static int loadfunc (lua_State *L, const char *filename, const char *modname) {
|
||
const char *openfunc;
|
||
const char *mark;
|
||
modname = luaL_gsub(L, modname, ".", LUA_OFSEP);
|
||
mark = strchr(modname, *LUA_IGMARK);
|
||
if (mark) {
|
||
int stat;
|
||
openfunc = lua_pushlstring(L, modname, mark - modname);
|
||
openfunc = lua_pushfstring(L, LUA_POF"%s", openfunc);
|
||
stat = lookforfunc(L, filename, openfunc);
|
||
if (stat != ERRFUNC) return stat;
|
||
modname = mark + 1; /* else go ahead and try old-style name */
|
||
}
|
||
openfunc = lua_pushfstring(L, LUA_POF"%s", modname);
|
||
return lookforfunc(L, filename, openfunc);
|
||
}
|
||
|
||
|
||
static int searcher_C (lua_State *L) {
|
||
const char *name = luaL_checkstring(L, 1);
|
||
const char *filename = findfile(L, name, "cpath", LUA_CSUBSEP);
|
||
if (filename == NULL) return 1; /* module not found in this path */
|
||
return checkload(L, (loadfunc(L, filename, name) == 0), filename);
|
||
}
|
||
|
||
|
||
static int searcher_Croot (lua_State *L) {
|
||
const char *filename;
|
||
const char *name = luaL_checkstring(L, 1);
|
||
const char *p = strchr(name, '.');
|
||
int stat;
|
||
if (p == NULL) return 0; /* is root */
|
||
lua_pushlstring(L, name, p - name);
|
||
filename = findfile(L, lua_tostring(L, -1), "cpath", LUA_CSUBSEP);
|
||
if (filename == NULL) return 1; /* root not found */
|
||
if ((stat = loadfunc(L, filename, name)) != 0) {
|
||
if (stat != ERRFUNC)
|
||
return checkload(L, 0, filename); /* real error */
|
||
else { /* open function not found */
|
||
lua_pushfstring(L, "no module '%s' in file '%s'", name, filename);
|
||
return 1;
|
||
}
|
||
}
|
||
lua_pushstring(L, filename); /* will be 2nd argument to module */
|
||
return 2;
|
||
}
|
||
|
||
|
||
static int searcher_preload (lua_State *L) {
|
||
const char *name = luaL_checkstring(L, 1);
|
||
lua_getfield(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE);
|
||
if (lua_getfield(L, -1, name) == LUA_TNIL) { /* not found? */
|
||
lua_pushfstring(L, "no field package.preload['%s']", name);
|
||
return 1;
|
||
}
|
||
else {
|
||
lua_pushliteral(L, ":preload:");
|
||
return 2;
|
||
}
|
||
}
|
||
|
||
|
||
static void findloader (lua_State *L, const char *name) {
|
||
int i;
|
||
luaL_Buffer msg; /* to build error message */
|
||
/* push 'package.searchers' to index 3 in the stack */
|
||
if (l_unlikely(lua_getfield(L, lua_upvalueindex(1), "searchers")
|
||
!= LUA_TTABLE))
|
||
luaL_error(L, "'package.searchers' must be a table");
|
||
luaL_buffinit(L, &msg);
|
||
/* iterate over available searchers to find a loader */
|
||
for (i = 1; ; i++) {
|
||
luaL_addstring(&msg, "\n\t"); /* error-message prefix */
|
||
if (l_unlikely(lua_rawgeti(L, 3, i) == LUA_TNIL)) { /* no more searchers? */
|
||
lua_pop(L, 1); /* remove nil */
|
||
luaL_buffsub(&msg, 2); /* remove prefix */
|
||
luaL_pushresult(&msg); /* create error message */
|
||
luaL_error(L, "module '%s' not found:%s", name, lua_tostring(L, -1));
|
||
}
|
||
lua_pushstring(L, name);
|
||
lua_call(L, 1, 2); /* call it */
|
||
if (lua_isfunction(L, -2)) /* did it find a loader? */
|
||
return; /* module loader found */
|
||
else if (lua_isstring(L, -2)) { /* searcher returned error message? */
|
||
lua_pop(L, 1); /* remove extra return */
|
||
luaL_addvalue(&msg); /* concatenate error message */
|
||
}
|
||
else { /* no error message */
|
||
lua_pop(L, 2); /* remove both returns */
|
||
luaL_buffsub(&msg, 2); /* remove prefix */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static int ll_require (lua_State *L) {
|
||
const char *name = luaL_checkstring(L, 1);
|
||
lua_settop(L, 1); /* LOADED table will be at index 2 */
|
||
lua_getfield(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE);
|
||
lua_getfield(L, 2, name); /* LOADED[name] */
|
||
if (lua_toboolean(L, -1)) /* is it there? */
|
||
return 1; /* package is already loaded */
|
||
/* else must load package */
|
||
lua_pop(L, 1); /* remove 'getfield' result */
|
||
findloader(L, name);
|
||
lua_rotate(L, -2, 1); /* function <-> loader data */
|
||
lua_pushvalue(L, 1); /* name is 1st argument to module loader */
|
||
lua_pushvalue(L, -3); /* loader data is 2nd argument */
|
||
/* stack: ...; loader data; loader function; mod. name; loader data */
|
||
lua_call(L, 2, 1); /* run loader to load module */
|
||
/* stack: ...; loader data; result from loader */
|
||
if (!lua_isnil(L, -1)) /* non-nil return? */
|
||
lua_setfield(L, 2, name); /* LOADED[name] = returned value */
|
||
else
|
||
lua_pop(L, 1); /* pop nil */
|
||
if (lua_getfield(L, 2, name) == LUA_TNIL) { /* module set no value? */
|
||
lua_pushboolean(L, 1); /* use true as result */
|
||
lua_copy(L, -1, -2); /* replace loader result */
|
||
lua_setfield(L, 2, name); /* LOADED[name] = true */
|
||
}
|
||
lua_rotate(L, -2, 1); /* loader data <-> module result */
|
||
return 2; /* return module result and loader data */
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
|
||
static const luaL_Reg pk_funcs[] = {
|
||
{"loadlib", ll_loadlib},
|
||
{"searchpath", ll_searchpath},
|
||
/* placeholders */
|
||
{"preload", NULL},
|
||
{"cpath", NULL},
|
||
{"path", NULL},
|
||
{"searchers", NULL},
|
||
{"loaded", NULL},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
static const luaL_Reg ll_funcs[] = {
|
||
{"require", ll_require},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
static void createsearcherstable (lua_State *L) {
|
||
static const lua_CFunction searchers[] = {
|
||
searcher_preload,
|
||
searcher_Lua,
|
||
searcher_C,
|
||
searcher_Croot,
|
||
NULL
|
||
};
|
||
int i;
|
||
/* create 'searchers' table */
|
||
lua_createtable(L, sizeof(searchers)/sizeof(searchers[0]) - 1, 0);
|
||
/* fill it with predefined searchers */
|
||
for (i=0; searchers[i] != NULL; i++) {
|
||
lua_pushvalue(L, -2); /* set 'package' as upvalue for all searchers */
|
||
lua_pushcclosure(L, searchers[i], 1);
|
||
lua_rawseti(L, -2, i+1);
|
||
}
|
||
lua_setfield(L, -2, "searchers"); /* put it in field 'searchers' */
|
||
}
|
||
|
||
|
||
/*
|
||
** create table CLIBS to keep track of loaded C libraries,
|
||
** setting a finalizer to close all libraries when closing state.
|
||
*/
|
||
static void createclibstable (lua_State *L) {
|
||
luaL_getsubtable(L, LUA_REGISTRYINDEX, CLIBS); /* create CLIBS table */
|
||
lua_createtable(L, 0, 1); /* create metatable for CLIBS */
|
||
lua_pushcfunction(L, gctm);
|
||
lua_setfield(L, -2, "__gc"); /* set finalizer for CLIBS table */
|
||
lua_setmetatable(L, -2);
|
||
}
|
||
|
||
|
||
LUAMOD_API int luaopen_package (lua_State *L) {
|
||
createclibstable(L);
|
||
luaL_newlib(L, pk_funcs); /* create 'package' table */
|
||
createsearcherstable(L);
|
||
/* set paths */
|
||
setpath(L, "path", LUA_PATH_VAR, LUA_PATH_DEFAULT);
|
||
setpath(L, "cpath", LUA_CPATH_VAR, LUA_CPATH_DEFAULT);
|
||
/* store config information */
|
||
lua_pushliteral(L, LUA_DIRSEP "\n" LUA_PATH_SEP "\n" LUA_PATH_MARK "\n"
|
||
LUA_EXEC_DIR "\n" LUA_IGMARK "\n");
|
||
lua_setfield(L, -2, "config");
|
||
/* set field 'loaded' */
|
||
luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_LOADED_TABLE);
|
||
lua_setfield(L, -2, "loaded");
|
||
/* set field 'preload' */
|
||
luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE);
|
||
lua_setfield(L, -2, "preload");
|
||
lua_pushglobaltable(L);
|
||
lua_pushvalue(L, -2); /* set 'package' as upvalue for next lib */
|
||
luaL_setfuncs(L, ll_funcs, 1); /* open lib into global table */
|
||
lua_pop(L, 1); /* pop global table */
|
||
return 1; /* return 'package' table */
|
||
}
|
||
|
||
/*
|
||
** $Id: loslib.c $
|
||
** Standard Operating System library
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define loslib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <errno.h>
|
||
#include <locale.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <time.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** List of valid conversion specifiers for the 'strftime' function;
|
||
** options are grouped by length; group of length 2 start with '||'.
|
||
** ===================================================================
|
||
*/
|
||
#if !defined(LUA_STRFTIMEOPTIONS) /* { */
|
||
|
||
#if defined(LUA_USE_WINDOWS)
|
||
#define LUA_STRFTIMEOPTIONS "aAbBcdHIjmMpSUwWxXyYzZ%" \
|
||
"||" "#c#x#d#H#I#j#m#M#S#U#w#W#y#Y" /* two-char options */
|
||
#elif defined(LUA_USE_C89) /* ANSI C 89 (only 1-char options) */
|
||
#define LUA_STRFTIMEOPTIONS "aAbBcdHIjmMpSUwWxXyYZ%"
|
||
#else /* C99 specification */
|
||
#define LUA_STRFTIMEOPTIONS "aAbBcCdDeFgGhHIjmMnprRStTuUVwWxXyYzZ%" \
|
||
"||" "EcECExEXEyEY" "OdOeOHOIOmOMOSOuOUOVOwOWOy" /* two-char options */
|
||
#endif
|
||
|
||
#endif /* } */
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Configuration for time-related stuff
|
||
** ===================================================================
|
||
*/
|
||
|
||
/*
|
||
** type to represent time_t in Lua
|
||
*/
|
||
#if !defined(LUA_NUMTIME) /* { */
|
||
|
||
#define l_timet lua_Integer
|
||
#define l_pushtime(L,t) lua_pushinteger(L,(lua_Integer)(t))
|
||
#define l_gettime(L,arg) luaL_checkinteger(L, arg)
|
||
|
||
#else /* }{ */
|
||
|
||
#define l_timet lua_Number
|
||
#define l_pushtime(L,t) lua_pushnumber(L,(lua_Number)(t))
|
||
#define l_gettime(L,arg) luaL_checknumber(L, arg)
|
||
|
||
#endif /* } */
|
||
|
||
|
||
#if !defined(l_gmtime) /* { */
|
||
/*
|
||
** By default, Lua uses gmtime/localtime, except when POSIX is available,
|
||
** where it uses gmtime_r/localtime_r
|
||
*/
|
||
|
||
#if defined(LUA_USE_POSIX) /* { */
|
||
|
||
#define l_gmtime(t,r) gmtime_r(t,r)
|
||
#define l_localtime(t,r) localtime_r(t,r)
|
||
|
||
#else /* }{ */
|
||
|
||
/* ISO C definitions */
|
||
#define l_gmtime(t,r) ((void)(r)->tm_sec, gmtime(t))
|
||
#define l_localtime(t,r) ((void)(r)->tm_sec, localtime(t))
|
||
|
||
#endif /* } */
|
||
|
||
#endif /* } */
|
||
|
||
/* }================================================================== */
|
||
|
||
|
||
/*
|
||
** {==================================================================
|
||
** Configuration for 'tmpnam':
|
||
** By default, Lua uses tmpnam except when POSIX is available, where
|
||
** it uses mkstemp.
|
||
** ===================================================================
|
||
*/
|
||
#if !defined(lua_tmpnam) /* { */
|
||
|
||
#if defined(LUA_USE_POSIX) /* { */
|
||
|
||
#include <unistd.h>
|
||
|
||
#define LUA_TMPNAMBUFSIZE 32
|
||
|
||
#if !defined(LUA_TMPNAMTEMPLATE)
|
||
#define LUA_TMPNAMTEMPLATE "/tmp/lua_XXXXXX"
|
||
#endif
|
||
|
||
#define lua_tmpnam(b,e) { \
|
||
strcpy(b, LUA_TMPNAMTEMPLATE); \
|
||
e = mkstemp(b); \
|
||
if (e != -1) close(e); \
|
||
e = (e == -1); }
|
||
|
||
#else /* }{ */
|
||
|
||
/* ISO C definitions */
|
||
#define LUA_TMPNAMBUFSIZE L_tmpnam
|
||
#define lua_tmpnam(b,e) { e = (tmpnam(b) == NULL); }
|
||
|
||
#endif /* } */
|
||
|
||
#endif /* } */
|
||
/* }================================================================== */
|
||
|
||
|
||
#if !defined(l_system)
|
||
#if defined(LUA_USE_IOS)
|
||
/* Despite claiming to be ISO C, iOS does not implement 'system'. */
|
||
#define l_system(cmd) ((cmd) == NULL ? 0 : -1)
|
||
#else
|
||
#define l_system(cmd) system(cmd) /* default definition */
|
||
#endif
|
||
#endif
|
||
|
||
|
||
static int os_execute (lua_State *L) {
|
||
const char *cmd = luaL_optstring(L, 1, NULL);
|
||
int stat;
|
||
errno = 0;
|
||
stat = l_system(cmd);
|
||
if (cmd != NULL)
|
||
return luaL_execresult(L, stat);
|
||
else {
|
||
lua_pushboolean(L, stat); /* true if there is a shell */
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
|
||
static int os_remove (lua_State *L) {
|
||
const char *filename = luaL_checkstring(L, 1);
|
||
errno = 0;
|
||
return luaL_fileresult(L, remove(filename) == 0, filename);
|
||
}
|
||
|
||
|
||
static int os_rename (lua_State *L) {
|
||
const char *fromname = luaL_checkstring(L, 1);
|
||
const char *toname = luaL_checkstring(L, 2);
|
||
errno = 0;
|
||
return luaL_fileresult(L, rename(fromname, toname) == 0, NULL);
|
||
}
|
||
|
||
|
||
static int os_tmpname (lua_State *L) {
|
||
char buff[LUA_TMPNAMBUFSIZE];
|
||
int err;
|
||
lua_tmpnam(buff, err);
|
||
if (l_unlikely(err))
|
||
return luaL_error(L, "unable to generate a unique filename");
|
||
lua_pushstring(L, buff);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int os_getenv (lua_State *L) {
|
||
lua_pushstring(L, getenv(luaL_checkstring(L, 1))); /* if NULL push nil */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int os_clock (lua_State *L) {
|
||
lua_pushnumber(L, ((lua_Number)clock())/(lua_Number)CLOCKS_PER_SEC);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Time/Date operations
|
||
** { year=%Y, month=%m, day=%d, hour=%H, min=%M, sec=%S,
|
||
** wday=%w+1, yday=%j, isdst=? }
|
||
** =======================================================
|
||
*/
|
||
|
||
/*
|
||
** About the overflow check: an overflow cannot occur when time
|
||
** is represented by a lua_Integer, because either lua_Integer is
|
||
** large enough to represent all int fields or it is not large enough
|
||
** to represent a time that cause a field to overflow. However, if
|
||
** times are represented as doubles and lua_Integer is int, then the
|
||
** time 0x1.e1853b0d184f6p+55 would cause an overflow when adding 1900
|
||
** to compute the year.
|
||
*/
|
||
static void setfield (lua_State *L, const char *key, int value, int delta) {
|
||
#if (defined(LUA_NUMTIME) && LUA_MAXINTEGER <= INT_MAX)
|
||
if (l_unlikely(value > LUA_MAXINTEGER - delta))
|
||
luaL_error(L, "field '%s' is out-of-bound", key);
|
||
#endif
|
||
lua_pushinteger(L, (lua_Integer)value + delta);
|
||
lua_setfield(L, -2, key);
|
||
}
|
||
|
||
|
||
static void setboolfield (lua_State *L, const char *key, int value) {
|
||
if (value < 0) /* undefined? */
|
||
return; /* does not set field */
|
||
lua_pushboolean(L, value);
|
||
lua_setfield(L, -2, key);
|
||
}
|
||
|
||
|
||
/*
|
||
** Set all fields from structure 'tm' in the table on top of the stack
|
||
*/
|
||
static void setallfields (lua_State *L, struct tm *stm) {
|
||
setfield(L, "year", stm->tm_year, 1900);
|
||
setfield(L, "month", stm->tm_mon, 1);
|
||
setfield(L, "day", stm->tm_mday, 0);
|
||
setfield(L, "hour", stm->tm_hour, 0);
|
||
setfield(L, "min", stm->tm_min, 0);
|
||
setfield(L, "sec", stm->tm_sec, 0);
|
||
setfield(L, "yday", stm->tm_yday, 1);
|
||
setfield(L, "wday", stm->tm_wday, 1);
|
||
setboolfield(L, "isdst", stm->tm_isdst);
|
||
}
|
||
|
||
|
||
static int getboolfield (lua_State *L, const char *key) {
|
||
int res;
|
||
res = (lua_getfield(L, -1, key) == LUA_TNIL) ? -1 : lua_toboolean(L, -1);
|
||
lua_pop(L, 1);
|
||
return res;
|
||
}
|
||
|
||
|
||
static int getfield (lua_State *L, const char *key, int d, int delta) {
|
||
int isnum;
|
||
int t = lua_getfield(L, -1, key); /* get field and its type */
|
||
lua_Integer res = lua_tointegerx(L, -1, &isnum);
|
||
if (!isnum) { /* field is not an integer? */
|
||
if (l_unlikely(t != LUA_TNIL)) /* some other value? */
|
||
return luaL_error(L, "field '%s' is not an integer", key);
|
||
else if (l_unlikely(d < 0)) /* absent field; no default? */
|
||
return luaL_error(L, "field '%s' missing in date table", key);
|
||
res = d;
|
||
}
|
||
else {
|
||
if (!(res >= 0 ? res - delta <= INT_MAX : INT_MIN + delta <= res))
|
||
return luaL_error(L, "field '%s' is out-of-bound", key);
|
||
res -= delta;
|
||
}
|
||
lua_pop(L, 1);
|
||
return (int)res;
|
||
}
|
||
|
||
|
||
static const char *checkoption (lua_State *L, const char *conv,
|
||
ptrdiff_t convlen, char *buff) {
|
||
const char *option = LUA_STRFTIMEOPTIONS;
|
||
int oplen = 1; /* length of options being checked */
|
||
for (; *option != '\0' && oplen <= convlen; option += oplen) {
|
||
if (*option == '|') /* next block? */
|
||
oplen++; /* will check options with next length (+1) */
|
||
else if (memcmp(conv, option, oplen) == 0) { /* match? */
|
||
memcpy(buff, conv, oplen); /* copy valid option to buffer */
|
||
buff[oplen] = '\0';
|
||
return conv + oplen; /* return next item */
|
||
}
|
||
}
|
||
luaL_argerror(L, 1,
|
||
lua_pushfstring(L, "invalid conversion specifier '%%%s'", conv));
|
||
return conv; /* to avoid warnings */
|
||
}
|
||
|
||
|
||
static time_t l_checktime (lua_State *L, int arg) {
|
||
l_timet t = l_gettime(L, arg);
|
||
luaL_argcheck(L, (time_t)t == t, arg, "time out-of-bounds");
|
||
return (time_t)t;
|
||
}
|
||
|
||
|
||
/* maximum size for an individual 'strftime' item */
|
||
#define SIZETIMEFMT 250
|
||
|
||
|
||
static int os_date (lua_State *L) {
|
||
size_t slen;
|
||
const char *s = luaL_optlstring(L, 1, "%c", &slen);
|
||
time_t t = luaL_opt(L, l_checktime, 2, time(NULL));
|
||
const char *se = s + slen; /* 's' end */
|
||
struct tm tmr, *stm;
|
||
if (*s == '!') { /* UTC? */
|
||
stm = l_gmtime(&t, &tmr);
|
||
s++; /* skip '!' */
|
||
}
|
||
else
|
||
stm = l_localtime(&t, &tmr);
|
||
if (stm == NULL) /* invalid date? */
|
||
return luaL_error(L,
|
||
"date result cannot be represented in this installation");
|
||
if (strcmp(s, "*t") == 0) {
|
||
lua_createtable(L, 0, 9); /* 9 = number of fields */
|
||
setallfields(L, stm);
|
||
}
|
||
else {
|
||
char cc[4]; /* buffer for individual conversion specifiers */
|
||
luaL_Buffer b;
|
||
cc[0] = '%';
|
||
luaL_buffinit(L, &b);
|
||
while (s < se) {
|
||
if (*s != '%') /* not a conversion specifier? */
|
||
luaL_addchar(&b, *s++);
|
||
else {
|
||
size_t reslen;
|
||
char *buff = luaL_prepbuffsize(&b, SIZETIMEFMT);
|
||
s++; /* skip '%' */
|
||
s = checkoption(L, s, se - s, cc + 1); /* copy specifier to 'cc' */
|
||
reslen = strftime(buff, SIZETIMEFMT, cc, stm);
|
||
luaL_addsize(&b, reslen);
|
||
}
|
||
}
|
||
luaL_pushresult(&b);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int os_time (lua_State *L) {
|
||
time_t t;
|
||
if (lua_isnoneornil(L, 1)) /* called without args? */
|
||
t = time(NULL); /* get current time */
|
||
else {
|
||
struct tm ts;
|
||
luaL_checktype(L, 1, LUA_TTABLE);
|
||
lua_settop(L, 1); /* make sure table is at the top */
|
||
ts.tm_year = getfield(L, "year", -1, 1900);
|
||
ts.tm_mon = getfield(L, "month", -1, 1);
|
||
ts.tm_mday = getfield(L, "day", -1, 0);
|
||
ts.tm_hour = getfield(L, "hour", 12, 0);
|
||
ts.tm_min = getfield(L, "min", 0, 0);
|
||
ts.tm_sec = getfield(L, "sec", 0, 0);
|
||
ts.tm_isdst = getboolfield(L, "isdst");
|
||
t = mktime(&ts);
|
||
setallfields(L, &ts); /* update fields with normalized values */
|
||
}
|
||
if (t != (time_t)(l_timet)t || t == (time_t)(-1))
|
||
return luaL_error(L,
|
||
"time result cannot be represented in this installation");
|
||
l_pushtime(L, t);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int os_difftime (lua_State *L) {
|
||
time_t t1 = l_checktime(L, 1);
|
||
time_t t2 = l_checktime(L, 2);
|
||
lua_pushnumber(L, (lua_Number)difftime(t1, t2));
|
||
return 1;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
static int os_setlocale (lua_State *L) {
|
||
static const int cat[] = {LC_ALL, LC_COLLATE, LC_CTYPE, LC_MONETARY,
|
||
LC_NUMERIC, LC_TIME};
|
||
static const char *const catnames[] = {"all", "collate", "ctype", "monetary",
|
||
"numeric", "time", NULL};
|
||
const char *l = luaL_optstring(L, 1, NULL);
|
||
int op = luaL_checkoption(L, 2, "all", catnames);
|
||
lua_pushstring(L, setlocale(cat[op], l));
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int os_exit (lua_State *L) {
|
||
int status;
|
||
if (lua_isboolean(L, 1))
|
||
status = (lua_toboolean(L, 1) ? EXIT_SUCCESS : EXIT_FAILURE);
|
||
else
|
||
status = (int)luaL_optinteger(L, 1, EXIT_SUCCESS);
|
||
if (lua_toboolean(L, 2))
|
||
lua_close(L);
|
||
if (L) exit(status); /* 'if' to avoid warnings for unreachable 'return' */
|
||
return 0;
|
||
}
|
||
|
||
|
||
static const luaL_Reg syslib[] = {
|
||
{"clock", os_clock},
|
||
{"date", os_date},
|
||
{"difftime", os_difftime},
|
||
{"execute", os_execute},
|
||
{"exit", os_exit},
|
||
{"getenv", os_getenv},
|
||
{"remove", os_remove},
|
||
{"rename", os_rename},
|
||
{"setlocale", os_setlocale},
|
||
{"time", os_time},
|
||
{"tmpname", os_tmpname},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
LUAMOD_API int luaopen_os (lua_State *L) {
|
||
luaL_newlib(L, syslib);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: lstrlib.c $
|
||
** Standard library for string operations and pattern-matching
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lstrlib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <ctype.h>
|
||
#include <float.h>
|
||
#include <limits.h>
|
||
#include <locale.h>
|
||
#include <math.h>
|
||
#include <stddef.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
/*
|
||
** maximum number of captures that a pattern can do during
|
||
** pattern-matching. This limit is arbitrary, but must fit in
|
||
** an unsigned char.
|
||
*/
|
||
#if !defined(LUA_MAXCAPTURES)
|
||
#define LUA_MAXCAPTURES 32
|
||
#endif
|
||
|
||
|
||
/* macro to 'unsign' a character */
|
||
#define uchar(c) ((unsigned char)(c))
|
||
|
||
|
||
/*
|
||
** Some sizes are better limited to fit in 'int', but must also fit in
|
||
** 'size_t'. (We assume that 'lua_Integer' cannot be smaller than 'int'.)
|
||
*/
|
||
#define MAX_SIZET ((size_t)(~(size_t)0))
|
||
|
||
#define MAXSIZE \
|
||
(sizeof(size_t) < sizeof(int) ? MAX_SIZET : (size_t)(INT_MAX))
|
||
|
||
|
||
|
||
|
||
static int str_len (lua_State *L) {
|
||
size_t l;
|
||
luaL_checklstring(L, 1, &l);
|
||
lua_pushinteger(L, (lua_Integer)l);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** translate a relative initial string position
|
||
** (negative means back from end): clip result to [1, inf).
|
||
** The length of any string in Lua must fit in a lua_Integer,
|
||
** so there are no overflows in the casts.
|
||
** The inverted comparison avoids a possible overflow
|
||
** computing '-pos'.
|
||
*/
|
||
static size_t posrelatI (lua_Integer pos, size_t len) {
|
||
if (pos > 0)
|
||
return (size_t)pos;
|
||
else if (pos == 0)
|
||
return 1;
|
||
else if (pos < -(lua_Integer)len) /* inverted comparison */
|
||
return 1; /* clip to 1 */
|
||
else return len + (size_t)pos + 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Gets an optional ending string position from argument 'arg',
|
||
** with default value 'def'.
|
||
** Negative means back from end: clip result to [0, len]
|
||
*/
|
||
static size_t getendpos (lua_State *L, int arg, lua_Integer def,
|
||
size_t len) {
|
||
lua_Integer pos = luaL_optinteger(L, arg, def);
|
||
if (pos > (lua_Integer)len)
|
||
return len;
|
||
else if (pos >= 0)
|
||
return (size_t)pos;
|
||
else if (pos < -(lua_Integer)len)
|
||
return 0;
|
||
else return len + (size_t)pos + 1;
|
||
}
|
||
|
||
|
||
static int str_sub (lua_State *L) {
|
||
size_t l;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
size_t start = posrelatI(luaL_checkinteger(L, 2), l);
|
||
size_t end = getendpos(L, 3, -1, l);
|
||
if (start <= end)
|
||
lua_pushlstring(L, s + start - 1, (end - start) + 1);
|
||
else lua_pushliteral(L, "");
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_reverse (lua_State *L) {
|
||
size_t l, i;
|
||
luaL_Buffer b;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
char *p = luaL_buffinitsize(L, &b, l);
|
||
for (i = 0; i < l; i++)
|
||
p[i] = s[l - i - 1];
|
||
luaL_pushresultsize(&b, l);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_lower (lua_State *L) {
|
||
size_t l;
|
||
size_t i;
|
||
luaL_Buffer b;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
char *p = luaL_buffinitsize(L, &b, l);
|
||
for (i=0; i<l; i++)
|
||
p[i] = tolower(uchar(s[i]));
|
||
luaL_pushresultsize(&b, l);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_upper (lua_State *L) {
|
||
size_t l;
|
||
size_t i;
|
||
luaL_Buffer b;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
char *p = luaL_buffinitsize(L, &b, l);
|
||
for (i=0; i<l; i++)
|
||
p[i] = toupper(uchar(s[i]));
|
||
luaL_pushresultsize(&b, l);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_rep (lua_State *L) {
|
||
size_t l, lsep;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
lua_Integer n = luaL_checkinteger(L, 2);
|
||
const char *sep = luaL_optlstring(L, 3, "", &lsep);
|
||
if (n <= 0)
|
||
lua_pushliteral(L, "");
|
||
else if (l_unlikely(l + lsep < l || l + lsep > MAXSIZE / n))
|
||
return luaL_error(L, "resulting string too large");
|
||
else {
|
||
size_t totallen = (size_t)n * l + (size_t)(n - 1) * lsep;
|
||
luaL_Buffer b;
|
||
char *p = luaL_buffinitsize(L, &b, totallen);
|
||
while (n-- > 1) { /* first n-1 copies (followed by separator) */
|
||
memcpy(p, s, l * sizeof(char)); p += l;
|
||
if (lsep > 0) { /* empty 'memcpy' is not that cheap */
|
||
memcpy(p, sep, lsep * sizeof(char));
|
||
p += lsep;
|
||
}
|
||
}
|
||
memcpy(p, s, l * sizeof(char)); /* last copy (not followed by separator) */
|
||
luaL_pushresultsize(&b, totallen);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_byte (lua_State *L) {
|
||
size_t l;
|
||
const char *s = luaL_checklstring(L, 1, &l);
|
||
lua_Integer pi = luaL_optinteger(L, 2, 1);
|
||
size_t posi = posrelatI(pi, l);
|
||
size_t pose = getendpos(L, 3, pi, l);
|
||
int n, i;
|
||
if (posi > pose) return 0; /* empty interval; return no values */
|
||
if (l_unlikely(pose - posi >= (size_t)INT_MAX)) /* arithmetic overflow? */
|
||
return luaL_error(L, "string slice too long");
|
||
n = (int)(pose - posi) + 1;
|
||
luaL_checkstack(L, n, "string slice too long");
|
||
for (i=0; i<n; i++)
|
||
lua_pushinteger(L, uchar(s[posi+i-1]));
|
||
return n;
|
||
}
|
||
|
||
|
||
static int str_char (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
int i;
|
||
luaL_Buffer b;
|
||
char *p = luaL_buffinitsize(L, &b, n);
|
||
for (i=1; i<=n; i++) {
|
||
lua_Unsigned c = (lua_Unsigned)luaL_checkinteger(L, i);
|
||
luaL_argcheck(L, c <= (lua_Unsigned)UCHAR_MAX, i, "value out of range");
|
||
p[i - 1] = uchar(c);
|
||
}
|
||
luaL_pushresultsize(&b, n);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Buffer to store the result of 'string.dump'. It must be initialized
|
||
** after the call to 'lua_dump', to ensure that the function is on the
|
||
** top of the stack when 'lua_dump' is called. ('luaL_buffinit' might
|
||
** push stuff.)
|
||
*/
|
||
struct str_Writer {
|
||
int init; /* true iff buffer has been initialized */
|
||
luaL_Buffer B;
|
||
};
|
||
|
||
|
||
static int writer (lua_State *L, const void *b, size_t size, void *ud) {
|
||
struct str_Writer *state = (struct str_Writer *)ud;
|
||
if (!state->init) {
|
||
state->init = 1;
|
||
luaL_buffinit(L, &state->B);
|
||
}
|
||
luaL_addlstring(&state->B, (const char *)b, size);
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int str_dump (lua_State *L) {
|
||
struct str_Writer state;
|
||
int strip = lua_toboolean(L, 2);
|
||
luaL_checktype(L, 1, LUA_TFUNCTION);
|
||
lua_settop(L, 1); /* ensure function is on the top of the stack */
|
||
state.init = 0;
|
||
if (l_unlikely(lua_dump(L, writer, &state, strip) != 0))
|
||
return luaL_error(L, "unable to dump given function");
|
||
luaL_pushresult(&state.B);
|
||
return 1;
|
||
}
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** METAMETHODS
|
||
** =======================================================
|
||
*/
|
||
|
||
#if defined(LUA_NOCVTS2N) /* { */
|
||
|
||
/* no coercion from strings to numbers */
|
||
|
||
static const luaL_Reg stringmetamethods[] = {
|
||
{"__index", NULL}, /* placeholder */
|
||
{NULL, NULL}
|
||
};
|
||
|
||
#else /* }{ */
|
||
|
||
static int tonum (lua_State *L, int arg) {
|
||
if (lua_type(L, arg) == LUA_TNUMBER) { /* already a number? */
|
||
lua_pushvalue(L, arg);
|
||
return 1;
|
||
}
|
||
else { /* check whether it is a numerical string */
|
||
size_t len;
|
||
const char *s = lua_tolstring(L, arg, &len);
|
||
return (s != NULL && lua_stringtonumber(L, s) == len + 1);
|
||
}
|
||
}
|
||
|
||
|
||
static void trymt (lua_State *L, const char *mtname) {
|
||
lua_settop(L, 2); /* back to the original arguments */
|
||
if (l_unlikely(lua_type(L, 2) == LUA_TSTRING ||
|
||
!luaL_getmetafield(L, 2, mtname)))
|
||
luaL_error(L, "attempt to %s a '%s' with a '%s'", mtname + 2,
|
||
luaL_typename(L, -2), luaL_typename(L, -1));
|
||
lua_insert(L, -3); /* put metamethod before arguments */
|
||
lua_call(L, 2, 1); /* call metamethod */
|
||
}
|
||
|
||
|
||
static int arith (lua_State *L, int op, const char *mtname) {
|
||
if (tonum(L, 1) && tonum(L, 2))
|
||
lua_arith(L, op); /* result will be on the top */
|
||
else
|
||
trymt(L, mtname);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int arith_add (lua_State *L) {
|
||
return arith(L, LUA_OPADD, "__add");
|
||
}
|
||
|
||
static int arith_sub (lua_State *L) {
|
||
return arith(L, LUA_OPSUB, "__sub");
|
||
}
|
||
|
||
static int arith_mul (lua_State *L) {
|
||
return arith(L, LUA_OPMUL, "__mul");
|
||
}
|
||
|
||
static int arith_mod (lua_State *L) {
|
||
return arith(L, LUA_OPMOD, "__mod");
|
||
}
|
||
|
||
static int arith_pow (lua_State *L) {
|
||
return arith(L, LUA_OPPOW, "__pow");
|
||
}
|
||
|
||
static int arith_div (lua_State *L) {
|
||
return arith(L, LUA_OPDIV, "__div");
|
||
}
|
||
|
||
static int arith_idiv (lua_State *L) {
|
||
return arith(L, LUA_OPIDIV, "__idiv");
|
||
}
|
||
|
||
static int arith_unm (lua_State *L) {
|
||
return arith(L, LUA_OPUNM, "__unm");
|
||
}
|
||
|
||
|
||
static const luaL_Reg stringmetamethods[] = {
|
||
{"__add", arith_add},
|
||
{"__sub", arith_sub},
|
||
{"__mul", arith_mul},
|
||
{"__mod", arith_mod},
|
||
{"__pow", arith_pow},
|
||
{"__div", arith_div},
|
||
{"__idiv", arith_idiv},
|
||
{"__unm", arith_unm},
|
||
{"__index", NULL}, /* placeholder */
|
||
{NULL, NULL}
|
||
};
|
||
|
||
#endif /* } */
|
||
|
||
/* }====================================================== */
|
||
|
||
/*
|
||
** {======================================================
|
||
** PATTERN MATCHING
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
#define CAP_UNFINISHED (-1)
|
||
#define CAP_POSITION (-2)
|
||
|
||
|
||
typedef struct MatchState {
|
||
const char *src_init; /* init of source string */
|
||
const char *src_end; /* end ('\0') of source string */
|
||
const char *p_end; /* end ('\0') of pattern */
|
||
lua_State *L;
|
||
int matchdepth; /* control for recursive depth (to avoid C stack overflow) */
|
||
unsigned char level; /* total number of captures (finished or unfinished) */
|
||
struct {
|
||
const char *init;
|
||
ptrdiff_t len;
|
||
} capture[LUA_MAXCAPTURES];
|
||
} MatchState;
|
||
|
||
|
||
/* recursive function */
|
||
static const char *match (MatchState *ms, const char *s, const char *p);
|
||
|
||
|
||
/* maximum recursion depth for 'match' */
|
||
#if !defined(MAXCCALLS)
|
||
#define MAXCCALLS 200
|
||
#endif
|
||
|
||
|
||
#define L_ESC '%'
|
||
#define SPECIALS "^$*+?.([%-"
|
||
|
||
|
||
static int check_capture (MatchState *ms, int l) {
|
||
l -= '1';
|
||
if (l_unlikely(l < 0 || l >= ms->level ||
|
||
ms->capture[l].len == CAP_UNFINISHED))
|
||
return luaL_error(ms->L, "invalid capture index %%%d", l + 1);
|
||
return l;
|
||
}
|
||
|
||
|
||
static int capture_to_close (MatchState *ms) {
|
||
int level = ms->level;
|
||
for (level--; level>=0; level--)
|
||
if (ms->capture[level].len == CAP_UNFINISHED) return level;
|
||
return luaL_error(ms->L, "invalid pattern capture");
|
||
}
|
||
|
||
|
||
static const char *classend (MatchState *ms, const char *p) {
|
||
switch (*p++) {
|
||
case L_ESC: {
|
||
if (l_unlikely(p == ms->p_end))
|
||
luaL_error(ms->L, "malformed pattern (ends with '%%')");
|
||
return p+1;
|
||
}
|
||
case '[': {
|
||
if (*p == '^') p++;
|
||
do { /* look for a ']' */
|
||
if (l_unlikely(p == ms->p_end))
|
||
luaL_error(ms->L, "malformed pattern (missing ']')");
|
||
if (*(p++) == L_ESC && p < ms->p_end)
|
||
p++; /* skip escapes (e.g. '%]') */
|
||
} while (*p != ']');
|
||
return p+1;
|
||
}
|
||
default: {
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static int match_class (int c, int cl) {
|
||
int res;
|
||
switch (tolower(cl)) {
|
||
case 'a' : res = isalpha(c); break;
|
||
case 'c' : res = iscntrl(c); break;
|
||
case 'd' : res = isdigit(c); break;
|
||
case 'g' : res = isgraph(c); break;
|
||
case 'l' : res = islower(c); break;
|
||
case 'p' : res = ispunct(c); break;
|
||
case 's' : res = isspace(c); break;
|
||
case 'u' : res = isupper(c); break;
|
||
case 'w' : res = isalnum(c); break;
|
||
case 'x' : res = isxdigit(c); break;
|
||
case 'z' : res = (c == 0); break; /* deprecated option */
|
||
default: return (cl == c);
|
||
}
|
||
return (islower(cl) ? res : !res);
|
||
}
|
||
|
||
|
||
static int matchbracketclass (int c, const char *p, const char *ec) {
|
||
int sig = 1;
|
||
if (*(p+1) == '^') {
|
||
sig = 0;
|
||
p++; /* skip the '^' */
|
||
}
|
||
while (++p < ec) {
|
||
if (*p == L_ESC) {
|
||
p++;
|
||
if (match_class(c, uchar(*p)))
|
||
return sig;
|
||
}
|
||
else if ((*(p+1) == '-') && (p+2 < ec)) {
|
||
p+=2;
|
||
if (uchar(*(p-2)) <= c && c <= uchar(*p))
|
||
return sig;
|
||
}
|
||
else if (uchar(*p) == c) return sig;
|
||
}
|
||
return !sig;
|
||
}
|
||
|
||
|
||
static int singlematch (MatchState *ms, const char *s, const char *p,
|
||
const char *ep) {
|
||
if (s >= ms->src_end)
|
||
return 0;
|
||
else {
|
||
int c = uchar(*s);
|
||
switch (*p) {
|
||
case '.': return 1; /* matches any char */
|
||
case L_ESC: return match_class(c, uchar(*(p+1)));
|
||
case '[': return matchbracketclass(c, p, ep-1);
|
||
default: return (uchar(*p) == c);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static const char *matchbalance (MatchState *ms, const char *s,
|
||
const char *p) {
|
||
if (l_unlikely(p >= ms->p_end - 1))
|
||
luaL_error(ms->L, "malformed pattern (missing arguments to '%%b')");
|
||
if (*s != *p) return NULL;
|
||
else {
|
||
int b = *p;
|
||
int e = *(p+1);
|
||
int cont = 1;
|
||
while (++s < ms->src_end) {
|
||
if (*s == e) {
|
||
if (--cont == 0) return s+1;
|
||
}
|
||
else if (*s == b) cont++;
|
||
}
|
||
}
|
||
return NULL; /* string ends out of balance */
|
||
}
|
||
|
||
|
||
static const char *max_expand (MatchState *ms, const char *s,
|
||
const char *p, const char *ep) {
|
||
ptrdiff_t i = 0; /* counts maximum expand for item */
|
||
while (singlematch(ms, s + i, p, ep))
|
||
i++;
|
||
/* keeps trying to match with the maximum repetitions */
|
||
while (i>=0) {
|
||
const char *res = match(ms, (s+i), ep+1);
|
||
if (res) return res;
|
||
i--; /* else didn't match; reduce 1 repetition to try again */
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static const char *min_expand (MatchState *ms, const char *s,
|
||
const char *p, const char *ep) {
|
||
for (;;) {
|
||
const char *res = match(ms, s, ep+1);
|
||
if (res != NULL)
|
||
return res;
|
||
else if (singlematch(ms, s, p, ep))
|
||
s++; /* try with one more repetition */
|
||
else return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
static const char *start_capture (MatchState *ms, const char *s,
|
||
const char *p, int what) {
|
||
const char *res;
|
||
int level = ms->level;
|
||
if (level >= LUA_MAXCAPTURES) luaL_error(ms->L, "too many captures");
|
||
ms->capture[level].init = s;
|
||
ms->capture[level].len = what;
|
||
ms->level = level+1;
|
||
if ((res=match(ms, s, p)) == NULL) /* match failed? */
|
||
ms->level--; /* undo capture */
|
||
return res;
|
||
}
|
||
|
||
|
||
static const char *end_capture (MatchState *ms, const char *s,
|
||
const char *p) {
|
||
int l = capture_to_close(ms);
|
||
const char *res;
|
||
ms->capture[l].len = s - ms->capture[l].init; /* close capture */
|
||
if ((res = match(ms, s, p)) == NULL) /* match failed? */
|
||
ms->capture[l].len = CAP_UNFINISHED; /* undo capture */
|
||
return res;
|
||
}
|
||
|
||
|
||
static const char *match_capture (MatchState *ms, const char *s, int l) {
|
||
size_t len;
|
||
l = check_capture(ms, l);
|
||
len = ms->capture[l].len;
|
||
if ((size_t)(ms->src_end-s) >= len &&
|
||
memcmp(ms->capture[l].init, s, len) == 0)
|
||
return s+len;
|
||
else return NULL;
|
||
}
|
||
|
||
|
||
static const char *match (MatchState *ms, const char *s, const char *p) {
|
||
if (l_unlikely(ms->matchdepth-- == 0))
|
||
luaL_error(ms->L, "pattern too complex");
|
||
init: /* using goto to optimize tail recursion */
|
||
if (p != ms->p_end) { /* end of pattern? */
|
||
switch (*p) {
|
||
case '(': { /* start capture */
|
||
if (*(p + 1) == ')') /* position capture? */
|
||
s = start_capture(ms, s, p + 2, CAP_POSITION);
|
||
else
|
||
s = start_capture(ms, s, p + 1, CAP_UNFINISHED);
|
||
break;
|
||
}
|
||
case ')': { /* end capture */
|
||
s = end_capture(ms, s, p + 1);
|
||
break;
|
||
}
|
||
case '$': {
|
||
if ((p + 1) != ms->p_end) /* is the '$' the last char in pattern? */
|
||
goto dflt; /* no; go to default */
|
||
s = (s == ms->src_end) ? s : NULL; /* check end of string */
|
||
break;
|
||
}
|
||
case L_ESC: { /* escaped sequences not in the format class[*+?-]? */
|
||
switch (*(p + 1)) {
|
||
case 'b': { /* balanced string? */
|
||
s = matchbalance(ms, s, p + 2);
|
||
if (s != NULL) {
|
||
p += 4; goto init; /* return match(ms, s, p + 4); */
|
||
} /* else fail (s == NULL) */
|
||
break;
|
||
}
|
||
case 'f': { /* frontier? */
|
||
const char *ep; char previous;
|
||
p += 2;
|
||
if (l_unlikely(*p != '['))
|
||
luaL_error(ms->L, "missing '[' after '%%f' in pattern");
|
||
ep = classend(ms, p); /* points to what is next */
|
||
previous = (s == ms->src_init) ? '\0' : *(s - 1);
|
||
if (!matchbracketclass(uchar(previous), p, ep - 1) &&
|
||
matchbracketclass(uchar(*s), p, ep - 1)) {
|
||
p = ep; goto init; /* return match(ms, s, ep); */
|
||
}
|
||
s = NULL; /* match failed */
|
||
break;
|
||
}
|
||
case '0': case '1': case '2': case '3':
|
||
case '4': case '5': case '6': case '7':
|
||
case '8': case '9': { /* capture results (%0-%9)? */
|
||
s = match_capture(ms, s, uchar(*(p + 1)));
|
||
if (s != NULL) {
|
||
p += 2; goto init; /* return match(ms, s, p + 2) */
|
||
}
|
||
break;
|
||
}
|
||
default: goto dflt;
|
||
}
|
||
break;
|
||
}
|
||
default: dflt: { /* pattern class plus optional suffix */
|
||
const char *ep = classend(ms, p); /* points to optional suffix */
|
||
/* does not match at least once? */
|
||
if (!singlematch(ms, s, p, ep)) {
|
||
if (*ep == '*' || *ep == '?' || *ep == '-') { /* accept empty? */
|
||
p = ep + 1; goto init; /* return match(ms, s, ep + 1); */
|
||
}
|
||
else /* '+' or no suffix */
|
||
s = NULL; /* fail */
|
||
}
|
||
else { /* matched once */
|
||
switch (*ep) { /* handle optional suffix */
|
||
case '?': { /* optional */
|
||
const char *res;
|
||
if ((res = match(ms, s + 1, ep + 1)) != NULL)
|
||
s = res;
|
||
else {
|
||
p = ep + 1; goto init; /* else return match(ms, s, ep + 1); */
|
||
}
|
||
break;
|
||
}
|
||
case '+': /* 1 or more repetitions */
|
||
s++; /* 1 match already done */
|
||
/* FALLTHROUGH */
|
||
case '*': /* 0 or more repetitions */
|
||
s = max_expand(ms, s, p, ep);
|
||
break;
|
||
case '-': /* 0 or more repetitions (minimum) */
|
||
s = min_expand(ms, s, p, ep);
|
||
break;
|
||
default: /* no suffix */
|
||
s++; p = ep; goto init; /* return match(ms, s + 1, ep); */
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
ms->matchdepth++;
|
||
return s;
|
||
}
|
||
|
||
|
||
|
||
static const char *lmemfind (const char *s1, size_t l1,
|
||
const char *s2, size_t l2) {
|
||
if (l2 == 0) return s1; /* empty strings are everywhere */
|
||
else if (l2 > l1) return NULL; /* avoids a negative 'l1' */
|
||
else {
|
||
const char *init; /* to search for a '*s2' inside 's1' */
|
||
l2--; /* 1st char will be checked by 'memchr' */
|
||
l1 = l1-l2; /* 's2' cannot be found after that */
|
||
while (l1 > 0 && (init = (const char *)memchr(s1, *s2, l1)) != NULL) {
|
||
init++; /* 1st char is already checked */
|
||
if (memcmp(init, s2+1, l2) == 0)
|
||
return init-1;
|
||
else { /* correct 'l1' and 's1' to try again */
|
||
l1 -= init-s1;
|
||
s1 = init;
|
||
}
|
||
}
|
||
return NULL; /* not found */
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** get information about the i-th capture. If there are no captures
|
||
** and 'i==0', return information about the whole match, which
|
||
** is the range 's'..'e'. If the capture is a string, return
|
||
** its length and put its address in '*cap'. If it is an integer
|
||
** (a position), push it on the stack and return CAP_POSITION.
|
||
*/
|
||
static size_t get_onecapture (MatchState *ms, int i, const char *s,
|
||
const char *e, const char **cap) {
|
||
if (i >= ms->level) {
|
||
if (l_unlikely(i != 0))
|
||
luaL_error(ms->L, "invalid capture index %%%d", i + 1);
|
||
*cap = s;
|
||
return e - s;
|
||
}
|
||
else {
|
||
ptrdiff_t capl = ms->capture[i].len;
|
||
*cap = ms->capture[i].init;
|
||
if (l_unlikely(capl == CAP_UNFINISHED))
|
||
luaL_error(ms->L, "unfinished capture");
|
||
else if (capl == CAP_POSITION)
|
||
lua_pushinteger(ms->L, (ms->capture[i].init - ms->src_init) + 1);
|
||
return capl;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Push the i-th capture on the stack.
|
||
*/
|
||
static void push_onecapture (MatchState *ms, int i, const char *s,
|
||
const char *e) {
|
||
const char *cap;
|
||
ptrdiff_t l = get_onecapture(ms, i, s, e, &cap);
|
||
if (l != CAP_POSITION)
|
||
lua_pushlstring(ms->L, cap, l);
|
||
/* else position was already pushed */
|
||
}
|
||
|
||
|
||
static int push_captures (MatchState *ms, const char *s, const char *e) {
|
||
int i;
|
||
int nlevels = (ms->level == 0 && s) ? 1 : ms->level;
|
||
luaL_checkstack(ms->L, nlevels, "too many captures");
|
||
for (i = 0; i < nlevels; i++)
|
||
push_onecapture(ms, i, s, e);
|
||
return nlevels; /* number of strings pushed */
|
||
}
|
||
|
||
|
||
/* check whether pattern has no special characters */
|
||
static int nospecials (const char *p, size_t l) {
|
||
size_t upto = 0;
|
||
do {
|
||
if (strpbrk(p + upto, SPECIALS))
|
||
return 0; /* pattern has a special character */
|
||
upto += strlen(p + upto) + 1; /* may have more after \0 */
|
||
} while (upto <= l);
|
||
return 1; /* no special chars found */
|
||
}
|
||
|
||
|
||
static void prepstate (MatchState *ms, lua_State *L,
|
||
const char *s, size_t ls, const char *p, size_t lp) {
|
||
ms->L = L;
|
||
ms->matchdepth = MAXCCALLS;
|
||
ms->src_init = s;
|
||
ms->src_end = s + ls;
|
||
ms->p_end = p + lp;
|
||
}
|
||
|
||
|
||
static void reprepstate (MatchState *ms) {
|
||
ms->level = 0;
|
||
lua_assert(ms->matchdepth == MAXCCALLS);
|
||
}
|
||
|
||
|
||
static int str_find_aux (lua_State *L, int find) {
|
||
size_t ls, lp;
|
||
const char *s = luaL_checklstring(L, 1, &ls);
|
||
const char *p = luaL_checklstring(L, 2, &lp);
|
||
size_t init = posrelatI(luaL_optinteger(L, 3, 1), ls) - 1;
|
||
if (init > ls) { /* start after string's end? */
|
||
luaL_pushfail(L); /* cannot find anything */
|
||
return 1;
|
||
}
|
||
/* explicit request or no special characters? */
|
||
if (find && (lua_toboolean(L, 4) || nospecials(p, lp))) {
|
||
/* do a plain search */
|
||
const char *s2 = lmemfind(s + init, ls - init, p, lp);
|
||
if (s2) {
|
||
lua_pushinteger(L, (s2 - s) + 1);
|
||
lua_pushinteger(L, (s2 - s) + lp);
|
||
return 2;
|
||
}
|
||
}
|
||
else {
|
||
MatchState ms;
|
||
const char *s1 = s + init;
|
||
int anchor = (*p == '^');
|
||
if (anchor) {
|
||
p++; lp--; /* skip anchor character */
|
||
}
|
||
prepstate(&ms, L, s, ls, p, lp);
|
||
do {
|
||
const char *res;
|
||
reprepstate(&ms);
|
||
if ((res=match(&ms, s1, p)) != NULL) {
|
||
if (find) {
|
||
lua_pushinteger(L, (s1 - s) + 1); /* start */
|
||
lua_pushinteger(L, res - s); /* end */
|
||
return push_captures(&ms, NULL, 0) + 2;
|
||
}
|
||
else
|
||
return push_captures(&ms, s1, res);
|
||
}
|
||
} while (s1++ < ms.src_end && !anchor);
|
||
}
|
||
luaL_pushfail(L); /* not found */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_find (lua_State *L) {
|
||
return str_find_aux(L, 1);
|
||
}
|
||
|
||
|
||
static int str_match (lua_State *L) {
|
||
return str_find_aux(L, 0);
|
||
}
|
||
|
||
|
||
/* state for 'gmatch' */
|
||
typedef struct GMatchState {
|
||
const char *src; /* current position */
|
||
const char *p; /* pattern */
|
||
const char *lastmatch; /* end of last match */
|
||
MatchState ms; /* match state */
|
||
} GMatchState;
|
||
|
||
|
||
static int gmatch_aux (lua_State *L) {
|
||
GMatchState *gm = (GMatchState *)lua_touserdata(L, lua_upvalueindex(3));
|
||
const char *src;
|
||
gm->ms.L = L;
|
||
for (src = gm->src; src <= gm->ms.src_end; src++) {
|
||
const char *e;
|
||
reprepstate(&gm->ms);
|
||
if ((e = match(&gm->ms, src, gm->p)) != NULL && e != gm->lastmatch) {
|
||
gm->src = gm->lastmatch = e;
|
||
return push_captures(&gm->ms, src, e);
|
||
}
|
||
}
|
||
return 0; /* not found */
|
||
}
|
||
|
||
|
||
static int gmatch (lua_State *L) {
|
||
size_t ls, lp;
|
||
const char *s = luaL_checklstring(L, 1, &ls);
|
||
const char *p = luaL_checklstring(L, 2, &lp);
|
||
size_t init = posrelatI(luaL_optinteger(L, 3, 1), ls) - 1;
|
||
GMatchState *gm;
|
||
lua_settop(L, 2); /* keep strings on closure to avoid being collected */
|
||
gm = (GMatchState *)lua_newuserdatauv(L, sizeof(GMatchState), 0);
|
||
if (init > ls) /* start after string's end? */
|
||
init = ls + 1; /* avoid overflows in 's + init' */
|
||
prepstate(&gm->ms, L, s, ls, p, lp);
|
||
gm->src = s + init; gm->p = p; gm->lastmatch = NULL;
|
||
lua_pushcclosure(L, gmatch_aux, 3);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void add_s (MatchState *ms, luaL_Buffer *b, const char *s,
|
||
const char *e) {
|
||
size_t l;
|
||
lua_State *L = ms->L;
|
||
const char *news = lua_tolstring(L, 3, &l);
|
||
const char *p;
|
||
while ((p = (char *)memchr(news, L_ESC, l)) != NULL) {
|
||
luaL_addlstring(b, news, p - news);
|
||
p++; /* skip ESC */
|
||
if (*p == L_ESC) /* '%%' */
|
||
luaL_addchar(b, *p);
|
||
else if (*p == '0') /* '%0' */
|
||
luaL_addlstring(b, s, e - s);
|
||
else if (isdigit(uchar(*p))) { /* '%n' */
|
||
const char *cap;
|
||
ptrdiff_t resl = get_onecapture(ms, *p - '1', s, e, &cap);
|
||
if (resl == CAP_POSITION)
|
||
luaL_addvalue(b); /* add position to accumulated result */
|
||
else
|
||
luaL_addlstring(b, cap, resl);
|
||
}
|
||
else
|
||
luaL_error(L, "invalid use of '%c' in replacement string", L_ESC);
|
||
l -= p + 1 - news;
|
||
news = p + 1;
|
||
}
|
||
luaL_addlstring(b, news, l);
|
||
}
|
||
|
||
|
||
/*
|
||
** Add the replacement value to the string buffer 'b'.
|
||
** Return true if the original string was changed. (Function calls and
|
||
** table indexing resulting in nil or false do not change the subject.)
|
||
*/
|
||
static int add_value (MatchState *ms, luaL_Buffer *b, const char *s,
|
||
const char *e, int tr) {
|
||
lua_State *L = ms->L;
|
||
switch (tr) {
|
||
case LUA_TFUNCTION: { /* call the function */
|
||
int n;
|
||
lua_pushvalue(L, 3); /* push the function */
|
||
n = push_captures(ms, s, e); /* all captures as arguments */
|
||
lua_call(L, n, 1); /* call it */
|
||
break;
|
||
}
|
||
case LUA_TTABLE: { /* index the table */
|
||
push_onecapture(ms, 0, s, e); /* first capture is the index */
|
||
lua_gettable(L, 3);
|
||
break;
|
||
}
|
||
default: { /* LUA_TNUMBER or LUA_TSTRING */
|
||
add_s(ms, b, s, e); /* add value to the buffer */
|
||
return 1; /* something changed */
|
||
}
|
||
}
|
||
if (!lua_toboolean(L, -1)) { /* nil or false? */
|
||
lua_pop(L, 1); /* remove value */
|
||
luaL_addlstring(b, s, e - s); /* keep original text */
|
||
return 0; /* no changes */
|
||
}
|
||
else if (l_unlikely(!lua_isstring(L, -1)))
|
||
return luaL_error(L, "invalid replacement value (a %s)",
|
||
luaL_typename(L, -1));
|
||
else {
|
||
luaL_addvalue(b); /* add result to accumulator */
|
||
return 1; /* something changed */
|
||
}
|
||
}
|
||
|
||
|
||
static int str_gsub (lua_State *L) {
|
||
size_t srcl, lp;
|
||
const char *src = luaL_checklstring(L, 1, &srcl); /* subject */
|
||
const char *p = luaL_checklstring(L, 2, &lp); /* pattern */
|
||
const char *lastmatch = NULL; /* end of last match */
|
||
int tr = lua_type(L, 3); /* replacement type */
|
||
lua_Integer max_s = luaL_optinteger(L, 4, srcl + 1); /* max replacements */
|
||
int anchor = (*p == '^');
|
||
lua_Integer n = 0; /* replacement count */
|
||
int changed = 0; /* change flag */
|
||
MatchState ms;
|
||
luaL_Buffer b;
|
||
luaL_argexpected(L, tr == LUA_TNUMBER || tr == LUA_TSTRING ||
|
||
tr == LUA_TFUNCTION || tr == LUA_TTABLE, 3,
|
||
"string/function/table");
|
||
luaL_buffinit(L, &b);
|
||
if (anchor) {
|
||
p++; lp--; /* skip anchor character */
|
||
}
|
||
prepstate(&ms, L, src, srcl, p, lp);
|
||
while (n < max_s) {
|
||
const char *e;
|
||
reprepstate(&ms); /* (re)prepare state for new match */
|
||
if ((e = match(&ms, src, p)) != NULL && e != lastmatch) { /* match? */
|
||
n++;
|
||
changed = add_value(&ms, &b, src, e, tr) | changed;
|
||
src = lastmatch = e;
|
||
}
|
||
else if (src < ms.src_end) /* otherwise, skip one character */
|
||
luaL_addchar(&b, *src++);
|
||
else break; /* end of subject */
|
||
if (anchor) break;
|
||
}
|
||
if (!changed) /* no changes? */
|
||
lua_pushvalue(L, 1); /* return original string */
|
||
else { /* something changed */
|
||
luaL_addlstring(&b, src, ms.src_end-src);
|
||
luaL_pushresult(&b); /* create and return new string */
|
||
}
|
||
lua_pushinteger(L, n); /* number of substitutions */
|
||
return 2;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** STRING FORMAT
|
||
** =======================================================
|
||
*/
|
||
|
||
#if !defined(lua_number2strx) /* { */
|
||
|
||
/*
|
||
** Hexadecimal floating-point formatter
|
||
*/
|
||
|
||
#define SIZELENMOD (sizeof(LUA_NUMBER_FRMLEN)/sizeof(char))
|
||
|
||
|
||
/*
|
||
** Number of bits that goes into the first digit. It can be any value
|
||
** between 1 and 4; the following definition tries to align the number
|
||
** to nibble boundaries by making what is left after that first digit a
|
||
** multiple of 4.
|
||
*/
|
||
#define L_NBFD ((l_floatatt(MANT_DIG) - 1)%4 + 1)
|
||
|
||
|
||
/*
|
||
** Add integer part of 'x' to buffer and return new 'x'
|
||
*/
|
||
static lua_Number adddigit (char *buff, int n, lua_Number x) {
|
||
lua_Number dd = l_mathop(floor)(x); /* get integer part from 'x' */
|
||
int d = (int)dd;
|
||
buff[n] = (d < 10 ? d + '0' : d - 10 + 'a'); /* add to buffer */
|
||
return x - dd; /* return what is left */
|
||
}
|
||
|
||
|
||
static int num2straux (char *buff, int sz, lua_Number x) {
|
||
/* if 'inf' or 'NaN', format it like '%g' */
|
||
if (x != x || x == (lua_Number)HUGE_VAL || x == -(lua_Number)HUGE_VAL)
|
||
return l_sprintf(buff, sz, LUA_NUMBER_FMT, (LUAI_UACNUMBER)x);
|
||
else if (x == 0) { /* can be -0... */
|
||
/* create "0" or "-0" followed by exponent */
|
||
return l_sprintf(buff, sz, LUA_NUMBER_FMT "x0p+0", (LUAI_UACNUMBER)x);
|
||
}
|
||
else {
|
||
int e;
|
||
lua_Number m = l_mathop(frexp)(x, &e); /* 'x' fraction and exponent */
|
||
int n = 0; /* character count */
|
||
if (m < 0) { /* is number negative? */
|
||
buff[n++] = '-'; /* add sign */
|
||
m = -m; /* make it positive */
|
||
}
|
||
buff[n++] = '0'; buff[n++] = 'x'; /* add "0x" */
|
||
m = adddigit(buff, n++, m * (1 << L_NBFD)); /* add first digit */
|
||
e -= L_NBFD; /* this digit goes before the radix point */
|
||
if (m > 0) { /* more digits? */
|
||
buff[n++] = lua_getlocaledecpoint(); /* add radix point */
|
||
do { /* add as many digits as needed */
|
||
m = adddigit(buff, n++, m * 16);
|
||
} while (m > 0);
|
||
}
|
||
n += l_sprintf(buff + n, sz - n, "p%+d", e); /* add exponent */
|
||
lua_assert(n < sz);
|
||
return n;
|
||
}
|
||
}
|
||
|
||
|
||
static int lua_number2strx (lua_State *L, char *buff, int sz,
|
||
const char *fmt, lua_Number x) {
|
||
int n = num2straux(buff, sz, x);
|
||
if (fmt[SIZELENMOD] == 'A') {
|
||
int i;
|
||
for (i = 0; i < n; i++)
|
||
buff[i] = toupper(uchar(buff[i]));
|
||
}
|
||
else if (l_unlikely(fmt[SIZELENMOD] != 'a'))
|
||
return luaL_error(L, "modifiers for format '%%a'/'%%A' not implemented");
|
||
return n;
|
||
}
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/*
|
||
** Maximum size for items formatted with '%f'. This size is produced
|
||
** by format('%.99f', -maxfloat), and is equal to 99 + 3 ('-', '.',
|
||
** and '\0') + number of decimal digits to represent maxfloat (which
|
||
** is maximum exponent + 1). (99+3+1, adding some extra, 110)
|
||
*/
|
||
#define MAX_ITEMF (110 + l_floatatt(MAX_10_EXP))
|
||
|
||
|
||
/*
|
||
** All formats except '%f' do not need that large limit. The other
|
||
** float formats use exponents, so that they fit in the 99 limit for
|
||
** significant digits; 's' for large strings and 'q' add items directly
|
||
** to the buffer; all integer formats also fit in the 99 limit. The
|
||
** worst case are floats: they may need 99 significant digits, plus
|
||
** '0x', '-', '.', 'e+XXXX', and '\0'. Adding some extra, 120.
|
||
*/
|
||
#define MAX_ITEM 120
|
||
|
||
|
||
/* valid flags in a format specification */
|
||
#if !defined(L_FMTFLAGSF)
|
||
|
||
/* valid flags for a, A, e, E, f, F, g, and G conversions */
|
||
#define L_FMTFLAGSF "-+#0 "
|
||
|
||
/* valid flags for o, x, and X conversions */
|
||
#define L_FMTFLAGSX "-#0"
|
||
|
||
/* valid flags for d and i conversions */
|
||
#define L_FMTFLAGSI "-+0 "
|
||
|
||
/* valid flags for u conversions */
|
||
#define L_FMTFLAGSU "-0"
|
||
|
||
/* valid flags for c, p, and s conversions */
|
||
#define L_FMTFLAGSC "-"
|
||
|
||
#endif
|
||
|
||
|
||
/*
|
||
** Maximum size of each format specification (such as "%-099.99d"):
|
||
** Initial '%', flags (up to 5), width (2), period, precision (2),
|
||
** length modifier (8), conversion specifier, and final '\0', plus some
|
||
** extra.
|
||
*/
|
||
#define MAX_FORMAT 32
|
||
|
||
|
||
static void addquoted (luaL_Buffer *b, const char *s, size_t len) {
|
||
luaL_addchar(b, '"');
|
||
while (len--) {
|
||
if (*s == '"' || *s == '\\' || *s == '\n') {
|
||
luaL_addchar(b, '\\');
|
||
luaL_addchar(b, *s);
|
||
}
|
||
else if (iscntrl(uchar(*s))) {
|
||
char buff[10];
|
||
if (!isdigit(uchar(*(s+1))))
|
||
l_sprintf(buff, sizeof(buff), "\\%d", (int)uchar(*s));
|
||
else
|
||
l_sprintf(buff, sizeof(buff), "\\%03d", (int)uchar(*s));
|
||
luaL_addstring(b, buff);
|
||
}
|
||
else
|
||
luaL_addchar(b, *s);
|
||
s++;
|
||
}
|
||
luaL_addchar(b, '"');
|
||
}
|
||
|
||
|
||
/*
|
||
** Serialize a floating-point number in such a way that it can be
|
||
** scanned back by Lua. Use hexadecimal format for "common" numbers
|
||
** (to preserve precision); inf, -inf, and NaN are handled separately.
|
||
** (NaN cannot be expressed as a numeral, so we write '(0/0)' for it.)
|
||
*/
|
||
static int quotefloat (lua_State *L, char *buff, lua_Number n) {
|
||
const char *s; /* for the fixed representations */
|
||
if (n == (lua_Number)HUGE_VAL) /* inf? */
|
||
s = "1e9999";
|
||
else if (n == -(lua_Number)HUGE_VAL) /* -inf? */
|
||
s = "-1e9999";
|
||
else if (n != n) /* NaN? */
|
||
s = "(0/0)";
|
||
else { /* format number as hexadecimal */
|
||
int nb = lua_number2strx(L, buff, MAX_ITEM,
|
||
"%" LUA_NUMBER_FRMLEN "a", n);
|
||
/* ensures that 'buff' string uses a dot as the radix character */
|
||
if (memchr(buff, '.', nb) == NULL) { /* no dot? */
|
||
char point = lua_getlocaledecpoint(); /* try locale point */
|
||
char *ppoint = (char *)memchr(buff, point, nb);
|
||
if (ppoint) *ppoint = '.'; /* change it to a dot */
|
||
}
|
||
return nb;
|
||
}
|
||
/* for the fixed representations */
|
||
return l_sprintf(buff, MAX_ITEM, "%s", s);
|
||
}
|
||
|
||
|
||
static void addliteral (lua_State *L, luaL_Buffer *b, int arg) {
|
||
switch (lua_type(L, arg)) {
|
||
case LUA_TSTRING: {
|
||
size_t len;
|
||
const char *s = lua_tolstring(L, arg, &len);
|
||
addquoted(b, s, len);
|
||
break;
|
||
}
|
||
case LUA_TNUMBER: {
|
||
char *buff = luaL_prepbuffsize(b, MAX_ITEM);
|
||
int nb;
|
||
if (!lua_isinteger(L, arg)) /* float? */
|
||
nb = quotefloat(L, buff, lua_tonumber(L, arg));
|
||
else { /* integers */
|
||
lua_Integer n = lua_tointeger(L, arg);
|
||
const char *format = (n == LUA_MININTEGER) /* corner case? */
|
||
? "0x%" LUA_INTEGER_FRMLEN "x" /* use hex */
|
||
: LUA_INTEGER_FMT; /* else use default format */
|
||
nb = l_sprintf(buff, MAX_ITEM, format, (LUAI_UACINT)n);
|
||
}
|
||
luaL_addsize(b, nb);
|
||
break;
|
||
}
|
||
case LUA_TNIL: case LUA_TBOOLEAN: {
|
||
luaL_tolstring(L, arg, NULL);
|
||
luaL_addvalue(b);
|
||
break;
|
||
}
|
||
default: {
|
||
luaL_argerror(L, arg, "value has no literal form");
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
static const char *get2digits (const char *s) {
|
||
if (isdigit(uchar(*s))) {
|
||
s++;
|
||
if (isdigit(uchar(*s))) s++; /* (2 digits at most) */
|
||
}
|
||
return s;
|
||
}
|
||
|
||
|
||
/*
|
||
** Check whether a conversion specification is valid. When called,
|
||
** first character in 'form' must be '%' and last character must
|
||
** be a valid conversion specifier. 'flags' are the accepted flags;
|
||
** 'precision' signals whether to accept a precision.
|
||
*/
|
||
static void checkformat (lua_State *L, const char *form, const char *flags,
|
||
int precision) {
|
||
const char *spec = form + 1; /* skip '%' */
|
||
spec += strspn(spec, flags); /* skip flags */
|
||
if (*spec != '0') { /* a width cannot start with '0' */
|
||
spec = get2digits(spec); /* skip width */
|
||
if (*spec == '.' && precision) {
|
||
spec++;
|
||
spec = get2digits(spec); /* skip precision */
|
||
}
|
||
}
|
||
if (!isalpha(uchar(*spec))) /* did not go to the end? */
|
||
luaL_error(L, "invalid conversion specification: '%s'", form);
|
||
}
|
||
|
||
|
||
/*
|
||
** Get a conversion specification and copy it to 'form'.
|
||
** Return the address of its last character.
|
||
*/
|
||
static const char *getformat (lua_State *L, const char *strfrmt,
|
||
char *form) {
|
||
/* spans flags, width, and precision ('0' is included as a flag) */
|
||
size_t len = strspn(strfrmt, L_FMTFLAGSF "123456789.");
|
||
len++; /* adds following character (should be the specifier) */
|
||
/* still needs space for '%', '\0', plus a length modifier */
|
||
if (len >= MAX_FORMAT - 10)
|
||
luaL_error(L, "invalid format (too long)");
|
||
*(form++) = '%';
|
||
memcpy(form, strfrmt, len * sizeof(char));
|
||
*(form + len) = '\0';
|
||
return strfrmt + len - 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** add length modifier into formats
|
||
*/
|
||
static void addlenmod (char *form, const char *lenmod) {
|
||
size_t l = strlen(form);
|
||
size_t lm = strlen(lenmod);
|
||
char spec = form[l - 1];
|
||
strcpy(form + l - 1, lenmod);
|
||
form[l + lm - 1] = spec;
|
||
form[l + lm] = '\0';
|
||
}
|
||
|
||
|
||
static int str_format (lua_State *L) {
|
||
int top = lua_gettop(L);
|
||
int arg = 1;
|
||
size_t sfl;
|
||
const char *strfrmt = luaL_checklstring(L, arg, &sfl);
|
||
const char *strfrmt_end = strfrmt+sfl;
|
||
const char *flags;
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
while (strfrmt < strfrmt_end) {
|
||
if (*strfrmt != L_ESC)
|
||
luaL_addchar(&b, *strfrmt++);
|
||
else if (*++strfrmt == L_ESC)
|
||
luaL_addchar(&b, *strfrmt++); /* %% */
|
||
else { /* format item */
|
||
char form[MAX_FORMAT]; /* to store the format ('%...') */
|
||
int maxitem = MAX_ITEM; /* maximum length for the result */
|
||
char *buff = luaL_prepbuffsize(&b, maxitem); /* to put result */
|
||
int nb = 0; /* number of bytes in result */
|
||
if (++arg > top)
|
||
return luaL_argerror(L, arg, "no value");
|
||
strfrmt = getformat(L, strfrmt, form);
|
||
switch (*strfrmt++) {
|
||
case 'c': {
|
||
checkformat(L, form, L_FMTFLAGSC, 0);
|
||
nb = l_sprintf(buff, maxitem, form, (int)luaL_checkinteger(L, arg));
|
||
break;
|
||
}
|
||
case 'd': case 'i':
|
||
flags = L_FMTFLAGSI;
|
||
goto intcase;
|
||
case 'u':
|
||
flags = L_FMTFLAGSU;
|
||
goto intcase;
|
||
case 'o': case 'x': case 'X':
|
||
flags = L_FMTFLAGSX;
|
||
intcase: {
|
||
lua_Integer n = luaL_checkinteger(L, arg);
|
||
checkformat(L, form, flags, 1);
|
||
addlenmod(form, LUA_INTEGER_FRMLEN);
|
||
nb = l_sprintf(buff, maxitem, form, (LUAI_UACINT)n);
|
||
break;
|
||
}
|
||
case 'a': case 'A':
|
||
checkformat(L, form, L_FMTFLAGSF, 1);
|
||
addlenmod(form, LUA_NUMBER_FRMLEN);
|
||
nb = lua_number2strx(L, buff, maxitem, form,
|
||
luaL_checknumber(L, arg));
|
||
break;
|
||
case 'f':
|
||
maxitem = MAX_ITEMF; /* extra space for '%f' */
|
||
buff = luaL_prepbuffsize(&b, maxitem);
|
||
/* FALLTHROUGH */
|
||
case 'e': case 'E': case 'g': case 'G': {
|
||
lua_Number n = luaL_checknumber(L, arg);
|
||
checkformat(L, form, L_FMTFLAGSF, 1);
|
||
addlenmod(form, LUA_NUMBER_FRMLEN);
|
||
nb = l_sprintf(buff, maxitem, form, (LUAI_UACNUMBER)n);
|
||
break;
|
||
}
|
||
case 'p': {
|
||
const void *p = lua_topointer(L, arg);
|
||
checkformat(L, form, L_FMTFLAGSC, 0);
|
||
if (p == NULL) { /* avoid calling 'printf' with argument NULL */
|
||
p = "(null)"; /* result */
|
||
form[strlen(form) - 1] = 's'; /* format it as a string */
|
||
}
|
||
nb = l_sprintf(buff, maxitem, form, p);
|
||
break;
|
||
}
|
||
case 'q': {
|
||
if (form[2] != '\0') /* modifiers? */
|
||
return luaL_error(L, "specifier '%%q' cannot have modifiers");
|
||
addliteral(L, &b, arg);
|
||
break;
|
||
}
|
||
case 's': {
|
||
size_t l;
|
||
const char *s = luaL_tolstring(L, arg, &l);
|
||
if (form[2] == '\0') /* no modifiers? */
|
||
luaL_addvalue(&b); /* keep entire string */
|
||
else {
|
||
luaL_argcheck(L, l == strlen(s), arg, "string contains zeros");
|
||
checkformat(L, form, L_FMTFLAGSC, 1);
|
||
if (strchr(form, '.') == NULL && l >= 100) {
|
||
/* no precision and string is too long to be formatted */
|
||
luaL_addvalue(&b); /* keep entire string */
|
||
}
|
||
else { /* format the string into 'buff' */
|
||
nb = l_sprintf(buff, maxitem, form, s);
|
||
lua_pop(L, 1); /* remove result from 'luaL_tolstring' */
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
default: { /* also treat cases 'pnLlh' */
|
||
return luaL_error(L, "invalid conversion '%s' to 'format'", form);
|
||
}
|
||
}
|
||
lua_assert(nb < maxitem);
|
||
luaL_addsize(&b, nb);
|
||
}
|
||
}
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** PACK/UNPACK
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/* value used for padding */
|
||
#if !defined(LUAL_PACKPADBYTE)
|
||
#define LUAL_PACKPADBYTE 0x00
|
||
#endif
|
||
|
||
/* maximum size for the binary representation of an integer */
|
||
#define MAXINTSIZE 16
|
||
|
||
/* number of bits in a character */
|
||
#define NB CHAR_BIT
|
||
|
||
/* mask for one character (NB 1's) */
|
||
#define MC ((1 << NB) - 1)
|
||
|
||
/* size of a lua_Integer */
|
||
#define SZINT ((int)sizeof(lua_Integer))
|
||
|
||
|
||
/* dummy union to get native endianness */
|
||
static const union {
|
||
int dummy;
|
||
char little; /* true iff machine is little endian */
|
||
} nativeendian = {1};
|
||
|
||
|
||
/*
|
||
** information to pack/unpack stuff
|
||
*/
|
||
typedef struct Header {
|
||
lua_State *L;
|
||
int islittle;
|
||
int maxalign;
|
||
} Header;
|
||
|
||
|
||
/*
|
||
** options for pack/unpack
|
||
*/
|
||
typedef enum KOption {
|
||
Kint, /* signed integers */
|
||
Kuint, /* unsigned integers */
|
||
Kfloat, /* single-precision floating-point numbers */
|
||
Knumber, /* Lua "native" floating-point numbers */
|
||
Kdouble, /* double-precision floating-point numbers */
|
||
Kchar, /* fixed-length strings */
|
||
Kstring, /* strings with prefixed length */
|
||
Kzstr, /* zero-terminated strings */
|
||
Kpadding, /* padding */
|
||
Kpaddalign, /* padding for alignment */
|
||
Knop /* no-op (configuration or spaces) */
|
||
} KOption;
|
||
|
||
|
||
/*
|
||
** Read an integer numeral from string 'fmt' or return 'df' if
|
||
** there is no numeral
|
||
*/
|
||
static int digit (int c) { return '0' <= c && c <= '9'; }
|
||
|
||
static int getnum (const char **fmt, int df) {
|
||
if (!digit(**fmt)) /* no number? */
|
||
return df; /* return default value */
|
||
else {
|
||
int a = 0;
|
||
do {
|
||
a = a*10 + (*((*fmt)++) - '0');
|
||
} while (digit(**fmt) && a <= ((int)MAXSIZE - 9)/10);
|
||
return a;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Read an integer numeral and raises an error if it is larger
|
||
** than the maximum size for integers.
|
||
*/
|
||
static int getnumlimit (Header *h, const char **fmt, int df) {
|
||
int sz = getnum(fmt, df);
|
||
if (l_unlikely(sz > MAXINTSIZE || sz <= 0))
|
||
return luaL_error(h->L, "integral size (%d) out of limits [1,%d]",
|
||
sz, MAXINTSIZE);
|
||
return sz;
|
||
}
|
||
|
||
|
||
/*
|
||
** Initialize Header
|
||
*/
|
||
static void initheader (lua_State *L, Header *h) {
|
||
h->L = L;
|
||
h->islittle = nativeendian.little;
|
||
h->maxalign = 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Read and classify next option. 'size' is filled with option's size.
|
||
*/
|
||
static KOption getoption (Header *h, const char **fmt, int *size) {
|
||
/* dummy structure to get native alignment requirements */
|
||
struct cD { char c; union { LUAI_MAXALIGN; } u; };
|
||
int opt = *((*fmt)++);
|
||
*size = 0; /* default */
|
||
switch (opt) {
|
||
case 'b': *size = sizeof(char); return Kint;
|
||
case 'B': *size = sizeof(char); return Kuint;
|
||
case 'h': *size = sizeof(short); return Kint;
|
||
case 'H': *size = sizeof(short); return Kuint;
|
||
case 'l': *size = sizeof(long); return Kint;
|
||
case 'L': *size = sizeof(long); return Kuint;
|
||
case 'j': *size = sizeof(lua_Integer); return Kint;
|
||
case 'J': *size = sizeof(lua_Integer); return Kuint;
|
||
case 'T': *size = sizeof(size_t); return Kuint;
|
||
case 'f': *size = sizeof(float); return Kfloat;
|
||
case 'n': *size = sizeof(lua_Number); return Knumber;
|
||
case 'd': *size = sizeof(double); return Kdouble;
|
||
case 'i': *size = getnumlimit(h, fmt, sizeof(int)); return Kint;
|
||
case 'I': *size = getnumlimit(h, fmt, sizeof(int)); return Kuint;
|
||
case 's': *size = getnumlimit(h, fmt, sizeof(size_t)); return Kstring;
|
||
case 'c':
|
||
*size = getnum(fmt, -1);
|
||
if (l_unlikely(*size == -1))
|
||
luaL_error(h->L, "missing size for format option 'c'");
|
||
return Kchar;
|
||
case 'z': return Kzstr;
|
||
case 'x': *size = 1; return Kpadding;
|
||
case 'X': return Kpaddalign;
|
||
case ' ': break;
|
||
case '<': h->islittle = 1; break;
|
||
case '>': h->islittle = 0; break;
|
||
case '=': h->islittle = nativeendian.little; break;
|
||
case '!': {
|
||
const int maxalign = offsetof(struct cD, u);
|
||
h->maxalign = getnumlimit(h, fmt, maxalign);
|
||
break;
|
||
}
|
||
default: luaL_error(h->L, "invalid format option '%c'", opt);
|
||
}
|
||
return Knop;
|
||
}
|
||
|
||
|
||
/*
|
||
** Read, classify, and fill other details about the next option.
|
||
** 'psize' is filled with option's size, 'notoalign' with its
|
||
** alignment requirements.
|
||
** Local variable 'size' gets the size to be aligned. (Kpadal option
|
||
** always gets its full alignment, other options are limited by
|
||
** the maximum alignment ('maxalign'). Kchar option needs no alignment
|
||
** despite its size.
|
||
*/
|
||
static KOption getdetails (Header *h, size_t totalsize,
|
||
const char **fmt, int *psize, int *ntoalign) {
|
||
KOption opt = getoption(h, fmt, psize);
|
||
int align = *psize; /* usually, alignment follows size */
|
||
if (opt == Kpaddalign) { /* 'X' gets alignment from following option */
|
||
if (**fmt == '\0' || getoption(h, fmt, &align) == Kchar || align == 0)
|
||
luaL_argerror(h->L, 1, "invalid next option for option 'X'");
|
||
}
|
||
if (align <= 1 || opt == Kchar) /* need no alignment? */
|
||
*ntoalign = 0;
|
||
else {
|
||
if (align > h->maxalign) /* enforce maximum alignment */
|
||
align = h->maxalign;
|
||
if (l_unlikely((align & (align - 1)) != 0)) /* not a power of 2? */
|
||
luaL_argerror(h->L, 1, "format asks for alignment not power of 2");
|
||
*ntoalign = (align - (int)(totalsize & (align - 1))) & (align - 1);
|
||
}
|
||
return opt;
|
||
}
|
||
|
||
|
||
/*
|
||
** Pack integer 'n' with 'size' bytes and 'islittle' endianness.
|
||
** The final 'if' handles the case when 'size' is larger than
|
||
** the size of a Lua integer, correcting the extra sign-extension
|
||
** bytes if necessary (by default they would be zeros).
|
||
*/
|
||
static void packint (luaL_Buffer *b, lua_Unsigned n,
|
||
int islittle, int size, int neg) {
|
||
char *buff = luaL_prepbuffsize(b, size);
|
||
int i;
|
||
buff[islittle ? 0 : size - 1] = (char)(n & MC); /* first byte */
|
||
for (i = 1; i < size; i++) {
|
||
n >>= NB;
|
||
buff[islittle ? i : size - 1 - i] = (char)(n & MC);
|
||
}
|
||
if (neg && size > SZINT) { /* negative number need sign extension? */
|
||
for (i = SZINT; i < size; i++) /* correct extra bytes */
|
||
buff[islittle ? i : size - 1 - i] = (char)MC;
|
||
}
|
||
luaL_addsize(b, size); /* add result to buffer */
|
||
}
|
||
|
||
|
||
/*
|
||
** Copy 'size' bytes from 'src' to 'dest', correcting endianness if
|
||
** given 'islittle' is different from native endianness.
|
||
*/
|
||
static void copywithendian (char *dest, const char *src,
|
||
int size, int islittle) {
|
||
if (islittle == nativeendian.little)
|
||
memcpy(dest, src, size);
|
||
else {
|
||
dest += size - 1;
|
||
while (size-- != 0)
|
||
*(dest--) = *(src++);
|
||
}
|
||
}
|
||
|
||
|
||
static int str_pack (lua_State *L) {
|
||
luaL_Buffer b;
|
||
Header h;
|
||
const char *fmt = luaL_checkstring(L, 1); /* format string */
|
||
int arg = 1; /* current argument to pack */
|
||
size_t totalsize = 0; /* accumulate total size of result */
|
||
initheader(L, &h);
|
||
lua_pushnil(L); /* mark to separate arguments from string buffer */
|
||
luaL_buffinit(L, &b);
|
||
while (*fmt != '\0') {
|
||
int size, ntoalign;
|
||
KOption opt = getdetails(&h, totalsize, &fmt, &size, &ntoalign);
|
||
totalsize += ntoalign + size;
|
||
while (ntoalign-- > 0)
|
||
luaL_addchar(&b, LUAL_PACKPADBYTE); /* fill alignment */
|
||
arg++;
|
||
switch (opt) {
|
||
case Kint: { /* signed integers */
|
||
lua_Integer n = luaL_checkinteger(L, arg);
|
||
if (size < SZINT) { /* need overflow check? */
|
||
lua_Integer lim = (lua_Integer)1 << ((size * NB) - 1);
|
||
luaL_argcheck(L, -lim <= n && n < lim, arg, "integer overflow");
|
||
}
|
||
packint(&b, (lua_Unsigned)n, h.islittle, size, (n < 0));
|
||
break;
|
||
}
|
||
case Kuint: { /* unsigned integers */
|
||
lua_Integer n = luaL_checkinteger(L, arg);
|
||
if (size < SZINT) /* need overflow check? */
|
||
luaL_argcheck(L, (lua_Unsigned)n < ((lua_Unsigned)1 << (size * NB)),
|
||
arg, "unsigned overflow");
|
||
packint(&b, (lua_Unsigned)n, h.islittle, size, 0);
|
||
break;
|
||
}
|
||
case Kfloat: { /* C float */
|
||
float f = (float)luaL_checknumber(L, arg); /* get argument */
|
||
char *buff = luaL_prepbuffsize(&b, sizeof(f));
|
||
/* move 'f' to final result, correcting endianness if needed */
|
||
copywithendian(buff, (char *)&f, sizeof(f), h.islittle);
|
||
luaL_addsize(&b, size);
|
||
break;
|
||
}
|
||
case Knumber: { /* Lua float */
|
||
lua_Number f = luaL_checknumber(L, arg); /* get argument */
|
||
char *buff = luaL_prepbuffsize(&b, sizeof(f));
|
||
/* move 'f' to final result, correcting endianness if needed */
|
||
copywithendian(buff, (char *)&f, sizeof(f), h.islittle);
|
||
luaL_addsize(&b, size);
|
||
break;
|
||
}
|
||
case Kdouble: { /* C double */
|
||
double f = (double)luaL_checknumber(L, arg); /* get argument */
|
||
char *buff = luaL_prepbuffsize(&b, sizeof(f));
|
||
/* move 'f' to final result, correcting endianness if needed */
|
||
copywithendian(buff, (char *)&f, sizeof(f), h.islittle);
|
||
luaL_addsize(&b, size);
|
||
break;
|
||
}
|
||
case Kchar: { /* fixed-size string */
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, arg, &len);
|
||
luaL_argcheck(L, len <= (size_t)size, arg,
|
||
"string longer than given size");
|
||
luaL_addlstring(&b, s, len); /* add string */
|
||
while (len++ < (size_t)size) /* pad extra space */
|
||
luaL_addchar(&b, LUAL_PACKPADBYTE);
|
||
break;
|
||
}
|
||
case Kstring: { /* strings with length count */
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, arg, &len);
|
||
luaL_argcheck(L, size >= (int)sizeof(size_t) ||
|
||
len < ((size_t)1 << (size * NB)),
|
||
arg, "string length does not fit in given size");
|
||
packint(&b, (lua_Unsigned)len, h.islittle, size, 0); /* pack length */
|
||
luaL_addlstring(&b, s, len);
|
||
totalsize += len;
|
||
break;
|
||
}
|
||
case Kzstr: { /* zero-terminated string */
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, arg, &len);
|
||
luaL_argcheck(L, strlen(s) == len, arg, "string contains zeros");
|
||
luaL_addlstring(&b, s, len);
|
||
luaL_addchar(&b, '\0'); /* add zero at the end */
|
||
totalsize += len + 1;
|
||
break;
|
||
}
|
||
case Kpadding: luaL_addchar(&b, LUAL_PACKPADBYTE); /* FALLTHROUGH */
|
||
case Kpaddalign: case Knop:
|
||
arg--; /* undo increment */
|
||
break;
|
||
}
|
||
}
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int str_packsize (lua_State *L) {
|
||
Header h;
|
||
const char *fmt = luaL_checkstring(L, 1); /* format string */
|
||
size_t totalsize = 0; /* accumulate total size of result */
|
||
initheader(L, &h);
|
||
while (*fmt != '\0') {
|
||
int size, ntoalign;
|
||
KOption opt = getdetails(&h, totalsize, &fmt, &size, &ntoalign);
|
||
luaL_argcheck(L, opt != Kstring && opt != Kzstr, 1,
|
||
"variable-length format");
|
||
size += ntoalign; /* total space used by option */
|
||
luaL_argcheck(L, totalsize <= MAXSIZE - size, 1,
|
||
"format result too large");
|
||
totalsize += size;
|
||
}
|
||
lua_pushinteger(L, (lua_Integer)totalsize);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Unpack an integer with 'size' bytes and 'islittle' endianness.
|
||
** If size is smaller than the size of a Lua integer and integer
|
||
** is signed, must do sign extension (propagating the sign to the
|
||
** higher bits); if size is larger than the size of a Lua integer,
|
||
** it must check the unread bytes to see whether they do not cause an
|
||
** overflow.
|
||
*/
|
||
static lua_Integer unpackint (lua_State *L, const char *str,
|
||
int islittle, int size, int issigned) {
|
||
lua_Unsigned res = 0;
|
||
int i;
|
||
int limit = (size <= SZINT) ? size : SZINT;
|
||
for (i = limit - 1; i >= 0; i--) {
|
||
res <<= NB;
|
||
res |= (lua_Unsigned)(unsigned char)str[islittle ? i : size - 1 - i];
|
||
}
|
||
if (size < SZINT) { /* real size smaller than lua_Integer? */
|
||
if (issigned) { /* needs sign extension? */
|
||
lua_Unsigned mask = (lua_Unsigned)1 << (size*NB - 1);
|
||
res = ((res ^ mask) - mask); /* do sign extension */
|
||
}
|
||
}
|
||
else if (size > SZINT) { /* must check unread bytes */
|
||
int mask = (!issigned || (lua_Integer)res >= 0) ? 0 : MC;
|
||
for (i = limit; i < size; i++) {
|
||
if (l_unlikely((unsigned char)str[islittle ? i : size - 1 - i] != mask))
|
||
luaL_error(L, "%d-byte integer does not fit into Lua Integer", size);
|
||
}
|
||
}
|
||
return (lua_Integer)res;
|
||
}
|
||
|
||
|
||
static int str_unpack (lua_State *L) {
|
||
Header h;
|
||
const char *fmt = luaL_checkstring(L, 1);
|
||
size_t ld;
|
||
const char *data = luaL_checklstring(L, 2, &ld);
|
||
size_t pos = posrelatI(luaL_optinteger(L, 3, 1), ld) - 1;
|
||
int n = 0; /* number of results */
|
||
luaL_argcheck(L, pos <= ld, 3, "initial position out of string");
|
||
initheader(L, &h);
|
||
while (*fmt != '\0') {
|
||
int size, ntoalign;
|
||
KOption opt = getdetails(&h, pos, &fmt, &size, &ntoalign);
|
||
luaL_argcheck(L, (size_t)ntoalign + size <= ld - pos, 2,
|
||
"data string too short");
|
||
pos += ntoalign; /* skip alignment */
|
||
/* stack space for item + next position */
|
||
luaL_checkstack(L, 2, "too many results");
|
||
n++;
|
||
switch (opt) {
|
||
case Kint:
|
||
case Kuint: {
|
||
lua_Integer res = unpackint(L, data + pos, h.islittle, size,
|
||
(opt == Kint));
|
||
lua_pushinteger(L, res);
|
||
break;
|
||
}
|
||
case Kfloat: {
|
||
float f;
|
||
copywithendian((char *)&f, data + pos, sizeof(f), h.islittle);
|
||
lua_pushnumber(L, (lua_Number)f);
|
||
break;
|
||
}
|
||
case Knumber: {
|
||
lua_Number f;
|
||
copywithendian((char *)&f, data + pos, sizeof(f), h.islittle);
|
||
lua_pushnumber(L, f);
|
||
break;
|
||
}
|
||
case Kdouble: {
|
||
double f;
|
||
copywithendian((char *)&f, data + pos, sizeof(f), h.islittle);
|
||
lua_pushnumber(L, (lua_Number)f);
|
||
break;
|
||
}
|
||
case Kchar: {
|
||
lua_pushlstring(L, data + pos, size);
|
||
break;
|
||
}
|
||
case Kstring: {
|
||
size_t len = (size_t)unpackint(L, data + pos, h.islittle, size, 0);
|
||
luaL_argcheck(L, len <= ld - pos - size, 2, "data string too short");
|
||
lua_pushlstring(L, data + pos + size, len);
|
||
pos += len; /* skip string */
|
||
break;
|
||
}
|
||
case Kzstr: {
|
||
size_t len = strlen(data + pos);
|
||
luaL_argcheck(L, pos + len < ld, 2,
|
||
"unfinished string for format 'z'");
|
||
lua_pushlstring(L, data + pos, len);
|
||
pos += len + 1; /* skip string plus final '\0' */
|
||
break;
|
||
}
|
||
case Kpaddalign: case Kpadding: case Knop:
|
||
n--; /* undo increment */
|
||
break;
|
||
}
|
||
pos += size;
|
||
}
|
||
lua_pushinteger(L, pos + 1); /* next position */
|
||
return n + 1;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
static const luaL_Reg strlib[] = {
|
||
{"byte", str_byte},
|
||
{"char", str_char},
|
||
{"dump", str_dump},
|
||
{"find", str_find},
|
||
{"format", str_format},
|
||
{"gmatch", gmatch},
|
||
{"gsub", str_gsub},
|
||
{"len", str_len},
|
||
{"lower", str_lower},
|
||
{"match", str_match},
|
||
{"rep", str_rep},
|
||
{"reverse", str_reverse},
|
||
{"sub", str_sub},
|
||
{"upper", str_upper},
|
||
{"pack", str_pack},
|
||
{"packsize", str_packsize},
|
||
{"unpack", str_unpack},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
static void createmetatable (lua_State *L) {
|
||
/* table to be metatable for strings */
|
||
luaL_newlibtable(L, stringmetamethods);
|
||
luaL_setfuncs(L, stringmetamethods, 0);
|
||
lua_pushliteral(L, ""); /* dummy string */
|
||
lua_pushvalue(L, -2); /* copy table */
|
||
lua_setmetatable(L, -2); /* set table as metatable for strings */
|
||
lua_pop(L, 1); /* pop dummy string */
|
||
lua_pushvalue(L, -2); /* get string library */
|
||
lua_setfield(L, -2, "__index"); /* metatable.__index = string */
|
||
lua_pop(L, 1); /* pop metatable */
|
||
}
|
||
|
||
|
||
/*
|
||
** Open string library
|
||
*/
|
||
LUAMOD_API int luaopen_string (lua_State *L) {
|
||
luaL_newlib(L, strlib);
|
||
createmetatable(L);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: ltablib.c $
|
||
** Library for Table Manipulation
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define ltablib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <limits.h>
|
||
#include <stddef.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
/*
|
||
** Operations that an object must define to mimic a table
|
||
** (some functions only need some of them)
|
||
*/
|
||
#define TAB_R 1 /* read */
|
||
#define TAB_W 2 /* write */
|
||
#define TAB_L 4 /* length */
|
||
#define TAB_RW (TAB_R | TAB_W) /* read/write */
|
||
|
||
|
||
#define aux_getn(L,n,w) (checktab(L, n, (w) | TAB_L), luaL_len(L, n))
|
||
|
||
|
||
static int checkfield (lua_State *L, const char *key, int n) {
|
||
lua_pushstring(L, key);
|
||
return (lua_rawget(L, -n) != LUA_TNIL);
|
||
}
|
||
|
||
|
||
/*
|
||
** Check that 'arg' either is a table or can behave like one (that is,
|
||
** has a metatable with the required metamethods)
|
||
*/
|
||
static void checktab (lua_State *L, int arg, int what) {
|
||
if (lua_type(L, arg) != LUA_TTABLE) { /* is it not a table? */
|
||
int n = 1; /* number of elements to pop */
|
||
if (lua_getmetatable(L, arg) && /* must have metatable */
|
||
(!(what & TAB_R) || checkfield(L, "__index", ++n)) &&
|
||
(!(what & TAB_W) || checkfield(L, "__newindex", ++n)) &&
|
||
(!(what & TAB_L) || checkfield(L, "__len", ++n))) {
|
||
lua_pop(L, n); /* pop metatable and tested metamethods */
|
||
}
|
||
else
|
||
luaL_checktype(L, arg, LUA_TTABLE); /* force an error */
|
||
}
|
||
}
|
||
|
||
|
||
static int tinsert (lua_State *L) {
|
||
lua_Integer pos; /* where to insert new element */
|
||
lua_Integer e = aux_getn(L, 1, TAB_RW);
|
||
e = luaL_intop(+, e, 1); /* first empty element */
|
||
switch (lua_gettop(L)) {
|
||
case 2: { /* called with only 2 arguments */
|
||
pos = e; /* insert new element at the end */
|
||
break;
|
||
}
|
||
case 3: {
|
||
lua_Integer i;
|
||
pos = luaL_checkinteger(L, 2); /* 2nd argument is the position */
|
||
/* check whether 'pos' is in [1, e] */
|
||
luaL_argcheck(L, (lua_Unsigned)pos - 1u < (lua_Unsigned)e, 2,
|
||
"position out of bounds");
|
||
for (i = e; i > pos; i--) { /* move up elements */
|
||
lua_geti(L, 1, i - 1);
|
||
lua_seti(L, 1, i); /* t[i] = t[i - 1] */
|
||
}
|
||
break;
|
||
}
|
||
default: {
|
||
return luaL_error(L, "wrong number of arguments to 'insert'");
|
||
}
|
||
}
|
||
lua_seti(L, 1, pos); /* t[pos] = v */
|
||
return 0;
|
||
}
|
||
|
||
|
||
static int tremove (lua_State *L) {
|
||
lua_Integer size = aux_getn(L, 1, TAB_RW);
|
||
lua_Integer pos = luaL_optinteger(L, 2, size);
|
||
if (pos != size) /* validate 'pos' if given */
|
||
/* check whether 'pos' is in [1, size + 1] */
|
||
luaL_argcheck(L, (lua_Unsigned)pos - 1u <= (lua_Unsigned)size, 2,
|
||
"position out of bounds");
|
||
lua_geti(L, 1, pos); /* result = t[pos] */
|
||
for ( ; pos < size; pos++) {
|
||
lua_geti(L, 1, pos + 1);
|
||
lua_seti(L, 1, pos); /* t[pos] = t[pos + 1] */
|
||
}
|
||
lua_pushnil(L);
|
||
lua_seti(L, 1, pos); /* remove entry t[pos] */
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Copy elements (1[f], ..., 1[e]) into (tt[t], tt[t+1], ...). Whenever
|
||
** possible, copy in increasing order, which is better for rehashing.
|
||
** "possible" means destination after original range, or smaller
|
||
** than origin, or copying to another table.
|
||
*/
|
||
static int tmove (lua_State *L) {
|
||
lua_Integer f = luaL_checkinteger(L, 2);
|
||
lua_Integer e = luaL_checkinteger(L, 3);
|
||
lua_Integer t = luaL_checkinteger(L, 4);
|
||
int tt = !lua_isnoneornil(L, 5) ? 5 : 1; /* destination table */
|
||
checktab(L, 1, TAB_R);
|
||
checktab(L, tt, TAB_W);
|
||
if (e >= f) { /* otherwise, nothing to move */
|
||
lua_Integer n, i;
|
||
luaL_argcheck(L, f > 0 || e < LUA_MAXINTEGER + f, 3,
|
||
"too many elements to move");
|
||
n = e - f + 1; /* number of elements to move */
|
||
luaL_argcheck(L, t <= LUA_MAXINTEGER - n + 1, 4,
|
||
"destination wrap around");
|
||
if (t > e || t <= f || (tt != 1 && !lua_compare(L, 1, tt, LUA_OPEQ))) {
|
||
for (i = 0; i < n; i++) {
|
||
lua_geti(L, 1, f + i);
|
||
lua_seti(L, tt, t + i);
|
||
}
|
||
}
|
||
else {
|
||
for (i = n - 1; i >= 0; i--) {
|
||
lua_geti(L, 1, f + i);
|
||
lua_seti(L, tt, t + i);
|
||
}
|
||
}
|
||
}
|
||
lua_pushvalue(L, tt); /* return destination table */
|
||
return 1;
|
||
}
|
||
|
||
|
||
static void addfield (lua_State *L, luaL_Buffer *b, lua_Integer i) {
|
||
lua_geti(L, 1, i);
|
||
if (l_unlikely(!lua_isstring(L, -1)))
|
||
luaL_error(L, "invalid value (%s) at index %I in table for 'concat'",
|
||
luaL_typename(L, -1), (LUAI_UACINT)i);
|
||
luaL_addvalue(b);
|
||
}
|
||
|
||
|
||
static int tconcat (lua_State *L) {
|
||
luaL_Buffer b;
|
||
lua_Integer last = aux_getn(L, 1, TAB_R);
|
||
size_t lsep;
|
||
const char *sep = luaL_optlstring(L, 2, "", &lsep);
|
||
lua_Integer i = luaL_optinteger(L, 3, 1);
|
||
last = luaL_optinteger(L, 4, last);
|
||
luaL_buffinit(L, &b);
|
||
for (; i < last; i++) {
|
||
addfield(L, &b, i);
|
||
luaL_addlstring(&b, sep, lsep);
|
||
}
|
||
if (i == last) /* add last value (if interval was not empty) */
|
||
addfield(L, &b, i);
|
||
luaL_pushresult(&b);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Pack/unpack
|
||
** =======================================================
|
||
*/
|
||
|
||
static int tpack (lua_State *L) {
|
||
int i;
|
||
int n = lua_gettop(L); /* number of elements to pack */
|
||
lua_createtable(L, n, 1); /* create result table */
|
||
lua_insert(L, 1); /* put it at index 1 */
|
||
for (i = n; i >= 1; i--) /* assign elements */
|
||
lua_seti(L, 1, i);
|
||
lua_pushinteger(L, n);
|
||
lua_setfield(L, 1, "n"); /* t.n = number of elements */
|
||
return 1; /* return table */
|
||
}
|
||
|
||
|
||
static int tunpack (lua_State *L) {
|
||
lua_Unsigned n;
|
||
lua_Integer i = luaL_optinteger(L, 2, 1);
|
||
lua_Integer e = luaL_opt(L, luaL_checkinteger, 3, luaL_len(L, 1));
|
||
if (i > e) return 0; /* empty range */
|
||
n = (lua_Unsigned)e - i; /* number of elements minus 1 (avoid overflows) */
|
||
if (l_unlikely(n >= (unsigned int)INT_MAX ||
|
||
!lua_checkstack(L, (int)(++n))))
|
||
return luaL_error(L, "too many results to unpack");
|
||
for (; i < e; i++) { /* push arg[i..e - 1] (to avoid overflows) */
|
||
lua_geti(L, 1, i);
|
||
}
|
||
lua_geti(L, 1, e); /* push last element */
|
||
return (int)n;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
|
||
/*
|
||
** {======================================================
|
||
** Quicksort
|
||
** (based on 'Algorithms in MODULA-3', Robert Sedgewick;
|
||
** Addison-Wesley, 1993.)
|
||
** =======================================================
|
||
*/
|
||
|
||
|
||
/* type for array indices */
|
||
typedef unsigned int IdxT;
|
||
|
||
|
||
/*
|
||
** Produce a "random" 'unsigned int' to randomize pivot choice. This
|
||
** macro is used only when 'sort' detects a big imbalance in the result
|
||
** of a partition. (If you don't want/need this "randomness", ~0 is a
|
||
** good choice.)
|
||
*/
|
||
#if !defined(l_randomizePivot) /* { */
|
||
|
||
#include <time.h>
|
||
|
||
/* size of 'e' measured in number of 'unsigned int's */
|
||
#define sof(e) (sizeof(e) / sizeof(unsigned int))
|
||
|
||
/*
|
||
** Use 'time' and 'clock' as sources of "randomness". Because we don't
|
||
** know the types 'clock_t' and 'time_t', we cannot cast them to
|
||
** anything without risking overflows. A safe way to use their values
|
||
** is to copy them to an array of a known type and use the array values.
|
||
*/
|
||
static unsigned int l_randomizePivot (void) {
|
||
clock_t c = clock();
|
||
time_t t = time(NULL);
|
||
unsigned int buff[sof(c) + sof(t)];
|
||
unsigned int i, rnd = 0;
|
||
memcpy(buff, &c, sof(c) * sizeof(unsigned int));
|
||
memcpy(buff + sof(c), &t, sof(t) * sizeof(unsigned int));
|
||
for (i = 0; i < sof(buff); i++)
|
||
rnd += buff[i];
|
||
return rnd;
|
||
}
|
||
|
||
#endif /* } */
|
||
|
||
|
||
/* arrays larger than 'RANLIMIT' may use randomized pivots */
|
||
#define RANLIMIT 100u
|
||
|
||
|
||
static void set2 (lua_State *L, IdxT i, IdxT j) {
|
||
lua_seti(L, 1, i);
|
||
lua_seti(L, 1, j);
|
||
}
|
||
|
||
|
||
/*
|
||
** Return true iff value at stack index 'a' is less than the value at
|
||
** index 'b' (according to the order of the sort).
|
||
*/
|
||
static int sort_comp (lua_State *L, int a, int b) {
|
||
if (lua_isnil(L, 2)) /* no function? */
|
||
return lua_compare(L, a, b, LUA_OPLT); /* a < b */
|
||
else { /* function */
|
||
int res;
|
||
lua_pushvalue(L, 2); /* push function */
|
||
lua_pushvalue(L, a-1); /* -1 to compensate function */
|
||
lua_pushvalue(L, b-2); /* -2 to compensate function and 'a' */
|
||
lua_call(L, 2, 1); /* call function */
|
||
res = lua_toboolean(L, -1); /* get result */
|
||
lua_pop(L, 1); /* pop result */
|
||
return res;
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Does the partition: Pivot P is at the top of the stack.
|
||
** precondition: a[lo] <= P == a[up-1] <= a[up],
|
||
** so it only needs to do the partition from lo + 1 to up - 2.
|
||
** Pos-condition: a[lo .. i - 1] <= a[i] == P <= a[i + 1 .. up]
|
||
** returns 'i'.
|
||
*/
|
||
static IdxT partition (lua_State *L, IdxT lo, IdxT up) {
|
||
IdxT i = lo; /* will be incremented before first use */
|
||
IdxT j = up - 1; /* will be decremented before first use */
|
||
/* loop invariant: a[lo .. i] <= P <= a[j .. up] */
|
||
for (;;) {
|
||
/* next loop: repeat ++i while a[i] < P */
|
||
while ((void)lua_geti(L, 1, ++i), sort_comp(L, -1, -2)) {
|
||
if (l_unlikely(i == up - 1)) /* a[i] < P but a[up - 1] == P ?? */
|
||
luaL_error(L, "invalid order function for sorting");
|
||
lua_pop(L, 1); /* remove a[i] */
|
||
}
|
||
/* after the loop, a[i] >= P and a[lo .. i - 1] < P */
|
||
/* next loop: repeat --j while P < a[j] */
|
||
while ((void)lua_geti(L, 1, --j), sort_comp(L, -3, -1)) {
|
||
if (l_unlikely(j < i)) /* j < i but a[j] > P ?? */
|
||
luaL_error(L, "invalid order function for sorting");
|
||
lua_pop(L, 1); /* remove a[j] */
|
||
}
|
||
/* after the loop, a[j] <= P and a[j + 1 .. up] >= P */
|
||
if (j < i) { /* no elements out of place? */
|
||
/* a[lo .. i - 1] <= P <= a[j + 1 .. i .. up] */
|
||
lua_pop(L, 1); /* pop a[j] */
|
||
/* swap pivot (a[up - 1]) with a[i] to satisfy pos-condition */
|
||
set2(L, up - 1, i);
|
||
return i;
|
||
}
|
||
/* otherwise, swap a[i] - a[j] to restore invariant and repeat */
|
||
set2(L, i, j);
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
** Choose an element in the middle (2nd-3th quarters) of [lo,up]
|
||
** "randomized" by 'rnd'
|
||
*/
|
||
static IdxT choosePivot (IdxT lo, IdxT up, unsigned int rnd) {
|
||
IdxT r4 = (up - lo) / 4; /* range/4 */
|
||
IdxT p = rnd % (r4 * 2) + (lo + r4);
|
||
lua_assert(lo + r4 <= p && p <= up - r4);
|
||
return p;
|
||
}
|
||
|
||
|
||
/*
|
||
** Quicksort algorithm (recursive function)
|
||
*/
|
||
static void auxsort (lua_State *L, IdxT lo, IdxT up,
|
||
unsigned int rnd) {
|
||
while (lo < up) { /* loop for tail recursion */
|
||
IdxT p; /* Pivot index */
|
||
IdxT n; /* to be used later */
|
||
/* sort elements 'lo', 'p', and 'up' */
|
||
lua_geti(L, 1, lo);
|
||
lua_geti(L, 1, up);
|
||
if (sort_comp(L, -1, -2)) /* a[up] < a[lo]? */
|
||
set2(L, lo, up); /* swap a[lo] - a[up] */
|
||
else
|
||
lua_pop(L, 2); /* remove both values */
|
||
if (up - lo == 1) /* only 2 elements? */
|
||
return; /* already sorted */
|
||
if (up - lo < RANLIMIT || rnd == 0) /* small interval or no randomize? */
|
||
p = (lo + up)/2; /* middle element is a good pivot */
|
||
else /* for larger intervals, it is worth a random pivot */
|
||
p = choosePivot(lo, up, rnd);
|
||
lua_geti(L, 1, p);
|
||
lua_geti(L, 1, lo);
|
||
if (sort_comp(L, -2, -1)) /* a[p] < a[lo]? */
|
||
set2(L, p, lo); /* swap a[p] - a[lo] */
|
||
else {
|
||
lua_pop(L, 1); /* remove a[lo] */
|
||
lua_geti(L, 1, up);
|
||
if (sort_comp(L, -1, -2)) /* a[up] < a[p]? */
|
||
set2(L, p, up); /* swap a[up] - a[p] */
|
||
else
|
||
lua_pop(L, 2);
|
||
}
|
||
if (up - lo == 2) /* only 3 elements? */
|
||
return; /* already sorted */
|
||
lua_geti(L, 1, p); /* get middle element (Pivot) */
|
||
lua_pushvalue(L, -1); /* push Pivot */
|
||
lua_geti(L, 1, up - 1); /* push a[up - 1] */
|
||
set2(L, p, up - 1); /* swap Pivot (a[p]) with a[up - 1] */
|
||
p = partition(L, lo, up);
|
||
/* a[lo .. p - 1] <= a[p] == P <= a[p + 1 .. up] */
|
||
if (p - lo < up - p) { /* lower interval is smaller? */
|
||
auxsort(L, lo, p - 1, rnd); /* call recursively for lower interval */
|
||
n = p - lo; /* size of smaller interval */
|
||
lo = p + 1; /* tail call for [p + 1 .. up] (upper interval) */
|
||
}
|
||
else {
|
||
auxsort(L, p + 1, up, rnd); /* call recursively for upper interval */
|
||
n = up - p; /* size of smaller interval */
|
||
up = p - 1; /* tail call for [lo .. p - 1] (lower interval) */
|
||
}
|
||
if ((up - lo) / 128 > n) /* partition too imbalanced? */
|
||
rnd = l_randomizePivot(); /* try a new randomization */
|
||
} /* tail call auxsort(L, lo, up, rnd) */
|
||
}
|
||
|
||
|
||
static int sort (lua_State *L) {
|
||
lua_Integer n = aux_getn(L, 1, TAB_RW);
|
||
if (n > 1) { /* non-trivial interval? */
|
||
luaL_argcheck(L, n < INT_MAX, 1, "array too big");
|
||
if (!lua_isnoneornil(L, 2)) /* is there a 2nd argument? */
|
||
luaL_checktype(L, 2, LUA_TFUNCTION); /* must be a function */
|
||
lua_settop(L, 2); /* make sure there are two arguments */
|
||
auxsort(L, 1, (IdxT)n, 0);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* }====================================================== */
|
||
|
||
|
||
static const luaL_Reg tab_funcs[] = {
|
||
{"concat", tconcat},
|
||
{"insert", tinsert},
|
||
{"pack", tpack},
|
||
{"unpack", tunpack},
|
||
{"remove", tremove},
|
||
{"move", tmove},
|
||
{"sort", sort},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
LUAMOD_API int luaopen_table (lua_State *L) {
|
||
luaL_newlib(L, tab_funcs);
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: lutf8lib.c $
|
||
** Standard library for UTF-8 manipulation
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
#define lutf8lib_c
|
||
#define LUA_LIB
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <assert.h>
|
||
#include <limits.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lauxlib.h"*/
|
||
/*#include "lualib.h"*/
|
||
|
||
|
||
#define MAXUNICODE 0x10FFFFu
|
||
|
||
#define MAXUTF 0x7FFFFFFFu
|
||
|
||
|
||
#define MSGInvalid "invalid UTF-8 code"
|
||
|
||
/*
|
||
** Integer type for decoded UTF-8 values; MAXUTF needs 31 bits.
|
||
*/
|
||
#if (UINT_MAX >> 30) >= 1
|
||
typedef unsigned int utfint;
|
||
#else
|
||
typedef unsigned long utfint;
|
||
#endif
|
||
|
||
|
||
#define iscont(c) (((c) & 0xC0) == 0x80)
|
||
#define iscontp(p) iscont(*(p))
|
||
|
||
|
||
/* from strlib */
|
||
/* translate a relative string position: negative means back from end */
|
||
static lua_Integer u_posrelat (lua_Integer pos, size_t len) {
|
||
if (pos >= 0) return pos;
|
||
else if (0u - (size_t)pos > len) return 0;
|
||
else return (lua_Integer)len + pos + 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** Decode one UTF-8 sequence, returning NULL if byte sequence is
|
||
** invalid. The array 'limits' stores the minimum value for each
|
||
** sequence length, to check for overlong representations. Its first
|
||
** entry forces an error for non-ascii bytes with no continuation
|
||
** bytes (count == 0).
|
||
*/
|
||
static const char *utf8_decode (const char *s, utfint *val, int strict) {
|
||
static const utfint limits[] =
|
||
{~(utfint)0, 0x80, 0x800, 0x10000u, 0x200000u, 0x4000000u};
|
||
unsigned int c = (unsigned char)s[0];
|
||
utfint res = 0; /* final result */
|
||
if (c < 0x80) /* ascii? */
|
||
res = c;
|
||
else {
|
||
int count = 0; /* to count number of continuation bytes */
|
||
for (; c & 0x40; c <<= 1) { /* while it needs continuation bytes... */
|
||
unsigned int cc = (unsigned char)s[++count]; /* read next byte */
|
||
if (!iscont(cc)) /* not a continuation byte? */
|
||
return NULL; /* invalid byte sequence */
|
||
res = (res << 6) | (cc & 0x3F); /* add lower 6 bits from cont. byte */
|
||
}
|
||
res |= ((utfint)(c & 0x7F) << (count * 5)); /* add first byte */
|
||
if (count > 5 || res > MAXUTF || res < limits[count])
|
||
return NULL; /* invalid byte sequence */
|
||
s += count; /* skip continuation bytes read */
|
||
}
|
||
if (strict) {
|
||
/* check for invalid code points; too large or surrogates */
|
||
if (res > MAXUNICODE || (0xD800u <= res && res <= 0xDFFFu))
|
||
return NULL;
|
||
}
|
||
if (val) *val = res;
|
||
return s + 1; /* +1 to include first byte */
|
||
}
|
||
|
||
|
||
/*
|
||
** utf8len(s [, i [, j [, lax]]]) --> number of characters that
|
||
** start in the range [i,j], or nil + current position if 's' is not
|
||
** well formed in that interval
|
||
*/
|
||
static int utflen (lua_State *L) {
|
||
lua_Integer n = 0; /* counter for the number of characters */
|
||
size_t len; /* string length in bytes */
|
||
const char *s = luaL_checklstring(L, 1, &len);
|
||
lua_Integer posi = u_posrelat(luaL_optinteger(L, 2, 1), len);
|
||
lua_Integer posj = u_posrelat(luaL_optinteger(L, 3, -1), len);
|
||
int lax = lua_toboolean(L, 4);
|
||
luaL_argcheck(L, 1 <= posi && --posi <= (lua_Integer)len, 2,
|
||
"initial position out of bounds");
|
||
luaL_argcheck(L, --posj < (lua_Integer)len, 3,
|
||
"final position out of bounds");
|
||
while (posi <= posj) {
|
||
const char *s1 = utf8_decode(s + posi, NULL, !lax);
|
||
if (s1 == NULL) { /* conversion error? */
|
||
luaL_pushfail(L); /* return fail ... */
|
||
lua_pushinteger(L, posi + 1); /* ... and current position */
|
||
return 2;
|
||
}
|
||
posi = s1 - s;
|
||
n++;
|
||
}
|
||
lua_pushinteger(L, n);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** codepoint(s, [i, [j [, lax]]]) -> returns codepoints for all
|
||
** characters that start in the range [i,j]
|
||
*/
|
||
static int codepoint (lua_State *L) {
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, 1, &len);
|
||
lua_Integer posi = u_posrelat(luaL_optinteger(L, 2, 1), len);
|
||
lua_Integer pose = u_posrelat(luaL_optinteger(L, 3, posi), len);
|
||
int lax = lua_toboolean(L, 4);
|
||
int n;
|
||
const char *se;
|
||
luaL_argcheck(L, posi >= 1, 2, "out of bounds");
|
||
luaL_argcheck(L, pose <= (lua_Integer)len, 3, "out of bounds");
|
||
if (posi > pose) return 0; /* empty interval; return no values */
|
||
if (pose - posi >= INT_MAX) /* (lua_Integer -> int) overflow? */
|
||
return luaL_error(L, "string slice too long");
|
||
n = (int)(pose - posi) + 1; /* upper bound for number of returns */
|
||
luaL_checkstack(L, n, "string slice too long");
|
||
n = 0; /* count the number of returns */
|
||
se = s + pose; /* string end */
|
||
for (s += posi - 1; s < se;) {
|
||
utfint code;
|
||
s = utf8_decode(s, &code, !lax);
|
||
if (s == NULL)
|
||
return luaL_error(L, MSGInvalid);
|
||
lua_pushinteger(L, code);
|
||
n++;
|
||
}
|
||
return n;
|
||
}
|
||
|
||
|
||
static void pushutfchar (lua_State *L, int arg) {
|
||
lua_Unsigned code = (lua_Unsigned)luaL_checkinteger(L, arg);
|
||
luaL_argcheck(L, code <= MAXUTF, arg, "value out of range");
|
||
lua_pushfstring(L, "%U", (long)code);
|
||
}
|
||
|
||
|
||
/*
|
||
** utfchar(n1, n2, ...) -> char(n1)..char(n2)...
|
||
*/
|
||
static int utfchar (lua_State *L) {
|
||
int n = lua_gettop(L); /* number of arguments */
|
||
if (n == 1) /* optimize common case of single char */
|
||
pushutfchar(L, 1);
|
||
else {
|
||
int i;
|
||
luaL_Buffer b;
|
||
luaL_buffinit(L, &b);
|
||
for (i = 1; i <= n; i++) {
|
||
pushutfchar(L, i);
|
||
luaL_addvalue(&b);
|
||
}
|
||
luaL_pushresult(&b);
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*
|
||
** offset(s, n, [i]) -> index where n-th character counting from
|
||
** position 'i' starts; 0 means character at 'i'.
|
||
*/
|
||
static int byteoffset (lua_State *L) {
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, 1, &len);
|
||
lua_Integer n = luaL_checkinteger(L, 2);
|
||
lua_Integer posi = (n >= 0) ? 1 : len + 1;
|
||
posi = u_posrelat(luaL_optinteger(L, 3, posi), len);
|
||
luaL_argcheck(L, 1 <= posi && --posi <= (lua_Integer)len, 3,
|
||
"position out of bounds");
|
||
if (n == 0) {
|
||
/* find beginning of current byte sequence */
|
||
while (posi > 0 && iscontp(s + posi)) posi--;
|
||
}
|
||
else {
|
||
if (iscontp(s + posi))
|
||
return luaL_error(L, "initial position is a continuation byte");
|
||
if (n < 0) {
|
||
while (n < 0 && posi > 0) { /* move back */
|
||
do { /* find beginning of previous character */
|
||
posi--;
|
||
} while (posi > 0 && iscontp(s + posi));
|
||
n++;
|
||
}
|
||
}
|
||
else {
|
||
n--; /* do not move for 1st character */
|
||
while (n > 0 && posi < (lua_Integer)len) {
|
||
do { /* find beginning of next character */
|
||
posi++;
|
||
} while (iscontp(s + posi)); /* (cannot pass final '\0') */
|
||
n--;
|
||
}
|
||
}
|
||
}
|
||
if (n == 0) /* did it find given character? */
|
||
lua_pushinteger(L, posi + 1);
|
||
else /* no such character */
|
||
luaL_pushfail(L);
|
||
return 1;
|
||
}
|
||
|
||
|
||
static int iter_aux (lua_State *L, int strict) {
|
||
size_t len;
|
||
const char *s = luaL_checklstring(L, 1, &len);
|
||
lua_Unsigned n = (lua_Unsigned)lua_tointeger(L, 2);
|
||
if (n < len) {
|
||
while (iscontp(s + n)) n++; /* go to next character */
|
||
}
|
||
if (n >= len) /* (also handles original 'n' being negative) */
|
||
return 0; /* no more codepoints */
|
||
else {
|
||
utfint code;
|
||
const char *next = utf8_decode(s + n, &code, strict);
|
||
if (next == NULL || iscontp(next))
|
||
return luaL_error(L, MSGInvalid);
|
||
lua_pushinteger(L, n + 1);
|
||
lua_pushinteger(L, code);
|
||
return 2;
|
||
}
|
||
}
|
||
|
||
|
||
static int iter_auxstrict (lua_State *L) {
|
||
return iter_aux(L, 1);
|
||
}
|
||
|
||
static int iter_auxlax (lua_State *L) {
|
||
return iter_aux(L, 0);
|
||
}
|
||
|
||
|
||
static int iter_codes (lua_State *L) {
|
||
int lax = lua_toboolean(L, 2);
|
||
const char *s = luaL_checkstring(L, 1);
|
||
luaL_argcheck(L, !iscontp(s), 1, MSGInvalid);
|
||
lua_pushcfunction(L, lax ? iter_auxlax : iter_auxstrict);
|
||
lua_pushvalue(L, 1);
|
||
lua_pushinteger(L, 0);
|
||
return 3;
|
||
}
|
||
|
||
|
||
/* pattern to match a single UTF-8 character */
|
||
#define UTF8PATT "[\0-\x7F\xC2-\xFD][\x80-\xBF]*"
|
||
|
||
|
||
static const luaL_Reg funcs[] = {
|
||
{"offset", byteoffset},
|
||
{"codepoint", codepoint},
|
||
{"char", utfchar},
|
||
{"len", utflen},
|
||
{"codes", iter_codes},
|
||
/* placeholders */
|
||
{"charpattern", NULL},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
LUAMOD_API int luaopen_utf8 (lua_State *L) {
|
||
luaL_newlib(L, funcs);
|
||
lua_pushlstring(L, UTF8PATT, sizeof(UTF8PATT)/sizeof(char) - 1);
|
||
lua_setfield(L, -2, "charpattern");
|
||
return 1;
|
||
}
|
||
|
||
/*
|
||
** $Id: linit.c $
|
||
** Initialization of libraries for lua.c and other clients
|
||
** See Copyright Notice in lua.h
|
||
*/
|
||
|
||
|
||
#define linit_c
|
||
#define LUA_LIB
|
||
|
||
/*
|
||
** If you embed Lua in your program and need to open the standard
|
||
** libraries, call luaL_openlibs in your program. If you need a
|
||
** different set of libraries, copy this file to your project and edit
|
||
** it to suit your needs.
|
||
**
|
||
** You can also *preload* libraries, so that a later 'require' can
|
||
** open the library, which is already linked to the application.
|
||
** For that, do the following code:
|
||
**
|
||
** luaL_getsubtable(L, LUA_REGISTRYINDEX, LUA_PRELOAD_TABLE);
|
||
** lua_pushcfunction(L, luaopen_modname);
|
||
** lua_setfield(L, -2, modname);
|
||
** lua_pop(L, 1); // remove PRELOAD table
|
||
*/
|
||
|
||
/*#include "lprefix.h"*/
|
||
|
||
|
||
#include <stddef.h>
|
||
|
||
/*#include "lua.h"*/
|
||
|
||
/*#include "lualib.h"*/
|
||
/*#include "lauxlib.h"*/
|
||
|
||
|
||
/*
|
||
** these libs are loaded by lua.c and are readily available to any Lua
|
||
** program
|
||
*/
|
||
static const luaL_Reg loadedlibs[] = {
|
||
{LUA_GNAME, luaopen_base},
|
||
{LUA_LOADLIBNAME, luaopen_package},
|
||
{LUA_COLIBNAME, luaopen_coroutine},
|
||
{LUA_TABLIBNAME, luaopen_table},
|
||
{LUA_IOLIBNAME, luaopen_io},
|
||
{LUA_OSLIBNAME, luaopen_os},
|
||
{LUA_STRLIBNAME, luaopen_string},
|
||
{LUA_MATHLIBNAME, luaopen_math},
|
||
{LUA_UTF8LIBNAME, luaopen_utf8},
|
||
{LUA_DBLIBNAME, luaopen_debug},
|
||
{NULL, NULL}
|
||
};
|
||
|
||
|
||
LUALIB_API void luaL_openlibs (lua_State *L) {
|
||
const luaL_Reg *lib;
|
||
/* "require" functions from 'loadedlibs' and set results to global table */
|
||
for (lib = loadedlibs; lib->func; lib++) {
|
||
luaL_requiref(L, lib->name, lib->func, 1);
|
||
lua_pop(L, 1); /* remove lib */
|
||
}
|
||
}
|
||
|
||
#endif /* LUA_IMPL */
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
MIT License
|
||
|
||
Copyright (c) 1994–2019 Lua.org, PUC-Rio.
|
||
Copyright (c) 2020-2023 Eduardo Bart (https://github.com/edubart).
|
||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
of this software and associated documentation files (the "Software"), to deal
|
||
in the Software without restriction, including without limitation the rights
|
||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
copies of the Software, and to permit persons to whom the Software is
|
||
furnished to do so, subject to the following conditions:
|
||
|
||
The above copyright notice and this permission notice shall be included in all
|
||
copies or substantial portions of the Software.
|
||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
SOFTWARE.
|
||
*/
|